Table 5: Summary of time/space demands when 100,000 prototypes are used.

classifier prototype/feature storage | run time per image
nearest-neighbor 28,800 K bytes 18 seconds
decision tree 166 K bytes 0.024 seconds
perfect metrics 1,110 K bytes 0.096 seconds

Table 6: Distribution on the parameters of the image defect model.

Parameter | Distribution | Units

randomized per-character ...

resn fixed (= 300) pixels/inch

size fixed (= 5,7,9,11,13 for training, | points
6,8,10,12,14 for testing) (1/72 inch)

blur standard error of the normal (¢ = 0.7,0 = 0.3) pixels

Gaussian blurring kernel

thrs binarization threshold | normal (z = 0.25,0 = 0.04) intensity

skew skew normal (4 = 0,0 = 1.33) degrees

xscl horizontal scaling uniform in [0.85,1.15] dimensionless

yscl vertical scaling normal (1 = 1,0 = 0.0167) dimensionless

xoff horizontal translation | uniform in [-0.5,0.5] pixels

yoff vertical translation normal (4 = 0,0 = 0.06) ems

randomized per—char and per—pizel ...

sens pixel sensor sensitivity | normal (g = 0.125,0 = 0.04) intensity

jitt jitter normal (¢ = 0.2,0 = 0.1) pixels
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Table 4: Results of perfect—metric classification on test set.

number of || number truth = ¢ truth = e Total
training | prototypes of total = 50,000 | total = 50,000 || total = 100,000
set (,000) features || # err | #rej | # err | #rej | # err # 1ej
1 1 5 34 204 139 202 173 406
2 2 6 14 66 37 140 51 206
3 3 7 19 13 41 112 60 125
4 4 9 34 8 37 50 71 58
5 5 14 16 10 47 27 63 37
6 6 22 31 14 64 12 95 26
7 7 32 26 6 52 22 78 28
8 8 45 15 1 58 12 73 13
9 9 32 29 7 53 16 82 23
10 10 54 20 2 58 16 78 18
11 20 470 14 6 53 47 67 53
12 30 761 16 11 31 42 47 53
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Figure 8: Images misclassified when 30,000 prototypes were used to construct a perfect
metric (out of the 100,000 tested, shown normalized). On the left: samples of ‘c’s; right:

samples of ‘e’s.
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Figure 9: Images that were considered ambiguous when 30,000 prototypes were used
to construct a perfect metric (out of the 100,000 tested, shown normalized). On the
left: samples of ‘c’s; right: samples of ‘e’s.
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Figure 7: Images misclassified when 60,000 prototypes were used to derive a decision
tree (out of the 100,000 tested, shown normalized). On the left: samples of ‘c’s; right:

samples of ‘e’s

Appendix

The defect model parameters (and their units)
include: size, the nominal text size of the
output (units of points); resn, “resolution,”
the output spatial sampling rate (pixels/inch);
skew, rotation (degrees); xscl and yscl, multi-
plicative scaling factors (horizontally and verti-
cally); xoff and yoff, translation offsets (pix-
els); jitt, jitter, the distribution of per—pixel
discrepancies of the pixel sensor centers from an
ideal square grid; blur, defocusing, modeled as
a Gaussian point—spread function’s standard er-
ror (pixels); sens, sensitivity, the distribution of
per—pixel additive noise, expressed as the stan-
dard error of a normal distribution with zero
mean, (intensity units); and thrs, the binariza-
tion threshold (intensity). When the model is
simulated, the parameters take effect in the or-
der given above: the ideal input image is first
rotated, scaled, and translated; then the out-
put resolution and per—pixel jitter determine
the centers of each pixel sensor; for each pixel
sensor the blurring kernel is applied, giving an
analog intensity value to which per—pixel sen-
sitivity noise is added; finally, each pixel’s in-
tensity is thresholded, giving the output image.
Table 6 summarizes the distribution on the pa-
rameters used in this experiment.

References

[1] H.S. Baird, R. Fossey, A 100-Font Classifier,
Proceedings of the first International Confer-
ence on Document Analysis and Recognition,
St.—Malo, France, September 20-October 2,
1991, pp. 332-340.

