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phonic music for separating and isolating musical symbols. [FAP89] reports on
a second implementation, on a Sun workstation. This music recognizer presents
the user with a split screen, showing both the original music and the recognized
score. The user then interactively corrects the recognized version. [FAP89] states
that the initial target is simple polyphonic music with one note per stem. The
next target will be the recognition of traditional piano music.

[RT88] describes a system for primitive extraction in hand-written sheet mu-
sic (Sections 4.5 and 5.6). Few performance results for this system have been
given. Extremely difficult input was used: sloppy handwritten music, digitized
at only 100 dpi. Analysis results for a few short sections music were described.
In these tests, a total of 17 solid note heads were recognized; 7 of these had
mistaken pitch, and 9 extra blobs were detected. It is difficult to estimate how
this method would compare to other methods when applied to higher-resolution,
better-quality input. The authors state that “The results obtained using these
techniques were quite good — certainly far above expectations.”

Clarke et al. [CBT88a, CBT88b, CBT89] describe a partial implementation
of a score-reading system written in Turbo C and running on an IBM PC (Section
5.7). Digitization occurs at around 200 dpi. A user-chosen threshold converts the
scanned gray-level image into binary. Preliminary results have been reported
but no details about testing are supplied. [CBT88b] states that “At present,
the system will correctly recognize single line melodies of a subset of musical
notation, with about 90% accuracy.”

[Car89, CB91] describe a promising system for segmentation of musical sym-
bols in images of music notation (Section 4.6 and 5.8). It produces a natural,
stable segmentation under difficult imaging conditions, without an excess of ad
hoc rules. A complete recognition system using these segmentation results is un-
der development. The implementation is in C, running under Unix. The results
currently available do not include figures on recognition accuracy. The test data
consisted of nine images sampled at 400 dpi (4680 x 3344 pixels for an A4 size
page) and a tenth image sampled at 200, 300 and 400 dpi. Various layouts and
font sizes were used, including solo instrument parts, solo instrument with piano
accompaniment, and orchestra score. The results shown in [CB91] demonstrate
a clean separation of music symbols from staff lines. The system shows good
tolerance of noise, limited rotation, broken print and distortion.

[KI91] is a sophisticated system for recognizing images of piano music (Sec-
tions 4.7 and 5.9). This system handles complex music notation, including two
voices per staff with chords and shared note heads. Symbol recognition is fairly
complete, including slurs and pedal markings. Grace notes are not recognized.
The system is written in C, running on an APOLLO workstation. Scanning is at
240 dpi. Four works were selected for experimentation, with the indicated recog-
nition rates: Beethoven’s “Fiir Elise” (95.6%), Mozart’s Turkish March (91.5%),
a Chopin etude (87.1%), and a movement of a Beethoven sonata (83.3%). The
recognition rate is calculated by counting the words that are modified or ap-
pended in the process of correcting the output of the system. These words corre-
spond to information such as note pitch and duration, or the presence of a slur
or pedal marking. These are impressive recognition rates, given the complexity
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Examples of successful and unsuccessful recognition are given. [Mah82] reports
on a partial implementation of a system to recognize primitive patterns in mu-
sic; the inference of musical symbols from these was not attempted (Sections 4.4
and 5.3). His examples show the effect of removing the bare parts of lines (those
portions where the measured line width lies within a given range); the successive
removal of staff lines and stems is used to isolate the remaining symbols. The
primitive-extraction system, written in Zetalisp, is capable of extracting roughly
vertical or horizontal lines or shallow arcs and elementary 4-connected regions
from a binary image. Interactive facilities are used for determining normalization
factors, building and refining line and region descriptions, and constructing and
classifying pattern objects. Small tests have been done, including a few measures
of polyphonic guitar music, scanned at 250 dpi. The detection of curved lines
(slurs and ties) was not tested. This method emphasizes human interaction in
the “pre-calibration” stage used to construct symbol descriptions; thus the sys-
tem is fine-tuned to the examples it was tested on. Even though good results
were achieved on the small tests shown, no conclusions can yet be drawn about
the generality of the method.

The vision system for the Wabot-2 robot [Oht84, Gro85, Mat85, SHM*85,
Roa86, MOH89] can perform fast, accurate recognition of simple three-part organ
scores (Sections 4.8.1 and 5.4). Tmages are 2000 by 3000 pixels, which provides
about 250 dpi for a standard page of music. A page of music is processed in 10 or
15 seconds, using special correlation hardware and parallel processing to achieve
such speed. Basic music symbols are recognized, including clefs, accidentals, time
signatures, bar lines, notes, beams, rests, staccato and marcato marks. Symbols
such as words, slurs, ties, expression marks, ornaments and tempo indications are
not recognized. [Gro85] reports on recognition results for ten simple scores, with
15 second recognition time and nearly 100% recognition rate. This system has
been successfully used in live demonstrations. It is not clear whether this system
could be easily extended to handle more complex music notation. [LC85] describe
a system that recognizes staff lines, bar lines, notes, chords and rests. Projection
methods are used. Processing time for a 237x192 image was eight minutes on an
Apple II. These efforts were hampered by poor imaging conditions. A recognition
rate of over 90% was obtained on some inputs.

[Fuj88, FAP89, Pen90] describe music-recognition systems that use X and
Y projections for symbol identification (Sections 4.8.2 and 5.5.2). [Fuj88] re-
ports on an IBM PC implementation whose symbol extraction capabilities were
well-tested on a variety of monophonic music taken from various publishers.
(Seventeen monophonic works were tested; the code for staff-locating was tested
on an additional 12 polyphonic works.) The music is scanned at 200 dpi; each
page takes about two minutes of processing time on a PC (fifteen seconds per
staff). A symbol recognition rate of 70% was achieved on new samples; 100%
recognition was achieved on the development samples. Recognized symbols in-
clude four types of clefs, key signatures, half notes, quarter notes, beamed notes,
flagged notes (the type of flag is not recognized), two classes of accidentals (flat
and sharp/natural), quarter and eighth rests, duration dots and bar lines. The
projection methods as implemented in [Fuj88] rely heavily on properties of mono-
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thereby providing top-down feedback for error correction and data disambigua-
tion. This approach provides a promising method for subdividing a recognition
system into intellectually manageable tasks. The modularized knowledge orga-
nization and control structure provide a good basis for scaling up from a small
system to a large system.

10.2 Image Defects and Broken Characters

Robust methods must be developed for interpreting music notation despite im-
age noise. [Mah82], p. 27, discusses problems with image noise, and says that
“The worst case 1s when a primitive of character pattern, which is expected to be
connected for extraction purposes, is actually broken up into two or more frag-
ments in the image.” His work does not address this problem. [Car89] mentions
difficulties that arise from fragmentation of symbols due to poor print quality.
Carter’s processing methods (Section 5.8) are designed to minimize these prob-
lems. He states that “Severe break-up of symbols will, however, continue to be a
problem for a topology-based approach and will probably necessitate the use of
artificial intelligence based techniques in order to take advantage of higher level
musical information.” [Car89], p. 153.

11 Working systems and Experimental Results

Various systems for music recognition have been implemented. Comparing these
systems is difficult because of the variety of input data used, and because it is
difficult to judge how much each system is tuned to the particular examples for
which results are reported. Thus we simply present a list of systems, approxi-
mately in chronological order. The system described in [Pru66] recognizes quarter
notes and beamed note groups (Sections 4.1 and 5.1). Up to four-note chords
are allowed, provided the note heads are physically adjacent, forming “note clus-
ters.” Other music symbols, such as rests, flags, hollow note heads, accidentals
and clefs, are not treated. All tests were drawn from one musical publication. On
this small experimental sample, good recognition results were achieved. [Pre70]
describes a system that recognizes a more complete set of symbols (Sections
4.2 and 5.2). Work-in-progress towards this system was mentioned in [Ede68].
The system was only tested on four small examples drawn from the same piece
(Mozart duets for two wind instruments, scanned at 225 dpi). [Pre71] reports a
total of 137 components in all of the tests; these components were constructed
from 527 fragments (Section 4.2). Good recognition rates were achieved, but the
recognition system was tuned to these examples. Recognized symbols include
clefs, accidentals, half quarter and eighth notes; flagged sixteenth notes are not
recognized but multiple beams are permitted. No chords were recognized. [AC82]
describes a system that recognizes clefs, key signatures, notes, rests and acciden-
tals in simple monophonic music. Hand-chosen thresholds are used to binarize
the images (force to bilevel). Staff-line removal is used for symbol segmentation
(Section 4.3) and syntactic methods are used for symbol recognition (Section 7).
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size, shading and position of each Labanotation symbol. X and Y projections
of a reduced-resolution image are computed; prominent peaks in these projec-
tions are used to detect base lines and separation lines. Next, skeletonization is
used to split the image into two images, one consisting of line components and
the other consisting of solid blob-like component. The base and separation lines
are located in the line-image, and then removed. The resulting line image and
blob image contain candidate figures for Labanotation symbols. Touching and
incomplete symbols are processed using knowledge of the notation.

