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Abstract

We describe experimental results for unsupervised
recognition of the textual contents of book-images using
fully automatic mutual-entropy-based model adaptation.
Each experiment starts with approximate iconic and lin-
guistic models—derived from (generally errorful) OCR re-
sults and (generally incomplete) dictionaries—and then
runs a fully automatic adaptation algorithm which, guided
entirely by evidence internal to the test set, attempts to cor-
rect the models for improved accuracy. The iconic model
describes image formation and determines the behavior of
a character-image classifier. The linguistic model describes
word-occurrence probabilities. Our adaptation algorithm
detects disagreements between the models by analyzing mu-
tual entropy between (1) thea posterioriprobability dis-
tribution of character classes (the recognition results from
image classification alone), and (2) thea posterioriproba-
bility distribution of word classes (the recognition results
from image classification combined with linguistic con-
straints). Disagreements identify candidates for automatic
model corrections. We report experiments on 40 textlines
in which word error rates fall monotonicaly with passage
lengths. We also report experiments on an enhanced algo-
rithm which can cope with character-segmentation errors
(a single split, or a single merge, per word). In order to
scale up experiments, soon, to whole book images, we have
revised data structures and implemented speed enhance-
ments. For this algorithm, we report results on three in-
creasingly long passage lengths: (a) one full page, (b) five
pages, and (b) ten pages. We observe that error rates on
long words fall monotonically with passage lengths.

Keywords: document image recognition, book recognition,
isogeny, adaptive classification, anytime algorithms, model adap-
tation, mutual entropy

1. Introduction

We are investigating fully automatic methods for whole-book
recognition. In [14] we introduced an information-theoretic frame-
work for identifying significant disagreements between models—
the iconic model and thelinguistic model—and interpreting these
as candidates for corrections of one or the other of the two models
so that, when the updated models are reapplied to perform recog-
nition, a lower overall error rate results.

In [14], a small-scale experiment, on a single textline, using the
algorithm we now call ME1.0, showed that automatic corrections
could be made to both models and that both character error-rates
and word-error rates could fall. In this paper we report two exper-
iments on longer passage lengths– in the first experiment, wedo a
series of scaling-ups to a full page based on ME1.0; in the second
experiment, using a new algorithm ME2.0 introduced here, we’ve
done experiments on one full page, five pages, and ten pages—in
our drive towards whole-book recognition.

Our research builds on over a decades’ work showing
that adaptive classifiers can improve accuracy without human
intervention[9]. Tao Hong[5] showed that within a book, strong
“visual” (image-based, iconic) consistency-constraintssupport au-
tomatic post-processing that reduces error. These successes ap-
pear, to us, to be due largely toisogeny— the tendency of par-
ticular documents to contain only a small subset of all the type-
faces, languages, image qualities, and other variabilities that occur
in large collections[12]. It is well known that if models of the
typefaces, languages, etc were known, even if only approximately,
optimizing recognition jointly across all the models improves the
accuracy[2, 7, 11].

In a long, highly isogenous book, identical (or similar) char-
acter images will occur multiple times, and the same word will
also occur multiple times, independently. If the models areinac-
curate, the errors caused by imperfect models will happen repeti-
tively. The errors will also cause disagreements between the iconic
model and the linguistic model; the overall model-disagreement
on the whole passage is the accumulation of evidences for errors.
A correct model adaptation (which leads to a better accuracy) will
presumably lead to a lower overall model-disagreement, andan
incorrect model adaptation will lead to a higher overall model-
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disagreement. By always checking it to validate the model adap-
tations, the recognition accuracy will quite likely to improve.

The principal goal of the work reported here is to understand
the effects of scaling up the passage-length on which adaptation is
attempted. To this end, we have redesigned the data structures, and
rewritten inner loops, for higher speed. We have also been forced
to face directly, for the first time, the implications of character
segmentation errors (splitting and merging) since they arefrequent
in the errorful OCR results that our algorithm starts with.