[2] H.S. Baird, Document Image Defect Mod-
els, in H.S. Baird, H. Bunke, K. Yamamoto
(Eds.), Structured Document Image Analysis,
Springer—Verlag, 1992.

[3] H.S. Baird, Document Image Defect Models
and Their Uses, Proceedings of the Second In-
ternational Conference on Document Analysis
and Recognition, Tsukuba Science City, Japan,
October 20-22, 1993, pp. 62-67.

[4] R.G. Casey, G. Nagy, Decision Tree Design
Using A Probabilistic Model, IEFE Transac-
tions on Information Theory, IT—30, 1, Jan-
uary 1984, pp. 93-99.

[5] T.M. Cover, P.E. Hart, Nearest Neighbor Pat-
tern Classification, IEFFE Transactions on In-
formation Theory, IT—13, 1, January 1967,
pp. 21-27.

[6] J.H. Friedman, J.L. Bentley, R.A. Finkel, An
Algorithm for Finding Best Matches in Loga-
rithmic Expected Time, ACM Transactions on
Mathematical Software, 3, 3, September 1977,
pp. 209-226.

[7] K. Fukunaga, D.M. Hummels, Bias of Nearest
Neighbor Error Estimates, IEEF Transactions

Asymptotic Accuracy of Two—Class Discrimination



Table 3: Results of decision—tree classification on test set.

number of || number of | maximum truth = ¢ truth = e Total

training | prototypes internal number of || total = 50,000 | total = 50,000 100,000
set (,000) nodes levels Herr | #Hrej | #£err | #rej || #err | # rej
1 1 3 3 30 0 635 0 665 0
2 2 4 3 16 0 477 0 493 0
3 3 6 3 22 0 169 0 191 0
4 4 6 3 17 0 364 0 381 0
5 5 7 4 36 0 285 0 321 0
6 6 8 4 38 0 256 0 294 0
7 7 10 5 30 0 266 0 296 0
8 8 10 4 24 0 179 0 203 0
9 9 8 4 15 0 120 0 135 0
10 10 8 4 13 0 138 0 151 0
11 20 18 6 16 0 169 0 185 0
12 30 25 7 10 0 100 0 110 0
13 40 28 7 14 0 81 0 95 0
14 50 31 7 14 0 94 0 108 0
15 60 39 8 8 0 78 0 86 0

ble 5 summarizes their space and time demands to succeed.

(when training set 10 with 100,000 training pro-
totypes was used). The run time was measured
on a Silicon Graphics Computer Systems Power
Series Model 4D/480S.

The accuracies achieved (99.9%) are re-
markably high, considering the well-known
practical difficulty of the problem. Apparently
the perfect metrics method was more accurate
than the nearest-mneighbors and decision—tree
methods. However, if we count rejects as errors,
the differences were not significant® at 95% sta-
tistical confidence.

It would be surprising if this remarkable
consistency were a coincidence: therefore, we
speculate that the asymptotic accuracy of all
three methods is determined more by the char-
acteristics of the training data that they shared,
than by the details of their methodology which
differ. In other words, we believe that, as long
as the training data are representative and suf-
ficiently many, a wide range of classifier tech-
nologies can be trained to equally high accu-
racies. Moreover, impractically expensive com-
puting resources need not be required for this

We estimate the 95% statistical confidence in-
tervals of errors plus rejects, after training on 30,000
samples and testing on 100,000 samples, to be as fol-
lows (in per cent): nearest-neighbors with normal-
ized Hamming distance, [0.08,0.12]; decision trees,
[0.09,0.13]; and perfect metrics, [0.08,0.12]. Note
that each pair of intervals overlaps.

Ho and Baird

It should be borne in mind that some as-
pects of the classifiers’ performance may depend
largely on the nature of the imaging defects. For
instance, an asymmetry in errors could be due
to the defect model rather than the classifiers: if
defects such as scratches and coffee stains were
modeled, we might have seen more ‘c’s classified
as ‘e’s.

We have noted that there is little over-
lap among the errors made by the classifiers.
This suggests that further performance im-
provements might be possible, for example,
through combining their results.