10 Open Problems

Many open problem must be solved before optical score reading becomes reliable
enough to accomplish many of the goals mentioned in Section 1.1. We briefly
mention two problem areas: problems of system organization, and problems of
image noise.

10.1 System Architecture: Scaling up a Prototype

In music reading, as in other applications, it is difficult to scale up a small working
prototype into a large, complete system. For example, in syntactic methods,
a grammar organization that is intellectually manageable when it contains 30
production rules may be come unmanageable if it is expanded to hundreds of
production rules. It is hard to predict the difficulty of extending a system that can
analyze monophonic music to one capable of analyzing polyphonic music. Thus,
methods of structuring and organizing systems to be expandable are of great
interest. In this section we summarize various approaches to the organization of
a music-recognition system.

[RT88] describes the use of a rule-based system (Section 5.6). Various re-
searchers have experimented with syntactic methods (Section 7). Also, multiple
passes are often used to break the music-recognition task into smaller subtasks
[AT82, RT88]. The projection methods (Section 5.5) have the advantage of great
simplicity. They are able to recognize simple monophonic music efficiently. How-
ever, it may be difficult to extend these methods to polyphonic music, which
contain more symbols that are connected or in vertical alignment. [Fuj88], p. 3,
states that the restriction to monophonic music “is not critical since a complete
OMR [Optical Music Recognition] system will contain a number of subprograms,
each specifically designed to analyzed a certain type of score.”

[KT91] describes a flexible control structure and data flow for a recognition
system. A variety of recognition methods can be accommodated. These methods
communicate their results via a working memory that contains hypotheses at
various levels of abstraction, ranging from the pixel image at the bottom to the
abstract interpretation at the top. Kato and Inokuchi argue that a top-down ap-
proach to recognition is useful: high-level knowledge about music notation can be
used to constrain low-level pattern processing tasks. In the system described in
[KI91], information in the working memory is generated primarily in a bottom-
up fashion, but upper levels can reject the results produced from lower levels,
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[Tgn86] describes an extensive project at the University of Oslo to read sheet
music from video camera images with variable lighting, scale, and orientation.
Histogramming, skeletonization, projections and template matching are used, re-
sulting in a system that can recognize staff lines and some of the most common
music symbols. [@st88] and [Tho88] describe a second music-reading project at
the University of Oslo. In [@st88], after staff-line removal, a polygonal approxi-
mation is constructed by tracing the contours of the music symbols. An analysis
of concavities is performed to segment the symbols into constituent components.
[Tho88] performs symbol classification using statistical and syntactic methods.
Features used include height, width, area, perimeter, and number of holes. Fea-
ture analysis was combined with the use of syntactic rules about music symbols.

The music reading system of [NSI78] is aimed at constructing a database
of Japanese folk music. This music is monophonic. Projection methods appear
to be used. [AT82] reports on another Japanese score-reading effort; [TA82] is
a one-page English summary of this work. The motivation for this work is the
creation a music data base. The system is designed to recognize both monophonic
and polyphonic music, including music with chords as well as music where two
voices are printed together on a single staff. A series of passes are used to detect
staff lines, to form a coarse segmentation by removing portions of staff lines, to
perform fine segmentation, to classify segments into 10 categories, to perform
symbol recognition using decision trees designed for each category, and finally,
to perform a syntax check and interactive correction of erroneous or ambiguous
interpretations. Preliminary experiments are reported to be quite promising.

Other publications available only in Japanese include [OIT79].

9 Dance Notation

Music notation is one of many graphical notations used for transmitting in-
formation. The problem of automatic score reading is related to the problem
of reading other graphical notations. Some notations are more similar to mu-
sic notation than others; perhaps dance notation is particularly closely related.
[HO87] describes a recognition system for Labanotation, one of the common no-
tations for dance [Hut70]; a more detailed account of this work, in Japanese,
is given in [Taw86]. Labanotation is similar to music notation in that informa-
tion is transmitted by symbols drawn on a background of lines, with one axis
denoting the passage of time. A Labanotation score is written in vertical runs,
with time increasing from bottom to top. Vertical “base lines” subdivide each
run into columns, where each column represents the movement of a body part
such as the head, an arm, or a leg. The base lines are somewhat analogous to
staff lines in music. Horizontal “separation lines” provide synchronization points;
these are roughly analogous to bar lines in music. Body movements are indicated
by polygonal symbols drawn in the column corresponding to the body part. Du-
ration of a movement is indicated by the vertical length of a symbol, direction
is indicated by the shape of the symbol, and vertical motion is indicated by the
shading of the symbol. The principal goal in [HO87] is to recognize the shape,
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above-right of, and above-left of) to relate terminal and nonterminal grammar
symbols. The terminal grammar symbols are geometric figures such as white
dots, black dots, and oriented lines of various lengths.

[Pre70] mentions grammars for music notation but restricts his work to the
development of algorithmic implementations of syntax rules. Prerau makes a
distinction between notational grammars and higher-level grammars for music.
Notational grammars allow the computer to recognize important music relation-
ships between the symbols of the music sample. The higher-level grammars are
concerned with phrases and larger units of music. [Pre75], p. 27, says “to recog-
nize music notation, however, a computer must find an algorithmic description
of the music notation syntactical system.” His research concentrated on algorith-
mic syntax rules, used to constraint the possible locations of various symbols.
He concludes “The determination of this algorithmic description, a major phase
of the solution of the recognition problem, ... may be the first detailed algorith-
mic description of the grammar of even a subset of the standard music notation
symbol system.” This algorithmic description is directed at recognition of mu-
sic notation; other researchers have developed algorithmic descriptions of music
syntax directed at generation of music notation (e.g. [Rou88, BH91]).

[Fuj88], p. 16, states that “Music notation grammar is context-free and LL(k);
this is in effect what allows musicians (top-down parsers) to read the music as
efficiently as they do.” A small context-free grammar for simplified, monophonic
music is presented; this ambiguous grammar does not contain any positional
information other than left-to-right ordering. The author notes the limitations
of the purely syntactic approach where context is not taken into account, and
suggests that attributes could be used to introduce semantic considerations into
the grammar.

[Mat85], p. 481, mentions the use of a musical grammar to correct errors
such as missing beats or contradictory repeat signs. The following grammar
constraints are given, to be applied to three-part organ music: each of the three
parallel voices have the same total note duration; a fat double bar appears only
at the end of each part; a treble or bass clef always appear right at the start
of each staff; the time and key signatures almost never change within a system,
and can be determined by majority rule; and, except for pickup measures, the
number of beats in each bar should match the time signature.

8 Miscellaneous Papers

In spite of our best efforts, we were unable to locate copies of all known publi-
cations on this subject; for completeness, however, we wish to mention [Mar87],
an undergraduate research project, [Wit73], a one-page abstract touching on the
subject, and [NP73], a two-page summary of remarks.

Music 1image analysis is an international research field, and English transla-
tions or summaries are not always available. Here we offer brief comments on
several foreign-language publications, with apologies for our inability to under-
stand them fully.
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tion of symbols that span measure boundaries. The final image interpretation is
formed by combining the partial results from each measure. Good recognition
results are obtained on complicated piano music, as discussed in Section 11.