In Section 2, we present the mathematical foundation of our
framework, In Section 3, we analyze the previously described
ME1.0 experiments, on larger passages than reported earlier, in-
cluding an in-depth analysis of individual error cases and an anal-
ysis of performance curves . In Section 4, we introduce the de-
sign of ME2.0, including both the conceptual design and the im-
plementation issues. We analyze the results of further scaled-
up experiments using ME2.0 in Section 5, showing that under
severe conditions (small training set, poor dictionary andmany
mis-segmentations), the word recognition rate for longer words
increases significantly as passage length goes up.

2. Scaled-up Experiments Using ME1.0

2.1. Probabilistic Models

In our framework, two different kinds of models are required:
an iconic model and a linguistic model. We impose four conditions
on iconic models:

1. The iconic model, when applied to recognition, must com-
putea posteriori probabilities for all the character classes.
(Of course, many such models are known [3]; we’ll give de-
tails of our choice later.)

2. We expect that, in general, any given iconic model may be
imperfect; however, we want it to be good enough to allow
our mutual-entropy-based methodology to identify model
contradictions and eliminate them. (We do not yet know ex-
actly how accurate the model needs to be for this to happen
reliably.)

3. An iconic model should be continuous in some image met-
ric space: that is, it should give similar results on samples
whose images are nearby one another under the metric. One
example of such a metric is Hamming distance, but of course
many others are known. Associated with this continuity as-
sumption is the requirement that if one sample changes its
a posterioriprobability distribution among the classes, then
image samples in its neighborhood should also be affected
similarly. (We do not yet know how best to enforce these
requirements.)

For a linguistic model, we expect to be given a lexicon (a dic-
tionary containing valid words). The lexicon should cover most
words appearing in the testing images, but may be incomplete. We
also expect probabilities of occurrence to be assigned to each word
in the lexicon: we can of course infer such statistics from a given
corpus.

2.2. Independence Assumptions and Word
Recognition

Now let X denote a sequence ofT observations of character
images (i.e. a word that isT characters long), and letS denote the
true classes of these characters (in communication-theoryterms, it
is the inner state sequence that generatesX):

X = (x1, x2, · · · , xT ) , S = (s1, s2, · · · , sT ) (1)

wherexi are character images, andsj are symbols of an alphabet.
We adopt the following independence assumption, that eachxi is
solely determined by its associatedsi:

P (xi|si,F) = P (xi|si) (2)

WhereF = (Y, K) , Y ⊆ X − {xi} andK ⊆ S − {si}. This
assumption is similar to the one chosen by Kopec and Chou in
their Document Image Decoding theory[6].

The linguistic modelis P (S), the prior probability of occur-
rence of any wordS.

Our independence assumption implies that

P (X|S) =P (x1, x2, · · · , xT |s1, s2, · · · , sT )

=

T
Y

i=1

P (xi|xi−1, · · · , x1, s1, s2, · · · , sT )

=
T

Y

i=1

P (xi|si) (3)

By elementary definitions,

P (x1, x2, · · · , xT )

=
X

(s1s2 · · · sT )

[P (x1x2 · · ·xT |s1s2 · · · sT ) · P (s1s2 · · · sT )]

=
X

(s1s2 · · · sT )

"

T
Y

i=1

P (xi|si) · P (s1s2 · · · sT )

#

=α ·
T

Y

i=1

P (xi) (4)

where

α =
X

(s1s2 · · · sT )

2

6

6

6

6

4

T
Y

i=1

P (si|xi) ·
P (s1s2 · · · sT )

T
Y

i=1

P (si)

3

7

7

7

7

5

(5)

Our iconic model(which provides posterior probabilities for
all the classes) is denoted by the functionP (s|x) for all symbols
s and all character imagesx. So we can deriveP (S|X), the re-
sult of word recognition informed by both the iconic and linguistic
models:
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P (S|X) =
P (S,X)

P (X)
=

"

T
Y

i=1

P (xi|si)

#

· P (S)

α ·

T
Y

i=1

P (xi)

=
1

α
·

T
Y

i=1

P (si|xi) ·
P (S)

T
Y

i=1

P (si)

(6)

2.3. Mutual Entropy Measurements On
Word Recognition

The mutual entropy M(P, P ′) between the distributions
P (S|X) andP ′(S|X) is defined as:

M(P, P
′) = −

X

S

P · log P
′ (7)

which measures the difference or “disagreement” between the
two distributionsP (S|X) and P ′(S|X), whereP (S|X) is the
a posteriorprobability distribution of the character stringS given
the image of the whole wordX, and P

′

(S|X) = P (s1|x1) ·
P (s2|x2) · · · · ·P (sT |xT ) is the distribution of the character string
assuming that there is no linguistic constraints or the distributions
of individual characters are independent with each other.