Our results suggest a promising two—part
research strategy to build highly accurate clas-
sifiers. On one hand, more research is called
for to develop image defect models that fit re-
ality as closely as possible. On the other hand,
we should further investigate methods for con-
structing high—performance classifiers given the
precise problem definitions that image defect
models allow.
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Figure 6: Decision tree generated with training set 15. The number
inside each node indicates how many training samples are assigned to

that node. The terminal nodes containing ‘c’s are drawn as circles and

those containing ‘e’s double circles.

the training samples are in a single undifferenti-
ated set. A feature is generated and all training
samples that it discriminates are removed from
the set. The algorithm iterates until all train-
ing samples of each class are discriminated or
no more features can be found to discriminate
any of the remaining samples. 2 In the result-
ing perfect—metric classifier all the features are
evaluated (by contrast to the decision—tree clas-
sifier, in which only a fraction are evaluated).

Using this method, we obtained a classifier
for each of the training sets 1 through 12. Table
4 summarizes their performance on the test set.
We treat all ambiguities as rejects.

Errors and rejects (ambiguities) decline
rapidly through 5000 prototypes, and then sta-
bilize at values lower than those for nearest—
neighbors and decision trees. The asymmetry
in errors is also less obvious. Of the 47 errors,
22 are identical to those in Figure 4 and 17 are
identical to those in Figure 7. Only three errors
are common to all three methods.

Figure 8 shows the errors of the classifier
trained with 30,000 prototypes (training set 12)
and Figure 9 shows the rejects.

2This occurs when the two classes share some
identical samples.

6 Conclusions

We have experimentally estimated the asymp-
totic accuracy of three trainable classification
methods, as applied to the same precisely spec-
ified recognition problem. Through the use of a
parameterized image defect model, we were able
to supply a training set that was representative
and of unlimited size.

In all three methods, the capacity of the
classifier was permitted to expand during train-
ing. For all three, under training with larger
and larger training sets, accuracy rose to an
apparent asymptote (Figure 10); this occurred
more rapidly for some methods than others.
None of the methods required exorbitant time
or space resources to approach the asymptote
closely.

In the nearest-neighbor trials, the esti-
mated accuracy seems to approach an asymp-
tote, clearly enough; but, we would prefer to
support this sort of subjective judgement with
a principled statistical analysis. In other future
work, we hope to extend the decision-tree and
perfect-metric trials to larger training sets, to
increase our confidence that we have observed
their asymptotic behavior.

In other important respects, however, such
as time/space demands at runtime, the three
classification methods are quite dissimilar. Ta-

Asymptotic Accuracy of Two—Class Discrimination



will see, they are not exorbitant). We also do
not aim to construct worst—case optimal trees;
rather, we choose a greedy heuristic that is sen-
sitive to the quality of training data and is oth-
erwise simple to implement. It is, like most such
heuristics, correct on the training set by con-
struction.

We construct a deterministic,
non-backtracking, binary classification tree in
which each interior node owns a linear discrim-
inant function, and each leaf owns a single class
(‘¢’ or ‘¢’). At the outset, the tree consists of a
single leaf which owns all the training data.

Each “mixed” leaf (owning more than one
class) is split into an interior node and two
leaves. This proceeds recursively until all leaves
own training data all of a single class.

A mixed leaf owns two nonempty sets ¢; and
¢y of training samples. We compute the sam-
ple mean m; of each class ¢; (m; € R#8%18)
A line i1s drawn from m; to msy. The fam-
ily of hyperplanes {hq,hs,...,} perpendicular
to this line, parameterized by their distances
to my (d(ma,h;)), are then examined. The
parameter is quantized by fixed increments of
0.05 x |[ma — my||. For each hyperplane h in
this family, the error

en. =H{z|lz€er Ad(z,h) >0} U
{z|z € ea ANd(z,h) <0}

is calculated, and the A with minimum error ey
is chosen.

Figure 6 shows the tree constructed using
training set 15. A new tree was built, from
scratch, for each training set. Table 3 summa-
rizes the results of classification for the test set
using these trees.

For small training sets, the number of er-
rors is much larger than for nearest-neighbors.
However, accuracy improves quickly. Compar-
ing the results in line 15 of Tables 3 and 2,
we can see that the accuracy is comparable to
that of nearest—neighbor matching using nor-
malized Hamming distance. Because of insuffi-
cient computational resources, we have not yet
grown bigger trees. Nevertheless, it is clear that
the increase in training samples helps improve
the generalization power of the trees.