6 Relative Positions of Symbols

In music notation, a two-dimensional arrangement of symbols is used to trans-
mit information. Thus in addition to recognizing the identity of individual sym-
bols, it is necessary to analyze the relative positions of symbols. A variety of
methods have been devised for describing and testing relative symbol positions.
Non-syntactic methods are reviewed here; syntactic methods will be discussed
in Section 7. [Pre70] places the minimum and maximum x values for recognized
symbols into a sorted list. This permits overlapping symbols to be easily iden-
tified. [Mah82] treats musical symbols as being made up of simple component
primitives. Spatial relationships between musical symbols are expressed as sim-
ple relationships between their component primitives. For example, if the second
note in a beamed note sequence is preceded by a sharp, then the important re-
lationship is that between the sharp and the note head to its right. This i1s a
simpler description than that which results by viewing the beamed note sequence
as a single symbol which “surrounds” the sharp.

It is hoped that the use of simple relationships between component primitives
will simplify syntactic description and analysis. Mahoney suggests describing
relationships as an absolute distance combined with a relative position (left,
right, above, below). The distance between two primitives can be defined in a
variety of ways. For example, one could designate distinguished locations on each
primitive, such as the center of a dot and the midpoint of a line, and measure
distances between these distinguished points. Alternatively, one could measure
the distance between the closest points on two symbols.

7 Syntactic Methods

Music notation consists of symbols related to each other in a two-dimensional
way, and these two-dimensional relationships often carry information. The sig-
nificance of these relationships must be captured in a syntactic description of
music. Various methods have been suggested for extending grammatical meth-
ods which were developed for one-dimensional languages. While many authors
suggest using grammars for music notation, their ideas are only illustrated by
small grammars that capture tiny subsets of music notation.

[AC82] uses a high-level grammar for describing the organization of music
notation in terms of music symbols. Lower level grammars are used to describe
the structure of individual music symbols; these grammars are used for music
symbol recognition. The high-level grammar is strict and very simple, describing
a plece as a sequence of staves, where a staff starts with a clef, then a key
signature then a sequence of measures. The lower level grammars are only briefly
described in the paper. They use 5 adjacency operators (above, below, right of,
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placement of symbols. These complex notations may be ambiguous, so proper
knowledge is required for their interpretation.

Music symbols differ greatly in size and position, frequency of appearance,
importance and so on. Thus it 1s difficult to devise a single method for recogniz-
ing all symbols. It may be necessary to use a variety of recognition methods. A
flexible control structure is required to make this possible. Kato and Inokuchi use
a collection of processing modules that communicate by operating on a common
working memory. The working memory represents information about the current
bar of music at five levels of abstraction. The first layer is the pixel image. The
second layer contains primitives, including stems, note heads, beams, flags, acci-
dentals, duration dots, and rests. The third layer contains music symbols: notes
and rests which are synthesized as combinations of primitives from the second
layer. The fourth layer contains the meaning of each symbol, such as the pitch
and duration of a note. The fifth layer contains possible interpretations of the
bar as a whole; these are formed by time-order combinations of the hypotheses
in the fourth layer.

The four processing modules are (1) primitive extraction, (2) symbol synthe-
sis, (3) symbol recognition, and (4) semantic analysis. These processing modules
are made up of one or more recognition and verification units. The primitive ex-
traction module contains units for recognizing items such as stems, beams and
note heads. Hypothesized primitives are removed from the pixel image; thus the
order of execution of units influences the result. Execution of units occurs in a
heuristically-determined order.

The operation of the processing modules is governed by a variable threshold
that controls the strictness of matching. Tight thresholds mean that extracted
primitives are faithful to the primitive model, whereas looser thresholds mean
that regions whose shape are far from the primitive model are also extracted
as primitives. Unacceptable hypotheses are rejected at higher layers, and sent
back to lower layers for further processing. (For example, rejected primitives are
restored in the pixel image.) Thus results are obtained quickly for high-quality
images, but the analysis of noisy images takes much longer.

High-quality parts of the image are recognized first, with tight thresholds.
Once these extracted primitives have been eliminated from the image, further
recognition is performed with looser thresholds. Recognition consists of pattern
processing (symbol recognition) and semantic analysis. The pattern processing
has to cope with overlap between symbols, breaks in thin lines, and unexpected
ink spots. The processing modules use knowledge about music notation to con-
strain the pattern processing task. For example, the distance between staff lines
is used to restrict the size of symbols. The width of the staff lines is used as
an indicator of the image quality, and is used to set some thresholds for symbol
recognition.

Recognition proceeds one measure at a time. In the preprocessing stage, staff
lines and bar lines are detected (Section 4.7). Next, subimages containing single
measures are processed. This processing consists of staff-line elimination, recog-
nition of attributive symbols (clefs, key signatures and time signatures), and
recognition of note symbols. Finally, the postprocessing stage performs recogni-
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symbol-image. (Complete template matching was judged to be too computa-
tionally expensive.) For example, three rows of pixels, near the top, middle and
bottom of the symbol, are used to identify an accidental as a flat, a sharp or
a natural. Individual notes in a beamed group of notes may be identified by
examining top and bottom profiles of the beamed-note symbol.

Work on chord recognition is beginning. Chord recognition is complicated be-
cause note heads are not constrained to occur only at the end of a stem. Starting
with a quarter-note or half-note chord that has been perfectly segmented, stem
direction can be determined by checking a row at the top and bottom of the
symbol: one of the rows should intersect a note head and the other row should
intersect a stem. The note heads themselves are found by checking a vertical
column of pixels that is offset from the stem. If the stem x location is in the
middle of the chord, then two vertical columns of pixels are checked to look for
note heads on either side of the stem. No mention is made of how beams or flags
are handled.

This system is not yet complete. Many of the proposed techniques are not
robust; noise sensitivity may turn out to be a significant problem. [CBT88a]
mentions that “other problems that need to be solved include that of recognizing
symbols that coalesce together, and the complications that spurious points or
noise can cause during the recognition process.”

5.8 Carter: LAG-based Symbol Segmentation

[Car89, CB91] discuss a comprehensive system for segmentation in images of
music notation. Section 4.6 reviewed the use of the transformed LAG to sepa-
rate staff lines from music symbols, and to describe objects which correspond to
music symbols or connected components of music symbols. These segmentation
results are interpreted by a recognition system; compared to the segmentation
system, the recognition system is in an early stage of development. The ob-
jects resulting from the segmentation are classified according to bounding-box
size, and according to the number and organization of their constituent sections.
[CB91] notes that “overlapping or superimposed symbols will need to be sepa-
rated out by a specific algorithm. This is similar to the not insignificant problem
of character separation, but far more complex due to the 2-D organization of
music notation.”

5.9 Kato and Inokuchi: a Layered Working Memory

Kato and Inokuchi describe a sophisticated recognition system for printed pi-
ano music [KT91]. Musical knowledge is required to deal with the connections
and overlaps between music symbols, and to handle ambiguities. A top-down
approach is used, recognizing one measure of music at a time. The system is
designed to handle both simple and complex notation. Simple, monophonic no-
tations can be interpreted uniquely by means of simple rules. Complex notations
have higher symbol density, with more connections, overlaps and complicated
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character. Thus it may not be realistic to attempt to recognize music at such
low resolution. [RT88] states that the results obtained were “quite good.” In-
deed, the low-level processing does capture some of the important features of the
poor-quality input. However, it is not clear that further processing of such low-
quality segmentation results will succeed. To better illustrate the performance
of this system, tests with good-quality machine-printed and hand-written music
are needed.

The following primitives are recognized: circular blobs (for closed note heads),
circles (open mnote heads), horizontal lines, non-horizontal line segments, and
arcs. (Symbols such as clefs do not occur in any of the test examples.) The
location and orientation data for each primitive are intended to form the input
to a high-level visual expert system. Primitive identification i1s coded as several
passes, with procedural Fortran code in the first passes and “knowledge-based”
Prolog code in the last pass. Staff-line detection has been reviewed in Section
4.5. Note-head detection is extremely difficult in these handwritten images, and
a general-purpose blob detector is often fooled. Thus note heads are searched for
in constrained locations. Vertical lines, which might be note stems, are located.
Then a thickness measure is used to test for wide spots at the ends of each
potential stem. Finally, if there is a wide spot, it 1s accepted as a note head
if it has a circularity measure greater than some threshold. The authors claim
to have benefited from writing most of their code using a rule-based approach.
Unfortunately, no comparison is made with other techniques that have been used
for incorporating knowledge of music-notation into a recognition system.