A property of mutual entropy which is critically important to us
is that the more distributionsP andP ′ differ from each other, the
greaterM(P, P ′) will be. Also, M can be further decomposed
into the character-level disagreement measurements as follows:

M = −

T
X

i=1

X

si

P (si|X) log P (si|xi)

=

T
X

i=1

M (si|X, si|xi) (8)

Where

M (si|X, si|xi) = −
X

si

P (si|X) log P (si|xi) (9)

This measures the disagreement on individual characterxi. And
P (si|X) is the projection probability ofP (S|X) onto a particular
element of a field.

P (si|X) =
X

sj ,j 6=i

P (S|X) (10)

If the iconic output “agrees” with the linguistic model, the
two distributions should be close to each other, resulting in
a smallerM; otherwise, the linguistic informationP (S) will
makeP (S|X) quite different from the iconic outputP (s1|x1) ·
P (s2|x2) · · · · · P (sT |xT ). As a result,mutual entropy measures
the disagreement between the iconic and linguistic models.If the
iconic models give out the correct answer but there is no corre-
sponding entry in the dictionary, then the disagreement between

the two model should be high, which results in a high value onM
for that word.

M (si|X, si|xi) indicates disagreements between thea poste-
riori probability and the iconic probability for an individual char-
acter in the word. The disagreement for one character can be in-
terpreted as a measure of the urgency of changing one model or
the other. In order to change the iconic model, we can modify
the P (si|xi) for that character’s image. In order to change the
linguistic model, we can modify theP (S) for some word ’S’.

As a result, we have three different kinds of measurements:

1. The character-scale mutual entropyM (si|X, si|xi): this
measures the model disagreements in regard to a specific
character. It can indicate the urgency of changing the iconic
model for that character.

2. The word-scale mutual entropyM measures the model dis-
agreements in regard to a particular word. It can indicate the
urgency of changing the linguistic model for that word.

3. The overall mutual entropy of the whole passage
P

M: this
measures the overall disagreements of the iconic model and
linguistic model . We choose to use this as the objective
function to drive improvements of both models.

So far, we’ve defined different measurements that operate at
three different scales: character-scale, word-scale, andpassage-
scale. Do they have any relationship to the recognition rate? We
argue that the overall mutual-entropy measurements (on theentire
passage) are correlated with recognition rates.

1. If recognition performance is high, we expect small overall
disagreement

P

M. This is easy to understand: if character
recognition is poor, either the iconic model has many errors,
or the language model is incomplete: highly probably, they
have a strong disagreement.

2. Within a word, ifM is high, there are two possibilities: one,
the word to be recognized may not in the dictionary; or, two,
the word may contain incorrectly recognized characters due
to an inaccurate iconic model.

3. For a single character, ifM (si|X, si|xi) is high, there are
two possibilities: one, the iconic model is wrong on this char-
acter; or, two, the language model may be incomplete.

Our strategy is to minimize these disagreements through a pro-
cess of model adaptation: that is, applying a sequence of correc-
tions to both models.

2.4. Algorithm Design

In this Section, we define both the iconic model and the lin-
guistic model and describe the model-adaptation algorithm. The
reader may wish to refer, to Appendix A for details (previously
discussed in [14]) of the formal framework.

The criteria for designing the iconic model are: first, it should
produce the probabilityP (si|xi); second, the character classifier
for the iconic model should not be intrinsically complex, orfrom
the perspective of statistical learning theory, the classifier’s VC
dimension should be low. This implies that, if a change to the
iconic model affects one character image, it should impact all sim-
ilar images; that is, changes to the iconic model should propagate
to similar images.
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For the iconic model, we have multiple choices: any character
classifier with its complete configuration (training samples and pa-
rameters) can perform as an iconic model. In our approach, weuse
hamming-distance-based template matching as our classfication
technique, for it is the simplest classifier we’ve ever thought of.
For the classification process, the input character image ismatched
to the templates of each character code, getting the hammingdis-
tances. For hamming distances related to one character code, only
the smallest distance are taken as the confidence value in regards
to this character code. We compute a confidence value of the input
image to each character code, and transform the confidence values
into normalized values in probability sense. The normalized val-
ues should sum to one, and they must always non-negative. The
formulae are as follows:

P (s|x) = β · exp(−α · min
k

d(x, T
k
s )) (11)

β =
1

X

s

exp(−α · min
k

d(x, T
k
s ))

(12)

WhereP (s|x) denotes the normalized probability-like confidence
value of a character codes given an input image;x denotes the in-
put image to be recognized;T k

c denotes the k-th template image of
the character codes; andα is a manually-assigned parameter that
determines the confidence of the classifier.α must be a positive
real number, so that reducing the distance of the template match-
ing increases the “probability” of that character code.

Theα parameter of the classifier is important to the process of
model adaptation: ifα is assigned a greater value, the iconic model
is more confident about its output because the contrast amongthe
P (s|x) increases; vise versa.

Now we say how we make changes to the iconic model. If
the iconic model and linguistic model have high disagreement on
one character, i.e.M (si|X, si|xi) is high, we can change the dis-
tribution P (si|xi) to more closely fitP (si|X) and so to lower
M (si|X, si|xi). We change a template of the top codecmax in
P (si|X) (P (si = cmax|X) ≥ P (si = c|X)) to the image of
xi, in order to increase the ranking of the codecmax in the dis-
tribution of P (si|xi). For example, if we want a character’s top
candidate code to change from “b” to “h”, we may change “h” ’s
template to this character’s image. This increases the probability
of the candidate “h” for this character, meanwhile lower down the
ranking of “b” in the candidate list of the modified iconic model.

The linguistic model is a set of probability functions related to
different lengths of words:P 1(S1), P 2(S2), P 3(S3), · · · , where
P i(Si) represents the language model with word lengthi. For
eachS = {s1s2 · · · sT } in the dictionary,P (S) has a non-zero
value. For eachS = {s1s2 · · · sT } that is not in the dictionary,
P (S) equals zero. For example, the word “entry” should have a
non-zero value inP 5(S5): P 5(S5 = entry) 6= 0.

Thus model-adaptation algorithm is as follows: First, using the
initial models, we recognize the entire test image and calculate
P

M, M andM (si|X, si|xi). We randomly choose a charac-
ter for model adaptation. We replace the template of the word-
recognition-suggested code to this character image. If theoverall
ME increases, we revert our change; if the overall ME decreases,
we adopt our change.

Figure 1. The top five lines of the testing page
image

3. Scaled-up Experiments Using ME1.0

Our basic problem is, given an approximateiconic model (a
model describing image formation and determining the behavior
of a character-image classifier) and alinguisticmodel (a model de-
scribing word-occurrence probabilities), can one algorithm correct
the deficiencies of both the iconic model and the linguistic model
fully automatically, leading to a higher recognition accuracy?

In our last paper [14], we described our ME1.0 algorithm to
deal with this problem. Briefly speaking, our model adaptation al-
gorithm consists of many iterations, with each iteration consisting
of two steps: modifying the models and validating the modifica-
tions. One potential way for modifying the models is to correct
the models on characters or words that cause larger character- or
word-level model disagreements. Validating the modifications is
to check that the whole passage disagreements falls down by the
model modifications. The Mutual Entropy, as a measurement of
model disagreement, guides the automatic model adaptationoper-
ations to lower down the recognition error rate.

In [14], we tested our ME1.0 algorithm on a very small (a
single-text-line) test case and showed that the model adaptations
achieved a fully-correct result. Now two questions come: (1) could
the algorithm apply to longer passages? (2) could the algorithm
perform better on a longer and isogenous (in fonts, typefaces or
image qualities) passage? So in this paper, we focused on discus-
sions about the scaling issues of this technology. Our majorgoal
is to find experimental proofs for our conjecture: the longerthe
passage length, the more accuracy we can achieve by our method.

We conduct a full page experiment using the roughly the same
algorithm described in [14] (except forbidding the linguistic model
adaptation) and demonstrate the monotonically improvements as
the scale goes up.