As before, more ‘e’s than ‘c’s are misclassi-
fied. The figures in the last few lines of Table
3 agree closely with the apparent limit in Ta-
ble 2. Yet only 32 of the 86 errors, shown in

Ho and Baird

Figure 7, are identical to those in Figure 4 (see
Conclusions).

5 Perfect Metrics

In [10] we have described a method for con-
structing “perfect metrics” for character clas-
sification. The metric d(z, ¢) > 0 measures the
dissimilarity of an image z to a (description of
a) class ¢ (note: it does not compare two im-
ages). We call such a metric “perfect” on a set
if, for all images z in the set, and all classes ¢,
d(z,c) = 0 iff z is in class ¢. In practice, we
can construct metrics which are perfect on the
training set provided that there is no ambiguity.
Ambiguity arises when there is an x such that
d(z,c) = 0 for more than one class.

The metrics could be less than perfect on
test sets. We say that a metric is perfect on a
set S with probability p if p equals the fraction
of images x € S for which d(z,¢) = 0 iff z is
in class ¢ for all ¢. To achieve a high probabil-
ity of perfection on the test set our experience
suggests that it is necessary (but not sufficient)
that the number of training samples is much
greater than the number of distinct values taken
on by any feature.

The metric is represented as a “distribution
map” where the occurrence in the training set of
each value of each feature 1s explicitly recorded.
These classifiers tend to be more prone to am-
biguities than to errors. In an extreme example
of this, if all values of all features occur for all
classes, then all images are ambiguous.

Ambiguities will be completely eliminated
if the following condition is satisfied: for each
pair of classes ¢; and c¢;, there exists at least
one feature whose distribution maps for ¢; and
c¢; do not overlap. Such a feature set may be
difficult or impossible to find, either manually or
automatically. A more easily satisfied, but less
efficient, condition is: for each pair of classes ¢;
and c;, and for each z in ¢;, there exists at least
one feature in which z has a value that does not
occur in the distribution map of ¢;. We say that
such a feature is an i, j-discriminating feature
for x.

We experimented with the following heuris-
tic to discover discriminating features for classes
‘e’ and ‘c’. Quantized distances to hyperplanes
— as in the above discussion for decision trees

— were used as features. At the outset, all
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verify this, the distance between each test sam-
ple and its nearest neighbor in the training set
was recorded. The distribution of the distances
for each class is shown in Figure 3. Indeed, this
shows that ‘e’s are more widely scattered, under
Hamming distance, than ‘c’s.

No clear downward trend is visible after
90,000 prototypes. This might suggest that
99.8% is an upper bound on accuracy possible
using this training set. However, results from
the second test show that this is not the case.
In the second test, the same features were used
but the metric was changed to the normalized
Hammingdistance (H.d. divided by the number
of black pixels in the prototype). The results
are shown in Table 2 and Figure 4 respectively.
The number of errors is compared to that of the
first test in Figure 5.

Table 2: Results of nearest—meighbor
matching on an independent test set us-
ing normalized Hamming distance.

# truth = ¢ | truth = e Total

train- | proto- 50,000 50,000 100,000
ing types # # | # # # | #
set (,000) err rej | err rej err | rej
1 1 90 0 95 2 185 2
2 2 78 1 85 1 163 2
3 3 60 2 82 1 142 3
4 4 53 2 81 2 134 4
5 5 44 2 80 0 124 2
6 6 47 1 et 0 118 1
7 7 48 0 76 0 124 0
8 8 45 0 83 0 128 0
9 9 47 0 87 0 134 0
10 10 48 0 20 0 138 0
11 20 24 0 84 0 108 0
12 30 23 0 76 0 99 0
13 40 19 0 s 0 96 0
14 50 19 0 76 1 95 1
15 60 21 0 67 0 88 0
16 70 20 0 70 0 20 0
17 80 20 0 73 0 93 0
18 90 20 0 et 0 91 0
19 100 19 0 69 1 88 1
20 110 23 0 69 1 92 1
21 120 22 0 68 1 920 1
22 130 21 0 70 0 91 0
23 140 20 0 70 0 920 0
24 150 18 0 73 0 91 0
25 200 17 0 71 0 88 0
26 250 16 0 71 0 87 0
27 300 15 0 72 0 87 0
28 350 16 0 72 0 88 0
29 400 16 0 81 1 a7 1
30 450 15 0 78 2 93 2
31 500 13 0 79 1 92 1