5.7 Clarke: Score Reading on a Microcomputer

Work by Clarke et al. [CBT88a, CBT88b, CBT89] is directed at performing op-
tical score reading on a microcomputer. Thus much of their effort is directed at
dealing with the main-memory-size restrictions on IBM PCs, and at developing
computationally inexpensive methods for symbol identification. Staff lines are
identified and removed before the remaining symbols are classified. The staff
lines are located by looking for long horizontal runs of black pixels. Then the
neighborhood of each staff-line pixel is examined to determine whether a mu-
sic symbol intersects the staff line at this point [CBT88a]. It is not clear how
much this method has been tested; the authors claim that this “relatively sim-
ple algorithm has proved to be satisfactory in removing the stave lines from the
image.”

The image is processed one staff at a time, to accommodate the memory
limitations on a PC. Staves are located by examination of a single column of
pixels near the left end of the system. Large blank sections indicate gaps between
staff lines, and are used to divide the image into individual staves. Complete staff
separation is not always achievable — parts of symbols belonging to the staff
above or the staff below may be included; these have to be ignored in processing.

For symbol recognition, an initial classification is obtained from the symbol
height and width, as in Prerau’s system (Section 5.2). Further classification is
performed by examining the pixels in a few particular rows and columns of the
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contribution due to staff lines is subtracted from this X projection, and then the
following features of the symbol are calculated: width, height, area, and number
of peaks in the X projection.

These features are used in conjunction with syntactic knowledge for symbol
classification. Examples of syntactic knowledge include (1) the first symbol in
the staff projection is expected to be one of four clefs, (2) the next group of
symbols, containing no horizontal gaps greater than a staff space, are expected
to be a key signature, (3) within beamed note groups, notes and accidentals
are the only expected symbols and (4) dots of prolongation only occur following
notes and rests. In some cases localized projections are used to distinguish sym-
bols; for example, a Y projection of the bottom staff space is used to distinguish
between treble and bass clefs, and Y projections on either side of a note stem
are used to detect flags and beams. Classification of other symbols relies on a
width-height space similar to that used by Prerau (Section 5.2). Some classifi-
cations are difficult to perform reliably using projection methods. For example,
time signatures are not recognized, and the distinction between a sharp and a
natural is not made. However, this work demonstrates that projections provide
an efficient means for performing initial classifications.

In [Fuj88] a series of ad-hoc tests are used for symbol recognition. [FAP89]
reports on a more general and extensible treatment of symbols, based on classi-
fication in a feature space. Symbol recognition is done using features extracted
from the projection profiles and their first and second derivatives. (No mention is
made of noise problems being encountered when taking a second derivative of a
projection profile.) Features include width, maximum height, area, aspect ratio
and rectangularity. Classification using the k-nearest neighbor rule was found
to be prohibitively time-consuming. Offline optimization is used to address this
problem; for example, an attempt is made to calculate the most effective subset
of features to use.

5.6 Roach and Tatem: Rule-based System for Handwritten Music

All of the systems that we have surveyed make some use of knowledge about
music notation: the existence and properties of staff lines, note stems and note
heads, the syntax of music notation, efc. The work of Roach and Tatem [RT88§]
proposes that such information should be represented in a rule-based system, and
that the information should be applied starting with the earliest steps of sym-
bol segmentation and recognition. Tatem and Roach describe the segmentation
portion of a prototype system that processes hand-written music notation.
Unfortunately, the input chosen was of such poor quality and such low resolu-
tion that it is difficult to judge the effectiveness of the system. The experiments
reported in [RT88] use sloppy hand-written sheet music as input. The music is
digitized at 100 dpi, which means that the distance between staff lines is six rows
of pixels. The staff lines themselves occupy one or two pixels, leaving only four
or five pixels for the gap between neighboring staff lines. One of us (Blostein) has
found that such resolution is barely satisfactory for displaying legible music on
a terminal screen, even when hand-tuned bit maps are designed for each music
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Next an image area containing only a staff nucleus is formed, and X and Y
projections are used to find bar lines. Notes are recognized using X and Y pro-
jections from a small window around the symbol. Characteristic points in the
projections are used for classification; a comparison is made with stored projec-
tions for known symbols. The examples contain chords and horizontal beams.
Pitch and duration of notes is recognized. The authors state that the method is
rather rotation-sensitive, so that recognition fails if the image is tilted.

5.5.2 Fujinaga, Alphonce and Pennycook. [Fuj88] and [FAP89] describe
work that makes extensive use of X and Y projections both for segmentation
and for symbol recognition. The system was initially designed on an IBM PC
but is being transported to a Sun workstation [FAP89]. [Fuj88], p. 2, defines
“The basic task of an OMR [Optical Music Recognition] system is to convert
the score into a machine-readable format by means of an optical scanner; the
digitized image is then analyzed to locate and identify the musical symbols.”
Thus, the emphasis of this thesis is on symbol recognition, not on higher-level
analysis of 2-D arrangements of music symbols.

There is great variation in shape and size among music symbols. Thus X and
Y projections suffice for identification of many music symbols even though they
can only establish the approximate shape and size of symbols. The basic strategy
employed by [Fuj88] is to locate symbols using projections or syntactic knowl-
edge, and to then calculate local projections for detailed symbol classification.
Heavy reliance on properties of monophonic music are made in this process. Fu-
jinaga makes interesting comments regarding system development [Fuj88], p. 53:
“Many different algorithms and threshold values were tried until a satisfactory
recognition rate was achieved with the training samples... The most frustrating
aspect of developing this system was the difficulty of monitoring progress. Be-
cause there are several steps involved before any decision is made about the
symbols, it was extremely hard to locate problem areas. It was particularly dif-
ficult to determine whether misrecognitions occurred because of segmentation
errors or because of classification errors.” Section 4.8.2 describes how a global Y
projection is used to roughly locate the staves, followed by localized Y projec-
tions which accurately determine the position of staff lines.

Next, an X projection of the staff is used to locate the individual musical
symbols. (Only monophonic music is being analyzed.) An X projection of the
entire staff is difficult to analyze due to interference from associated symbols
such as expression marks, measure numbers, and lyrics. Instead, [Fuj88] uses a
projection of the staff nucleus, the area between the top and bottom staff lines.
While this projection cuts off symbols that protrude above or below the staff, it
is sufficient for locating symbols. The staff lines themselves give a background
projection value in the X projection; symbol-locations are identified whenever
the X projection value exceeds the background value by one staff space. At this
point a local Y projection is taken, covering the full height of the staff rather than
just the staff nucleus. This Y projection is used to determine the vertical extent
of the symbol; finally, an X projection is taken using these vertical bounds. The
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(1) distortions occur when the page of music sags on the music stand, (2) some
rotation may be present, (3) distance to the page may vary, and (4) the illumina-
tion is uneven. (Images captured using a flatbed scanner or drum scanner avoid
some of these problems.) The image is subdivided and each region separately
thresholded to allow for uneven illumination. After staff detection, the image is
rotated and normalized to compensate for distortions introduced in scanning.

Musical symbols are recognized according to a two-level hierarchy, where the
upper level is implemented in hardware and the lower level in software. Staff
lines, note heads and bar lines, which can occur in many places in the image,
belong to the upper level. These are searched for using hardware-implemented
template-matching. The template matching 1s done using an AND operation
rather than an EXCLUSIVE-NOR operation; that is, the number of coincident
black pixels are counted. Eight standard templates for note heads are used.
Each template comes in nine different sizes, ranging from 8 x 8 to 16 x 16
pixels. The correct template size 1s selected on the basis of the normalization
parameters resulting from staff-line detection. The lower level of the hierarchy
contains symbols whose possible locations are constrained by the recognition
results for the upper level symbols; these symbols are found using software-
implemented localized search. Lower level symbols include rests, stems, flags,
repeat signs, staccato and marcato marks, accidentals, prolongation dots, clefs
and time signatures.