At this stage, we do experiments on modifying the iconic
model. Our policy is rather simple: pick up a character whose
neighbourhood having a higher total ME, and try to make its im-
age as a template of the code suggested by word recognition. (We
only allow ONE template per character in this experiment. ) If
this action results in a lower overall ME on the whole passage, we
adopt this change, otherwise we discard it.

This experiment consists of several scales of test with the same
initial iconic model and the same initial linguistic model.Both
models are not perfect at the very beginning. The iconic model
is trained from a subset of that page image, with each character
code attached with one template randomly chosen from multiple
character image candidates.

The testing page is selected from page 28 of a book Vol-
ume0000 in the Google Book Search Dataset [4]. Only five lines
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Figure 2. The relationship between the accu-
racy and the scale of the model adaptation
range on a single page image.

are displayed in Figure 1.
The linguistic model is a word-list model, initialized froma

dictionary that contains 45,000 words, the same kind of dictionary
as used in Ispell program in Unix [8]. It is quite incomplete:the
page image has many words that are infrequently used and there-
fore not appear in an ordinary dictionary. Also, in this experiment
our algorithm takes the upper case and the lower case of a character
as two distinct codes, so the words at the beginning of a sentence
are usually the missing entries in the word-list linguisticmodel.

Now we show the performance curves in regarding to the
passage-lengths of the model adaptation. Two curves are shown
in Figure 2, one is for the top-one word-hit rate, the other for the
top-three word-hit rate. We can see the roughly monotonically in-
creasing tendency of the performances as the scale of the model
adaptation range goes up. The top-one word-hit seems to satu-
rate beyond the ten-line ranges, and we believe the reason isthat
the phenomenon is due to the limitation of single-template iconic
model. A single template cannot match all variances of a character
image on a larger scale so that the error rate of the iconic model
tends to increase when the range goes up.

In spite of the limitation of the iconic model, we still see the
monotonically improvements on the top-three word-hit rate. We
interpret this phenomenon as the effect that even if the model adap-
tations cannot raise the true word codes to the top positions, they
still try to improve the rankings of those true word codes.

In addition to the limitation of the iconic model, we also face
the problem of the incomplete linguistic model. In this pageim-
age, all the words with the first letter being uppercase are missing
in the language model because our linguistic model only havea
lowercase representation for each word. The missing words in the
language model counts for about ten percent of the total words in
the testing image. It is quite promising that under such severe lin-
guistic model deficiencies, our algorithm can still suggestcorrec-
tions on the iconic model and shows the monotonic performance
increasements as the passage-length goes up.

Table 1. The word “the” (word 3 of line 1)’s
top-three rankings are changing as the model
adaptation range goes up. The word match-
ing scores are also listed.

Range first second third
Line 1 (Ibn,1.86) (Ike,-0.99) (the,-3.50)

Line 1-2 (Ibn,0.07) (Ike,-0.93) (the,-3.25)
Line 1-5 (the,-0.27) (rho,-0.97) (Ike,-1.36)
Line 1-10 (the,0.64) (rho,-0.66) (she,-2.08)
Line 1-20 (the,0.61) (rho,-0.97) (she,-1.87)
Line 1-39 (the,0.14) (rho,-1.07) (she,-2.06)

In table 1, we demonstrate the increasing recognition perfor-
mance on the word “the” in a series of incrementally enlarged
tests. With the algorithm running on only the first line, the “the”
word is misrecognized, being the third choice in the candidate list.
When we extend the test to two lines (including line 1 and line
2) and run the algorithm again, the scores of the first and third
candidate (the true candidate) are closer to each other. Thebig
improvement comes after we extend the test to 5 lines (line 1 to
line 5): the true candidate “the” was raised to the top candidate.
We continue to extend the test, and the “the” remains at the first
choice.

It is apparant that the isogeny is helpful on improving the iconic
model, so that when more and more text samples of the same
source are included in the test, the more evidences can be col-
lected to guide the models to recognize “the” more accurately. In
other words, if the model recognize wrongly on one “the”, causing
a larger ME measurement on the word, the increment of the whole
passage ME (indicating the model imperfectness) is supposed to
be amplified if there are more similar samples producing higher
disagreements likewise.