There are, on average, only 3/5 as many
errors as in the first test. There are also many

fewer rejects. Otherwise, roughly similar behav-
ior is observed: the number of errors quickly
decreases up to about 60,000 prototypes, and
thereafter shows no clear downward trend. So,
an accuracy of 99.9% seems to be the best
achievable with 500,000 prototypes under nor-
malized Hamming distance. It is of course pos-
sible that, given even larger numbers of proto-
types, some improvement would be possible.

The change of metric had a greater effect on
accuracy than an order—of-magnitude enlarge-
ment of the training set. We feel that adding
more prototypes, chosen from the given distri-
bution, is unlikely to overwhelm the advantage
of using the better metric.

However, we have conjectured that we
might be able to improve accuracy substan-
tially, even for an inferior metric, by adding
prototypes chosen from a special distribution:
where the errors are concentrated. In an at-
tempt to locate these concentrations, we ana-
lyzed the distribution of the defect—-model pa-
rameters associated with errors.

It turns out that errors are strongly corre-
lated with size: 93% of the errors in both tests
involve 6 point images, and the rest involve 8
point images. The other model parameters, ex-
amined independently, do not correlate strongly
with errors. We have not tested for correlations
of errors with pairs, triples, etc of parameters,
since the data is sparse.

This suggests future experiments in which
we enrich the set of prototypes with samples of
low size. Another way to use the errors, in
the absence of marked correlations, would be to
generate additional prototypes by slightly per-
turbing the parameter vectors associated with
error cases.

4 Decision Trees

The second type of classifier we examine 1s deci-
sion trees. Their distinctive advantage is speed,
and their weakness is rapid error accumulation
with depth. We have conjectured that the use
of unusually large training sets may circumvent
this problem.

Many heuristics for decision—tree design
have been proposed [4] [11] [12] [16] [17] [19].
We will focus here on accuracy (generalization
of discrimination to the test set), rather than on
space or time characteristics (although, as we

Asymptotic Accuracy of Two—Class Discrimination



been applied so far only to a simpler problem
[3]. We hope that, in the future, this problem
may be similarly characterized.

3 Nearest—Neighbor
Matching

Nearest—neighbor matching is appealing for sev-
eral reasons: the method is relatively sim-
ple to implement; and there exists a theorem
that, under certain conditions on the class—
conditional distributions, its asymptotic error
rate is bounded above by twice the Bayes risk
[5]. The proof depends on the fact that, as
the number of prototypes increases, the near-
est neighbor of a sample chosen from the class
distributions is, in the limit, identical to the
sample 1tself. In practice, given finite sets of
prototypes, this limiting condition may not ap-
ply: Fukunaga [7] has shown that in this case
there can be substantial bias in the estimate of
the nearest-—neighbor error.

The present state of the art does not offer a
systematic procedure for choosing and quantiz-
ing features that is guaranteed to support the
best possible discrimination. This uncertainty
has encouraged engineers to use many and/or
finely—quantized features. The resulting space
of distinct representations is large, decreasing
the probability that a sample will be identical
to any prototype from a finite set. In spite of
these difficulties, nearest—neighbor classification
is widely considered one of the most reliable
methods for achieving the highest possible ac-
curacy on hard problems [15].

The most serious practical drawbacks of
nearest—neighbor classification are the poten-
tially exorbitant time and space requirements
of naive implementations. Most prior work fo-
cuses on pruning the prototypes [8] [9] [14] [15]
and speed-optimizing the search [6]. Still, their
accuracy 1s always bounded above by the results
of brute—force matching to the entire training
set. Given an unbounded training set, we are
now in a position to conduct large-scale trials to
examine the asymptotic effects of the number of
training samples on the classification accuracy.

We experimented first with perhaps the
simplest image metric: Hamming distance be-
tween normalized 48 x48 bilevel images (that is,
simply the number of pixels that differ). Table 1
summarizes the results of the test. The training

Ho and Baird

Table 1: Results of nearest—meighbor
matching on an independent test set us-
ing Hamming distance.