Template matching to detect filled note heads leads to incorrect matches.
These are eliminated at a later stage, using knowledge about the syntax of music
notation. If this method were applied to more complex notation, the problem of
spurious matches might become more serious. As it stands, excellent recognition
results are achieved on organ scores containing relatively simple notation.

5.5 Symbol Recognition using Projections

Various researchers have used projections for symbol recognition. [Pru66] men-
tions that a function “thickness in points versus x coordinate” could be used
to yield equivalent information to the transition information he stores for each
symbol-trace. [NSI78] and [Tgn86] both use projections (Section 8). [Taw86,
HO87] use projection methods for analyzing Labanotation, a dance notation
(Section 9). We now discuss two projection-based methods in more detail.

5.5.1 Lee and Choi. [L.C85] describes a microcomputer-based music recog-
nition system that uses projection methods to first recognize staff lines, then
recognize bar lines and finally recognize notes, including chords and rests. The
images have severe noise problems, particularly near the image border; this is
due to the imaging method and to lighting problems. Preprocessing is performed
to reduce noise.

Staff lines are found in a Y projection. A threshold of 0.7 x (maximum pro-
jection value) is used to select projections strong enough to be candidate staff
lines. These candidates are searched to find groups of five equally-spaced lines.
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the allowable thickness range for the line. The “dot” primitives are not extracted
until after line primitives have been processed and removed. [Mah82], p. 22,
states that “It is clear from these examples that the actual process of breaking a
PSMN [Printed Standard Music Notation] image up into its simple components
requires having some knowledge about the structure of the notation. One could
not, for instance, successfully extract all primitive symbols, as we have defined
them, by simply extracting all lines and then extracting all regions.” On the other
hand, [Mah82], p. 24, says “There is no reliance on context for the recognition of
primitives... All syntactic considerations are left to the analysis routine, whose
sole task 1s to find specified relationships between already classified symbols and
build corresponding objects.”

Mahoney’s processes are initially used in an interactive mode to develop
object descriptions and to tailor predefined descriptions to new music samples
for which the old descriptions do not work well. A “correct and redisplay” loop is
used to refine the descriptions. All measures of distance are normalized on either
the staff-line or staff-space thickness. Region masses are normalized on the mass
of whole-note interiors (the white space inside the whole-note head). Sample line
parameters for describing staff lines, ledger lines, beams, note stems and bar lines
are: principal direction (horizontal, vertical); angle (permitted deviation from
horizontal or vertical); thickness (lower and upper bound), length (lower and
upper bound), maximum permitted gap. Sample region parameters for describing
whole-, half-, and quarter-note heads, flags, sharps and dots are: mass (lower and
upper bound), width (lower and upper bound), height (lower and upper bound),
inclination angle (used only for selected symbols).

5.4 Wabot-2: Symbol Detection in a Two-level Hierarchy

In the early 1980s an impressive keyboard-playing robot was developed in Japan.
[Gro85] provides a description of the whole system; [Roa86] is a short, easily
available overview. For a detailed description of the vision system, see [Mat85].
[SHM*85] is a reference suitable for readers of Japanese. [MOH89, ITHO91] de-
scribe extensions to form the PBS (Performance, Score, Braille) system. Among
its other capabilities, the Wabot-2 robot has a vision system capable of interpret-
ing images taken of sheet music placed on a music stand. For an anthropomorphic
effect, the CCD camera is placed on the robot’s shoulders; thus, while the robot
plays the keyboard, vibrations prevent the CCD camera from being used for
score reading. The sheet music must be read and interpreted before the robot
begins to play. Very fast image interpretation is achieved in the Wabot design
— approximately 10 to 15 seconds are needed to interpret one page of music.
Special purpose hardware and parallel processing are used to achieve such high
speed. For the simple scores used, the recognition rate is nearly 100%.

The robot plays three-part organ scores, containing relatively simple nota-
tion. There are three staves per system: the top staff is for the right hand, the
middle staff is for the left hand, and the bottom staff is for the feet. The robot’s
video camera captures images of organ scores that have been placed on a music
stand. The following attributes of the imaging must be taken into consideration:
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of standard music notational symbols ... is that each type of music symbol is sig-
nificantly different in overall size from almost all other types of music symbols.”
To exploit this, the bounding-box dimensions of each symbol are expressed in
staff-space units. The height and width of the bounding box are used to look up
a list of possible matches; this is done via a precomputed table containing the
areas where each symbol can occur in a height/width space. (This height-width
table was constructed by hand-measurement of the size of many samples of each
type of notational symbol. The measurements obtained for each type of sym-
bol form small regions in the height/width space; these regions are enlarged to
accommodate printing errors and variations.) Typically there are three to five
possible matches for each symbol, given the fairly small subset of music symbols
being analyzed. Heuristic tests are used to distinguish symbols that overlap in
the height/width space; these tests take advantage of the syntax, redundancy,
position and feature properties of each music symbol type. [Pre70] states that
this classification scheme is specific to one publisher, but could easily be adapted.
[Pre71] presents examples of syntactic redundancy and positional redundancy,
and also discusses representative symbol-discrimination tests.

5.3 Mahoney: Pattern Primitives and Composite Symbols

[Mah82] deals with the extraction of pattern primitives in music. Section 4.4
reviewed Mahoney’s use of line removal for region isolation; here we discuss
his primitive-recognition methods. The goal of Mahoney’s work is to design an
approach on the basis of which a real recognition system might be developed.
Some approaches he suggests are probably infeasible in practice, but others may
prove useful. Pattern primitives, such as note heads, stems, beams and flags,
can be combined to form “composite music symbols,” such as notes, chords,
and beamed note sequences. This distinction between pattern primitives and
composite symbols subdivides and simplifies the recognition task. The primi-
tive lines accommodate the variable parameters of the composite symbols: a
parameterized composite symbol such as a beamed note sequence is made up
of (unparameterized) characters and parameterized lines. [Mah82], p. 24, states
that “It is simpler to give a variable description for a beam than for a beamed
note sequence, and it is easier to design flexible recognition procedures around
simple descriptions.”

Mahoney envisions a system that does not use context for the recognition of
primitives. Knowledge about the structure of standard music notation is needed
to infer musical symbols from the relationships between the various kinds of
primitives; this topic is beyond the scope of [Mah82]. The pattern primitives
Mahoney uses are lines, dots and characters. Classes of primitives are described
using ranges of values for parameters. For example, lines typically have ranges
for length, thickness and orientation. These ranges can be used to characterize
the difference between stems, beams and staff lines. The thickness ranges are
also useful for removing the bare portions of lines: in order to remove a staff line
without leaving holes in the symbols superimposed on the staff line, Mahoney
suggests removing the line only in places where the measured thickness is within
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4.8.2 Projection methods for staff-line identification. Various authors
have used projection methods for staff-line identification; some of these methods
operate without removing the staff lines from the image. Here we concentrate
on the work of Fujinaga et al. [Fuj88, FAP89, FAPB89]. Other systems using
projections are mentioned in Sections 4.7 and 5.5. In Fujinaga’s work, a Y pro-
jection of the entire page of music is used to locate staves. The mean of the entire
projection is used as a threshold value; then groups of five peaks are sought. Staff
lines are rarely perfectly horizontal. In a Y projection, individual staff-line peaks
cannot be resolved if the staff is skewed so that delta-y for a single staff line is
greater than than half of a staff space. ([CB91] performed projection experiments
and states that a rotation of less than 30 minutes of arc can cause the peaks
of the Y projection to merge.) Nevertheless, the staff as a whole projects to a
region of high values, and can be distinguished from the relatively empty space
between staves.