Table 2 shows an example how errors on individual charac-
ters are corrected as the model adaptation range enlarges. The
word “recitation” is seriously mis-recognized under the single-line
model adaptation. As the model adaptation range increases,we
see the gradual improvement of the iconic model output: the char-
acter recognition results have steady improvements from “rxci-
InIloo”, to “Γ33iIsIion”, to “r33itation”, to “re3itation”, and cor-
respondingly, the word ME monotonically decreases from 18.559
to 12.096.

In this test case, the increasing accuracy rate is correlated with
the decreasing word-level ME. Also, in this test case, the cor-
rectness of an individual character classification is correlated with
character MEs. Throughout this table, it is quite often thatwhen
an error on recognizing a character is corrected, the ME on that
character reduces, and the ME on that word also reduces (see “t”’s
and “i”’s ME changes). In the ten-line test, the third character “c”
is misrecognized as “3”, and the corresponding character MEis
1.942, which is the largest character ME in this test of this word.

Table 3 shows a special type of error that indicates potential
model confusions, which is crucial to the function of the ME-
based model adaptation. The groundtruth word “tale” is misrec-
ognized as “isle”, but the iconic model recognizes “t”,”a”,”l”,”e”
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Table 2. The distribution of character-level
MEs on the word “recitation” in experiments
with increasing model adaptation ranges. As
the range increases from line 1, to line 1-2, to
1-5, then to 1-10, the word recognition results
for this word are “excitation”, “recitation” ,
“recitation” and “recitation” respectively.

Range 1 ME 1-2 ME 1-5 ME 1-10 ME
r r 4.0 Γ 2.4 r 1.7 r 1.3
e x 1.4 3 2.8 3 1.9 e 1.6
c c 0.9 3 2.7 3 2.7 3 1.9
i i 1.1 i 1.2 i 1.0 i 0.8
t I 2.0 I 1.6 t 1.1 t 1.0
a n 2.6 s 2.4 a 1.1 a 1.1
t I 1.8 I 1.4 t 0.8 t 0.9
i l 1.3 i 1.2 i 1.0 i 0.7
o o 1.1 o 1.3 o 0.9 o 0.9
n o 2.3 n 1.5 n 1.7 n 1.8

Total 18.6 18.5 13.9 12.1

Table 3. A special type of error that indicates
potential model confusions

ME code prob. code prob.
t 3.032 t 0.402 i 0.030
a 2.426 a 0.333 s 0.096
l 1.754 l 0.357 . .
e 2.228 e 0.216 . .

tale 9.440 “isle” 0.165 “tale” 0.047

as their top-choice character recognition codes. Although“isle” is
a wrongly recognized word, it has the potential to self-correcting
because the large word-level ME explicitly indicates the code “i”,
“s” are causing confusions to the recognition.

Why the character recognition results are correct but the word
recognition result is wrong, leading to a larger ME? When we
compute the word posterior probabilities, we take into account the
projection probabilitiesP (si) of the character code at each charac-
ter position (see equation 6). As “i”,”s” has much lower projection
probabilities than that of “t”, “a”, the “isle” is more favored than
the “tale” when calculating the postierior word probabilities.

The ME entropy will not necessarily reduce when the “t” and
“a” dominates the character code posterior probabilites; it will
only reduce when the scores of the confusion-causing code “i”
and “s” are significantly lowered. It means that if “tale” is the cor-
rect word, the first character “t” should specifically NOT resemble
the character “i”, and the second character “a” should specifically
NOT resemble the character “s”. By studying this phenomenon,
we can state that the ME measurements favor model adaptations
that extend the differences between the words that tend to becon-
fused with each other.

4. Description of Algorithm ME2.0

Motivated by the potential the experiments suggests, we con-
duct a larger scale experiment.

Many challenges exist for extending the scale of the experi-
ment. The lacking of resources are the most serious problem we
are facing. The resources include:

1. A large training set. The iconic model should be initialized
by a passage image aligned with a transcript that is not nec-
essarily perfect. But even we do not require the transcript
perfect, we still have not managed to obtain it for various
reasons.