# truth = ¢ | truth = e Total

train- | proto- 50,000 50,000 100,000
ing types # # # | # # | #
set (,000) err rej err | rej err | rej
1 1 17 0 | 260 7 277 7
2 2 13 0| 221 5 234 5
3 3 12 0 | 207 3 219 3
4 4 7 0| 219 3 226 3
5 5 10 0 | 208 2 218 2
6 6 10 0| 183 1 193 1
7 7 11 1 181 3 192 4
8 8 9 0| 193 4 202 4
9 9 13 0| 196 4 209 4
10 10 13 0| 194 4 207 4
11 20 11 1 187 6 198 7
12 30 12 1 176 3 188 4
13 40 12 1 165 8 177 9
14 50 11 1 152 6 163 7
15 60 10 0 | 140 7 150 7
16 70 9 0| 139 5 148 5
17 80 9 0| 139 7 148 7
18 920 8 0| 138 7 146 7
19 100 10 0| 141 7 151 7
20 110 13 0| 139 9 152 9
21 120 13 0| 139 8 152 8
22 130 12 0 | 146 8 158 8
23 140 10 0| 144 7 154 7
24 150 8 0 | 143 5 151 5
25 200 6 0 | 147 4 153 4
26 250 6 2 157 4 163 6
27 300 11 2 141 4 152 6
28 350 11 0 | 146 7 157 7
29 400 11 1 150 6 161 7
30 450 9 1 158 5 167 6
31 500 9 1 145 7 154 8

set referred to in each entry is a subset of that
in the next entry. To distinguish between errors
and ambiguities, we count a sample as a reject
whenever its minimum distances to both classes
are the same. Figure 2 shows the images of the
errors found using the largest training set.
Accuracy generally improves, but slowly
and not monotonically. The number of rejects is
small, especially for the ‘c’s. The most rapid im-
provement occurred when the number of train-
ing prototypes was small. Beyond 90,000 pro-
totypes (training set 18) no clear improvement
was observed.
substantially
more ‘e’s are misclassified as ‘c’s than ‘c’s mis-

Errors are not symmetric:

classified as ‘e’s. One possible explanation is
that ‘c’s are in “tighter clusters” so that their
nearest neighbors are more likely to be ‘c’s; and
that ‘e’s are more “scattered,” so that some of
them lie closer to ‘c’s than to other ‘e’s. To



effects of classification methodology. Since all
three classifiers will be trained using data from
the same stochastic source, and in the same
quantity, we can compare their ability to learn
and generalize.

The three types of classifiers we consider
are: nearest neighbors, decision trees, and per-
fect metrics [10]. These classifiers are similar in
that, during training, their “capacity” can grow
indefinitely: that is, their VC-dimension [18]
can increase as they are exposed to more train-
ing samples. In other respects they are quite
different.

2 Experimental Design

The recognition problem is to distinguish im-
ages of the symbols ‘¢’ and ‘e’ in the Adobe
! Times Roman typeface (Figure 1), under a
model of image defects described below. These
two letters were selected for the trial because:

1. commercial OCR, machines often confuse
them ([13] ranks ‘e’—‘¢’ and ‘c’—‘e’ as the
2nd and 14th most common mistakes);

2. they are easily distinguishable when no
noise is present (unlike ‘1’ and ‘I’, which
are nearly identical in Times Roman); and

3. they have identical height, width, and
height above baseline (and thus cannot be
easily distinguished by size and location).

Thus the problem is of practical interest, diffi-
cult but not hopeless, and not easily resolved
by geometric context.

Figure 1: Ideal images of ‘c’ and ‘e’ in the
Adobe Times Roman typeface.

!Artwork defining the ideal images of these
is available from Adobe Systems, Inc., 1585
Charleston Road, P.O. Box 7900, Mountain View,
CA 94039.

The Times Roman typeface was selected be-
cause it is often used in American technical doc-
uments [1]. We assume that the two classes oc-
cur with equal probability, and that their im-
ages are isolated (that is, there are no spatial
proximity effects); these assumptions are not
realistic (in English prose, ‘¢’ and ‘¢’ occur ap-
proximately in the ratio 3.7:1), but they sim-
plify the design of the experiment, so that it
will be easier to replicate.