Fujinaga accepts a cluster of five or more peaks as a staff; extra peaks can
result from ledger lines, horizontal beams, or skew. A minimum-staff-separation
parameter is used: a cluster of five or more peaks must be separated from other
clusters of peaks by a certain distance to be recognized as a staff. This method
successfully locates most staves, except for percussion staves using only a single
staff line. An underlying assumption is that a horizontal line can be used to
separate neighboring staves and their associated symbols. This is true in most
music printed for single monophonic instruments, but it is not true for dense
orchestral scores. Fujinaga’s method does not solve the problem of separating
staves that occupy overlapping y intervals. Once the area occupied by a staff has
been located, localized Y projections are used to accurately locate the staff lines:
series of Y projections are taken starting at the right margin, moving leftward
until five clear peaks appear.

5 Symbol Classification

After staff lines, have been identified and/or removed from the image, the next
major processing step is to classify music symbols. A great variety of techniques
have been applied to this problem.

5.1 Pruslin

[Pru66] uses contour tracing to describe connected binary image regions that
remain after removal of thin horizontal and vertical lines. Classification depends
both on trace properties as well as on inter-trace measurements. A method for
performing template matching using contour traces is developed.

5.2 Prerau: the Height/Width Symbol Space

Prerau recognizes a subset of music symbols using simple measures. Relative
symbol size is used for an initial classification. [Pre75], p. 27, states “A property
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histograms of run lengths are calculated. The maximum in the 0-pixel histogram
is interpreted as the staff spacing, and the maximum in the 1-pixel histogram is
interpreted as the staff-line width. Once the staff size has been established, the
staff lines themselves are located. Run-lengths in 10 evenly-spaced columns are
used to get accurate local estimates of staff-line spacing and width. Next, small
rectangular sections of the staff are analyzed, near the left and right ends of the
staff. Short horizontal runs are eliminated; this eliminates most music symbols,
but beams and portions of note heads and clefs remain. Next an X projection
is used to estimate the locations of the ends of the staff, and a Y projection is
used to obtain an accurate height estimate. If the edge of the staff is not found,
the window is moved further toward the margin of the page. Bar lines are found
using similar methods, tailored to the recognition of piano music. Rectangular
masks are placed on the right-hand staff (top staff), the left-hand staff, and
between the staves. Then short vertical runs are eliminated, and hypothesized
bar-line locations are extracted from an X projection. The existence of a bar line
is established if all three masks hypothesize a bar line at the same X location.

In this system, the distance between staff lines is used to restrict the size
of symbols, and the width of the staff lines is used to set thresholds for sym-
bol recognition. Staff lines are eliminated from the image before recognition of
music symbols begins. The staff lines are tracked from the left, based on initial
estimates of their location. A staff line is eliminated wherever the staff width
is below a threshold. The methods used for symbol recognition are described in
Section 5.9.

4.8 Staff-line Identification without Staff-line Removal

So far we have surveyed techniques for detecting and removing staff lines from
an 1mage of music notation. Some researchers have developed alternate analysis
techniques that that involve staff-line identification, but not staff-line removal.

4.8.1 Template matching in the presence of staff lines. [Mah82], p. 21,
suggests that template-matching could be applied to characters such as time-
signature numerals without actually separating them from the background lines;
no attempt is made to implement this.

The Wabot-2 system [Mat85] does perform template matching in the presence
of staff lines (Section 5.4). Staff lines are detected and used to normalize the
image, to determine the score geometry, and also to restrict the search area
for music symbols. Staff lines are detected in hardware by a horizontal line
filter. In order to tolerate skew, a short filter is used: the filter size can be
between 8 and 80 pixels long. Where five equally-spaced lines are found, a staff
is deemed to exist. Normalization parameters are calculated for each staff; these
parameters include staff location, staff inclination, area covered by staff, and
note-head size. In preparation for further processing, the image of each staff is
normalized according to these parameters.
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information, derived from the LAG, is used to determine whether a symbol has
merged with a staff line.

The Line Adjacency Graph is formed directly from a vertical run-length en-
coding of a binary image. An individual vertical run of pixels is called a segment.
A transformed LAG is formed by linking together neighboring segments to form
sections. Sections are formed using a left-to-right scan, in which neighboring
vertically-overlapping segments are linked. Junctions occur when a segment in
one column overlaps several segments in an adjacent column; sections are termi-
nated at these junctions. In the transformed LAG), each section is represented
by a node in a graph, and junctions are represented by edges in the graph. The
nodes in the transformed LAG should correspond to structural components of
musical symbols. A rule limiting the rate of change in section thickness helps
accomplish this. The rule states that the current section is terminated if its av-
erage height differs from the height of the next segment by more than a factor
of 2.5. This rule ensures that staff lines and ledger lines are assigned to different
sections than are portions of music symbols. Similarly, a note head is assigned to
a different section than the note stem. Section formation is insensitive to small
rotations: [CB91] shows consistent sections obtained from an image at two differ-
ent orientations. The use of a LAG is also efficient, since subsequent processing
operates on section data rather than on individual pixels. [Car89] found the LAG
preferable to other common methods of data reduction and feature extraction,
such as thinning to form skeletons. The LAG is equally effective describing blobs
as well as lines.

Noise removal on the transformed LAG proceeds by removing isolated or
singly connected sections with small area (5 pixels or less in a 400 dpi image). If
removal of these noise regions turns a multi-way junction into a two-way junction,
then the two remaining sections are merged provided their heights differ by less
than a factor of 2.5.

The transformed LAG is searched for potential staff-line sections (filaments):
sections that satisfy criteria related to aspect ratio, connectedness and curva-
ture. Long beams may be included as filaments; these are filtered out using a
histogram of filament thickness to determine a threshold for maximum staff-line
thickness. Roughly collinear filaments are concatenated together into filament
strings, thereby bridging the gaps introduced by superimposed music symbols.
The occurrence of five horizontally overlapping and roughly equally-spaced fil-
ament strings is recognized to form a staff. After staff lines are identified, the
transformed LAG is restructured: further merging of non-staff sections takes
place, now that junctions with staff-line sections have been specially marked.
At this point, musical symbols are effectively isolated from the staff lines. Con-
nected non-staff-line sections are combined to form objects, which correspond to
music symbols or to connected components of music symbols.

4.7 Kato and Inokuchi: Run-length Histograms and Projections

In [KI91], the spacing of staff lines is estimated by scanning 10 evenly-spaced
columns in the image. Run-lengths are measured in each of these columns, and
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removal of complete staff lines, is performed to separate vertically-connected note
heads. Section 5.3 contains further details of Mahoney’s methods for primitive
extraction. Mahoney concludes that this system “goes a long way toward correct
isolation of characters in the image, but more work is needed for dealing with
the more difficult cases of line-region overlap. This is a challenging problem.”

4.5 Roach and Tatem: Staff-line Identification via Line Angle and
Thickness

Roach and Tatem [RT88] discuss a knowledge-based system for segmenting im-
ages of music notation. Their processing of staff lines is reviewed here; symbol
processing is reviewed in Section 5.6. Roach and Tatem worked with images of
hand-drawn sheet music — the staff lines themselves were machine printed, but
all other music symbols were hand drawn. Traditional general-purpose methods
for line-detection, such as the Hough transform or line tracking, did not perform
well on these images; the need to introduce domain specific knowledge was iden-
tified. In order to isolate musical symbols, only the bare sections of staff lines
should be removed. Staff lines are detected using measures of line angle and
thickness. A window is passed over the image to compute a line-angle for every
black pixel. The line angle is measured from the center of the window to the
furthest black pixel in that window; this furthest black pixel is chosen so that
the path from it to the center does not cross any white pixels. To detect staff
lines, a large window radius 1s used. This causes covered staff-line sections to be
labeled with a horizontal line-angle despite the interference of the superimposed
musical symbols. Once a line angle has been determined, a line-thickness can
be measured. These two measurements, combined with adjacency information,
are used to identify horizontal lines, and “questionable pixels” which occur at
the intersection of a line and a figure. It would be interesting to perform a com-
parison of this algorithm with the LAG-based methods used by Carter (Section
4.6).