2. A relatively complete dictionary. Though we believe that
our algorithm has the potential to automatically fix the in-
complete dictionary, we hope it is not too bad, at lease at this
stage for startup. However, the dictionary we use is quite dif-
ferent from the book [4] so that the word recognition rate at
the initial stage is quite low.

3. A reliable segmentation module. In the algorithm in Sec-
tion 3, the algorithm cannot deal with segmentation errors,
so we manually segmented the image. Of course we cannot
depend on that because our goal is to design a practical sys-
tem. Currently the only segmentation module available to us
is the segmentation module in the platform of OCRopus [1]
and we have to base our work on it.

We make some changes to ME1.0 to deal with these problems,
and do a much larger scale experiment that shows the monotonic
tendency of performance improvements on a ten-page level.

4.1. Conceptual Design

For the iconic model, we append some extra character images
to one word image. The extra images are the combination of two
adjacent individual character images. For example, the image of
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word “this”, should extends to a series of images “t”, “h”, “i”, “s”,
“th”, “hi”, and “is”, if correctly segmented. Here, the images of
“th”,”hi”,”is” are composed from the combination of the individual
character images of “t”,”h”,”i”,”s”. Of course, the iconicmodel
should at first have the codes “th”,”hi”,”is”, and be initialized with
corresponding templates, so that ideally the model should output
the combination codes “th”,”hi”,”is” for those additionalimages.

This technique helps to cope with the segmentation variations
of a word image: if there is a undersegmentation, i.e. two adja-
cent characters touch each other and fail to be isolated, theindi-
vidual character observations fails, but the combination image still
gives a reliable iconic output; if there is an oversegmentation of
a character, the individual observations fail because theycannot
see the whole character, but their combination image forms an in-
tegral character image, which has the potential to be recognized
correctly.

The algorithm should deal with the variations of the upper or
lower cases of the first character in a word. This is a kind of redun-
dancy that we would not favor: giving one word two instances in
our data structure is too costly in regarding to either spaceor com-
putation. We design a technique that transform this word-level re-
dundancy to a character-level redundancy, therefore the algorithm
saves time and space, and becomes much simpler.

We introduce a code into the code set of the iconic model for
each upper-lower pair of characters. For example, we have a code
“%a” representing both “A” and “a”, and have a code “%ab” for
both “Ab” and “ab”. We call these codescase-free codes. We
impose a rule about the matching score(in terms of a hamming
distance) of the case-free codes, that a matching score is the min-
imal score of their original codes. For example, if “A”’s matching
score is 50 and “a”’s is 100, then the “%a”’s score should be 50.

Except the matching score does not come from real matching,
all other properties of thecase-freecodes are the same as nor-
mal codes, i.e. the probability of them together with all other
codes should sum to one, and they can appear in the candi-
date list as other codes do. Now, if we write a word code as
(“%w”,”i”,”t”,”h”,”%wi”,”it”,”th”), it represents for b oth “with”
and “With”. Given the iconic output with probabilities of the case-
free codes, the computation of the word posterior probability is the
same algorithm as aforementioned.

4.2. Implementation Issues

As we all know, our methodology requires a book-scale pro-
cessing during each iteration, so the speed of the algorithmis cru-
cial to the feasibility of the algorithm. ME2.0 has implemented
many techniques that make the scaling-up possible and feasible.
Here are some techniques we implemented into ME2.0:

• A fast template matching technique.
The image matching is always a time-consuming step, so
we need to speed it up. We store the images in a compact
way that one int type(4 bytes) represents 32 pixels’ values.
When two images are compared, the corresponding image
blocks are X-ORed to get a new differential block. We use
the lookup table for counting the pixels of the differential
blocks. Actually we do not need to “count” the pixels num-
bers: we pre-stored the number of pixels of each possible

short int type number (16 bits) into a linear table, and just
look it up when counting. Also, we only compair the inter-
section area of two images and get a matching score, and the
pixels that are not in the intersection area all counts in the
matching score. Again, the pixel numbers of each int-type
image block are pre-stored and ready to look-it-up. Accord-
ing to some on-line notes, this technique can be at least ten
times faster than just pixel-by-pixel counting.