The model of image defects specifies a dis-
tribution on the parameters that control the
distortion of an ideal character image, called
the prototype image. The model is a single—
stage parametric model of per-symbol and per—
pixel defects ([2] gives details). A brief de-
scription of the parameters and their values
in this experiment is given in the Appendix.
Note that we generated the training and test-
ing sets from slightly different distributions on
the size parameter (nominal text size in units
of points): the training data is distributed uni-
formly among sizes {5,7,9,11,13}, and testing
data among {6,8,10,12,14}. This is a safeguard
against the danger of generating long subse-
quences of images that are identical in both the
training and testing sets. Although this prob-
lem is statistically unlikely to occur in any case,
using different size distributions perturbs the
pseudorandom number sequence and makes it
even less likely.

Using this model, we generated a train-
ing set of 500,000 samples (250,000 ‘c’s and
250,000 ‘e’s), and a testing set of 100,000 sam-
ples (50,000 ‘c’s and 50,000 ‘e’s). Tmages were
normalized to 48x48 images by first centering,
and then linearly scaling (in X and Y sepa-
rately) so that width and height just fit. The
resulting 48 x48 images are still bilevel. For the
remainder of this paper, all images we refer to
or show in Figures have been normalized.

The great variety of images generated may
be appreciated by considering that within the
testing set only 26 images of ‘¢’ and 4 images of
‘e’ were repeated. Further, none of the ‘c’s were
identical to any ‘e’s. We have not examined the
training set exhaustively for ambiguities, since
the computation would be excessive.

Ideally, error rates we report here should
be compared to the Bayes risk of the problem,
which is the lowest error achievable by any clas-
sifier. A computationally feasible method to es-
timate Bayes risk has been reported, but has
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Abstract

Poor quality — e.g. sparse or unrepresen-
tative — training data is widely suspected to be
one cause of disappointing accuracy of isolated—
character classification in modern OCR ma-
chines. We conjecture that, for many trainable
classification techniques, it is in fact the domi-
nant factor affecting accuracy. To test this, we
have carried out a study of the asymptotic ac-
curacy of three dissimilar classifiers on a dif-
ficult two—character recognition problem. We
state this problem precisely in terms of high—
quality prototype tmages and an explicit model
of the distribution of image defects. So stated,
the problem can be represented as a stochastic
source of an indefinitely long sequence of simu-
lated images labeled with ground truth. Using
this sequence, we were able to train all three
classifiers to high and statistically indistinguish-
able asymptotic accuracies (99.9%). This result
suggests that the quality of training date was
the dominant factor affecting accuracy. The
speed of convergence during training, as well
as time/space trade—offs during recognition, dif-
fered among the classifiers.

1 Introduction

Automatically trainable classifiers sometimes
yield a disappointingly low accuracy on
isolated—character recognition problems. It is
often unclear whether this is due to flaws in the
classification methodology (e.g. poorly chosen
features), or inadequacies in the training sets
(e.9. too few samples), or both. Given this

uncertainty, and the expense of acquiring large
and representative training sets, most OCR re-
search in the last few decades has focused on
novel methods for classification. If, however,
we believed that the quality of training sets,
rather than classification methodology, was the
determining factor in achieving higher accuracy,
then we might choose to devote more effort to
improving the quality of training sets.

We have investigated this question through
large—scale empirical studies of the asymptotic
accuracy of three types of statistical classifiers,
applied to the same problem. For this purpose
we chose a two—class isolated—character recogni-
tion problem that often troubles modern OCR
machines. We depart from previous studies by
stating this problem precisely, in terms of high—
quality prototype images and a parameterized
model of image defects [2]. The model specifies
a distribution on parameters governing a distor-
tion algorithm that approximates the physics
of printing and image acquisition. By pseudo—
random sampling from the distribution, train-
ing and testing sets can be generated. Thus
there are no limits, other than those imposed
by our computing environment, on the size of
these data sets. And, since the training and
test sets are both selected at random from the
same distribution, the training set is represen-
tative by construction. In this way we control
what we feel are the two most important as-
pects of the “quality” of image data sets: their
size and representativeness.

This experimental design is intended to iso-
late the effects of training set quality from the