4.6 Carter: LAG-based Staff-line Identification

[Car89, CB91] discuss a comprehensive system for segmentation in images of
music notation, using processing based on a Line Adjacency Graph (LAG). A
common problem in staff-line identification is to distinguish the bare staff-line
sections from the sections where the staff is intersected by a music symbol. Par-
ticularly difficult is to detect places where a thin portion of a symbol tangentially
intersects a staff line. Examples of this include the highest part of a bass clef, as
well as the intersection of the treble clef with the lowest staff line. Under these
conditions, many other methods of staff-line processing create gaps in symbols,
but Carter’s LAG-based analysis successfully identifies such tangential intersec-
tions of symbols with staff lines. Other goals of this work are (1) to locate staff
lines despite image rotation of up to 10 degrees, (2) to cope with slight bowing
of staff lines, and (3) to cope with local variations in staff-line thickness. Region
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examples. Not surprisingly, gaps are left in symbols that are tangent to staff lines,
and staff lines are not removed when they pass through small holes in symbols.
The crossing of beams and staff lines is a problem: the staff-line removal results
“in the suppression of some particulars that ... prevent the identification ... of

the linking of the notes” ([AC82], p. 255).

4.4 Mahoney: Line Removal for Region Isolation

[Mah82] distinguishes between two types of line removal, removing real lines
(bare staff-line sections) and removing ideal lines (complete staff lines). The
goal in real line removal is to remove only those parts of the line that do not
overlap other symbols; this is accomplished by removing only those portions of
the line satisfying the line’s allowed thickness range. This type of removal is
generally desirable for staff lines. Ideal line removal involves removing the line
everywhere along its length. This can be used to split adjacent symbols; for
example, performing ideal removal of a staff line can be used to separate note
heads that are located on adjacent spaces. In some cases, ideal stem removal
splits note heads that are a half-step apart and on opposite sides of the stem. In
other cases, a different region segmentation approach would be needed — one
that is not provided in [Mah82]. Mahoney repeatedly uses the following strategy
for symbol identification: first construct a set of candidates for one or more
symbol types, then use symbol-type descriptors to select the matching candidates
([Mah82], pp. 39 ff). For example, to identify staff lines, staff-line candidates are
constructed; these include all thin horizontal lines in the image. Next, the staff-
line descriptor (specifying allowable thicknesses, lengths, and gap-lengths) is used
to classify staff lines. Similarly, the ledger-line descriptor is used to classify ledger
lines. Good extraction of staff lines and ledger lines is achieved even though the
initial construction of horizontal lines contains unwanted segments, such as the
tops and bottoms of half-note heads.

The treatment of vertical lines is similar, with descriptors for stems and bar
lines used to classify the vertical lines. The note stems are removed to preserve
beam continuity, and then beams are constructed and classified. Once the clas-
sification of lines is completed, symbol classification begins. First, loop interiors
are found: this detects the whole- and half-note heads that do not have a staff
line running through them. (Other regions are also detected; for example, the
top half of a “3” used for fingering.) Then the bare staff lines and ledger lines are
removed from the image (the lines are removed only where they are within the
allowable thickness range, so line removal does not cause gaps in superimposed
symbols).

The detection of loop interiors is repeated to find the loops on staff lines.
Then the descriptors for half- and whole-note heads are used to classify these
regions. (Erroneous regions, such as the top half of the “3” are left unclassified.)
Candidate regions for other symbols are constructed by removing all staff lines,
ledger lines, stems, bars and beams, and then finding connected regions. All other
symbols, such as solid note heads, accidentals and flags, are found by matching
symbol descriptors to this set of candidate regions. Special processing, such as
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normally be blank. Staff line identification is complicated by noise and distortion.
[Pre70] notes that the five staff lines found on a piece of sheet music are not
exactly parallel, horizontal, equidistant, of constant thickness, or even straight;
scanning noise and quantization noise compound these problems. [Car89] notes
that staff-line analysis techniques must be able to cope with staff-line inclination
and curvature, as well as with the interfering effects of beams and other linear
elements in the score. In some cases, staff lines may be obscured to a significant
extent by multiple beams, particularly when these are horizontal. Thus standard
image-processing techniques for line-finding often do not suffice for locating staff
lines.

4.1 Pruslin

Two early MIT PhD theses, one by Pruslin [Pru66] and the other by Prerau
[Pre70, Pre7l, Pre75] addressed the removal of staff lines in images of sheet
music. Both of these theses were reviewed in [Kas72]. [Pru66] preprocesses the
music image by eliminating all thin horizontal and vertical lines, including many
bare staff-line sections and stems. This results in an image of isolated symbols,
such as note heads and beams, which are then recognized using contour-tracing
methods. This drastic preprocessing step erases or distorts most music symbols
other than quarter notes and beamed note groups, so extension of this work
seems infeasible [Pre70].

4.2 Prerau: Contour Tracing

In his PhD thesis, Prerau [Pre70] describes a “fragmentation and assemblage”
method for treating staff lines and isolating music symbols. In the fragmentation
step, the system scans along the top and bottom edges of staff lines to identify
parts of symbols lying between/above/below the staff lines; a new symbol frag-
ment is begun whenever a significant change in slope is encountered. Fragments
from a single symbol are separated by the gaps left from crossing staff lines. In
the assemblage step, these symbol fragments are recombined. A simple connec-
tion rule is used in the assemblage step: two symbol fragments that are separated
by a staff line are connected if they have horizontal overlap. As noted by [CB91],
symbols which merge with staff lines do not always have horizontal overlap, and
would be disconnected by Prerau’s method. For example, the top portion of a
bass clef would be disconnected, as would shallow slurs tangent to a staff line.

4.3 Andronico and Ciampa: Bare Staff-line Removal

[AC82] mentions an alternate treatment of staff lines, which attempts to remove
staff lines only in bare sections where the staff lines are not crossing symbols.
Three additional hypothetical staff lines (2 above and one below) are traced
to remove ledger lines. Successive trials are used to search for staff lines, using
a number of iterations proportional to the amount of background noise. The
method used is not described, but the figures show creditable results on simple
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Examples are given of the widely varying appearance of symbols such as the
treble clef. Music symbols vary in orientation, appearance and positioning. Typ-
ical music symbols are much less regular in appearance and positioning than are
the characters in printed text. Adjacent and overlapping symbol placements are
used, further complicating the recognition process.

3 Thresholding and Noise Reduction

A common first operation in a music recognition system is thresholding to con-
vert a gray-scale image into a binary image. Other forms of preprocessing are
sometimes used for noise reduction. The early work of Prerau is typical: [Pre71]
works with 512x512 images with 8 gray levels, scanned at 225 dpi . A threshold
is chosen (apparently manually) to convert to a binary image. Prerau claims
that since most points in the image are not near the threshold, the choice of
threshold-level is not critical. In [CB91], the scanner performs automatic thresh-
olding. A horizontal low-pass filter 1s used to remove short breaks in staff lines
and symbols. In images scanned at 400 dpi, isolated or singly-connected black
sections of less than b pixels are removed as noise. (The division of the image
into sections is described in Section 4.6.)

[LC85] describes the use of preprocessing for noise reduction. A three-by-
three mask is used to eliminate isolated black pixels and to fill in isolated white
pixels. Also, a simple filter is used to control the amount of light in the CCTV
camera image; details about this filter are not given. In the vision system for
the Wabot-2 robot [Mat85] (Section 5.4), the image is subdivided and each
region separately thresholded to allow for uneven illumination. The image is then
rotated as required and normalized to compensate for distortions introduced in
scanning.

4 Staff Lines

Staff lines play a central role in music notation. They define the vertical coor-
dinate system for pitches, and provide a horizontal direction for the temporal
coordinate system. The staff spacing gives a size normalization that is useful
both for symbol recognition and interpretation. Almost universally, sizes and
distances are measured in units that are normalized to the staff spacing. Many
authors implicitly make an assumption that was explicitly stated by [Fuj88]: the
size of musical symbols is linearly related to the staff spacing. This assumption
has not been rigorously tested, but appears to hold at least approximately.
Recognition of staff lines is one of the first steps in most music recognition
systems. Since recognition of music symbols is confounded by the existence of
horizontal lines through the symbols, a common goal is to identify staff lines and
remove the bare staff-line sections. [Pre70] identifies three ways in which staff
lines interfere with symbol recognition: (1) the staff lines graphically connect
symbols that would normally be disconnected, (2) the staff lines camouflage
the contour of a symbol, and (3) the staff lines fill in symbol areas that would
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system capable of recognizing all music notation. [Pru66] states that a complete
solution to the music recognition problem is “the specification of: which notes
are present, what order they are played in, their time values or durations, and
volume, tempo, and interpretation.” This level of recognition suffices for only
some of the applications listed in Section 1.1.