• A hashing-table-based matching-score-lookup technique.
When calculating the ME of a word, one of the most frequent
operations is to lookup the matching score of a code. Since
the codes of the iconic model are not well-ordered, we need
to find a way to access them in a timely manner, otherwise
it would takelog(n) time to locate a code if we use the c++
associate set utility in the Standard Template Library [13].
As a result, we use a hashing function to map a code to a
memory address in a hashing table, and then we can access a
code’s score directly without expensive operations to locate
the code first.

• An efficient Mutual Entropy calculation algorithm.

– The most expensive operation in calculating the ME
is the expential function. When we calculate the ex-
ponential form of a matching score, we do not calcu-
late the exponentials on-line: we pre-stored them in a
lookup table because the number of possible matching
scores are limited.

– We do not consider any ranking when do ME calculat-
ing. This is because ranking the results needs to handle
a large data structure for the sorting algorithm, which
leads to an overhead. When calculating the whole
book ME, this could significantly slow down the al-
gorithm.

5. Further Scaled-up Experiments using
ME2.0

The experiment results are reported as follows: We use only
four groundtruthed text lines (150 characters in 45 words) from
page 40 of the book [4] to initialize the iconic model. The lin-
guistic model is initialized by the dictionary we used in ME1.0
(the previous algorithm). We use two templates for each character
code (ME1.0 use only one for each). We do three tests to ME2.0:
a test on one-page-level (page 40) model adaptation, a test on five-
page level (page 40-44), and a test on ten-page level (page 40-49).
We name them Test One, Test Two and Test Three separately.

On page 40, there are 1481 characters in 335 words. In this
page, 269 segmentation errors happen, nearly one segmentation
error per word. There are 212 words in this page that are longer
than three characters, consisting of 1011 characters. And among
these 212 words, 25 are missing in the linguistic model. In the fol-
lowing steps, these 212 words are our interested set on comparing
the performance.

Our experiments show strong correlation between the increas-
ing performance and the passage length: in Test One, only 38
words in the interested set are correctly recognized; in Test Two,
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70 words are correctly recognized in this set; in Test Three,82
words are correctly recognized in this set.

In Test Three, character accuracy rate is 58.7% on page 40.
Of course this is not a high accuracy, but this is very promising
considering our situation: small training set, poor dictionary, and
poor segmentation.

The results of our algorithm suggest longer words are more eas-
ily to be recognized accurately if the word-segmentation errors are
below two. However, we gave shorter words much higher weights
than that of long words in calculating the total ME. As a result,
the instability of the shorter words’ ME were amplified and then
caused the model adaptation on shorter words imperfect (fail to
show the monotonic improvement).

6. Discussion and Future Work

This work has been motivated by the belief that isogeny will
be more effective in driving recognition improvements as the pas-
sage length to be recognized increases[10]. The experiments re-
ported here support that belief. We have seen that error rates on
long words (greater than three characters) fall monotonically as
passage length increases. We conjecture that the relatively small
improvements on short words may result from our present policy
of assigning short words higher weights.

Reponding to the challenges of mis-segmented OCR input,
we have allowed redundant linguistic models (more than one per
word), and our iconic models now apply to overlapping fields.
These techniques are crucial for boosting the recognition perfor-
mance and make the algorithm more powerful to survive in tough
situations. What’s more, in spite of this increased complexity, we
have not seen a significant impact on runtimes.

Certainly our algorithm is sensitive to the accuracy of the ini-
tial (input) iconic and linguistic models, but we are heartened by
having observed cases where even highly inaccurate initialmodels
produce a rapid increase in accuracy.

We plan far larger tests, as soon as possible, scaling up rapidly
to whole book-images. Currently our algorithm is in quadratic
complexity of the testing word number: in each iteration, our algo-
rithm tries iconic adaptation on each characters in the whole book,
and then calculates the whole book’s ME to verify the adaptation.
However, we may reduce the algorithm complexity by limitingthe
model adaptations on hard-to-recognize characters and only updat-
ing the MEs of the words that are affected by model adaptations.

In the future, we hope to investigate these open questions:

1. Scaling up our experiments. In order to scale up from the
current ten-page level to the whole-book level(typically 500
pages), some parallel computing technologies may be imple-
mented.

2. Try and compare various policies for changing the models.
The disagreement measurements only provides a framework,
and there are various ways to implement a mutual-entropy-
based auto adaptation system.
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