[Kas70] gives a musician’s view of the desired I/O behavior of a music-reading
machine. The proposed output language is somewhat clumsy and dated due to its
emphasis on binary and octal codes. However, it is interesting to see a musician’s
list of the information that would be desired from a music-reading machine. In
addition, Kassler’s definition of a scanning unit may be useful. A scanning unit
is composed of a subset of music symbols found on one staff and forming an
unbroken X projection. The following music symbols are not included in scanning
units: staff lines, beams, slurs, ties, brackets, text, and crescendo or decrescendo
signs. Thus the scanning units are generally quite small, for example, a clef, one
or more key-signature accidentals, a time signature, note heads in a chord. These
scanning units are used to delimit the extent of parameterized symbols such as
slurs and beams.

2.1 Music symbols: Primitives, Parameterized Symbols, and
Characters

The definition of a “music symbol” varies, although all authors agree that
staff lines are symbols in their own right, separate from all other symbols that
appear on the page. Some authors (e.g. [Pre70]) define music symbols as all
four-connected regions that remain after staff lines have been removed. Thus
a beamed note sequence is called a single symbol. Other authors (e.g. [Mah82,
KI91]) consider such symbols to be composed of pattern primitives such as stems,
beams and note heads.

Many authors [Pre70] distinguish between characters, which are size invari-
ant, and other malleable symbols such as beams and slurs, which have a pa-
rameterized shape. Traditional character recognition methods such as template
matching can be applied to music characters, but not to parameterized sym-
bols. [Mah82] distinguishes between the music symbols that describe what is to
be played and the music symbols that describe how things are to be played.
The recognition of the “what” symbols (notes, clefs, key signatures, and so on)
forms the basic music recognition problem. Extending this to the “how” symbols
(which occur in great variety, often in the form of text phrases) compounds the
basic music recognition problem with that of reading printed alphanumeric text.
Note that recognition of the “what” symbols would be sufficient for many of the
applications listed in Section 1.1.

2.2 Recognition of Music Symbols

A good introduction to the difficulties of symbol recognition in music is given in
[Fuj88], Chapter 4. This thesis provides a well-illustrated introduction to music
printing methods — typography, engraving, lithography, and modern methods.
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digitizing resolution The spatial resolution of the document scanner during
image acquisition, usually expressed in units of dots per inch (dpi). (Some
authors prefer pizels per inch (ppi).)

Fig. 2. lllustration of some terms for musical notation.

2 Problem Statement

Common music notation does not have a unique, precise definition. Four partic-
ularly useful publications in English that attempt to codify printing standards
for music notation are [Gro90, Rea79, Ros70, Sto80]. All of these admit that,
in practice, composers and publishers often feel free to adapt old notation to
new uses, and invent new notation, as they see fit. There are in fact national
“dialects” of music notation, and musical works use many different levels of no-
tational complexity. Thus it may not be possible to devise a single recognition
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see also ([Fuj88], pp. 4-6). Alphanumeric entry of a music-description language is
common, but this method is slow and error prone. Music editors with graphical
user interfaces can be used; this reduces errors and speeds up entry, particularly
if MIDI input devices can be used to enter pitch and rhythm information directly.
Attempts have been made to recognize music from audio input; some success has
been obtained with monophonic music, but extension to polyphonic music seems
very difficult.

1.3 Terminology
Here is a summary of commonly-occurring terminology:

staff line A long thin horizontal line which defines a coordinate system for
music notation. Typically five parallel staff lines are drawn to form a staff,
but only one or two staff lines may be used for percussion music.

staff-line sections The covered sections of a staff line are those sections where
other music symbols intersect the staff line; the remaining sections of the
staff line are bare.

staff The staff lines plus all associated symbols, including music symbols, lyrics
and textual annotations.

staff space The distance between the staff lines within a single staff. The staff
space provides a normalized unit of measurement for expressing distances.

system A set of staves that are played in parallel; in printed music these staves
are connected by braces, and bar lines may be drawn through from one staff
to the next. A page of an orchestra score may contain only a single system.
(Some authors prefer the term paragraph.)

staff nucleus The area of a staff that contains the staff lines and the musical
symbols (we introduce this term for lack of any existing term). Many music
recognition systems restrict their attention to symbols in the staff nucleus.
In order to avoid missing symbols on ledger lines, the staff nucleus can be
defined to extend vertically one or two staff spaces above the top staff line
and one or two staff spaces below the bottom staff line.

voice A musical line. A voice may correspond to a single instrument; a piano
part is usually notated as two and sometimes more voices. Several voices
may be printed together on one staff: in an orchestra score, the Flute 1 and
Flute 2 voices are printed on the same staff (with opposite stem direction),
but they are printed separately to make the individual instrumental parts.

monophonic Music consisting of a single voice, where this voice contains no
chords.

X projection A projection of an image onto the X axis, that is, downwards
forming a horizontal distribution. The result is a vector whose ith component
is the sum of all black pixels in the 7th column of the image. (Some authors
refer to this as a wertical projection, since the projection is in the vertical
direction.)

Y projection A projection of an image onto the Y axis. The result is a vector
whose ith component is the sum of all black pixels in the ith row of the
image. (Some authors refer to this as a horizontal projection.)
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sic recognition is much less well formalized, and furthermore depends strongly
on the application (Section 1.1). As a result, agreement is elusive on uniform
standards for success: existing music recognition systems are able to extract in-
formation sufficient for some applications but not for others. Most work through
1990 has concentrated on locating staves and isolating and recognizing symbols.
Outstanding problems include effective algorithms to interpret the resulting 2-D
arrangement of symbols, and precise formalisms for representing the results of
interpretation.

1.1 Goals and Applications

Automatic recognition of machine-printed music has been undertaken for a va-
riety of reasons, and as a result, technical goals vary also. For example, for the
analysis of musical style, it may be sufficient to extract the pitch, duration, and
simultaneity of all notes. Tt is harder to produce parts from a score (or vice versa),
since all musical symbols, not only the notes, must be recognized and associated
correctly with voices. The following list of applications for printed music recog-
nition is compiled from various authors’ lists, including [Kas70, Pre75, Fuj88].

One important class of applications concerns editing of scores for reprinting,
revision, and preparation of performance materials:

1. adapt existing works to other instrumentations: for example, reduce full
scores to piano scores;

2. read various works in old editions and produce a new printing;

3. make critical editions of musical compositions given different printed versions
of the ’same’ composition;

4. transpose a music sample to some other key;

5. produce parts from a given score or a score from given parts;

6. read in a newly engraved piece of music and proofread it for syntactic and
other errors;

7. convert existing scores to Braille to aid blind musicians;

8. print newly written music automatically (if the recognition program were
extended to the recognition of handwritten music notation); and

9. produce audio versions of a given written composition; the computer can be
used as a combination musician and instrument.

Another class of emerging applications concerns collecting databases:

. create indices of themes and other music features;

. analyze musical structure and style;

. test theories of music; and

. evaluate algorithms for the automatic analysis or composition of music.

B W DN —

1.2 Non-optical Input Methods

In the absence of optic music reading capabilities, non-optical input methods
have been used. [CBM88] contains an extensive survey of music input methods;
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The research literature concerning the automatic analysis of images of
printed and handwritten music notation, for the period 1966 through
1990, is surveyed and critically examined.

1 Introduction

Printed and handwritten music notation is intended to document musical in-
formation in a legible, archival form. Both recognition and generation of music
notation can of course be modeled as mappings between the printed notation
and the information it represents (Figure 1).

Fig. 1. Recognition and Generation of Music Notation.

While many important details of the appearance of machine-printed music
notation are effectively standardized, the information to be recovered during mu-
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