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Abstract

The design and analysis of an algorithm for the
restoration of degraded images of machine-printed
characters is presented. The input is a set of de-
graded bilevel images of a single unknown charac-
ter; the output is an approximation to the charac-
ter’s ideal artwork. The algorithm seeks to minimize
the discrepancy between the approximation and the
ideal, measured as the worst-case Euclidean distance
between their boundaries. We investigate a family
of algorithms which superimpose the input images,
add up the intensities at each point, and threshold
the result. We show that, under degradations due
to random spatial sampling error, significant asymp-
totic improvements can be achieved by suitably pre-
processing each input image and postprocessing the
final result. Experimental trials on special test shapes
and Latin characters are discussed.

1 Introduction

In the last few years, a variety of document-image
degradation models have been proposed, and their
applications investigated [3]. Models of this sort
are often instantiated as a software image generator
which reads a single ideal prototype image (of, say,
a machine-printed symbol), and, as directed by the
model, writes an arbitrarily large number of pseudo-
randomly degraded images. Here, we explore some
implications of inverting this procedure by designing
an tmage restorer which reads a set of degraded im-
ages and attempts to recover, or closely approximate,
the ideal artwork from which they were derived.
This procedure is a special case of classical image
restoration [12], of which image deconvolution is an-
other, well-studied special case. The problem is sim-
ilar in some respects to super-resolution surface re-
construction from multiple images [6] and sub-pixel
edge location in grey-level images [1]. Our problem
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domain is distinguished from many that are treated
in this literature by several factors: (1) we read many
input images (not merely one); (2) the input images
are bilevel (not grey or color); (3) the ideal image to
be recovered is also bilevel and at a much higher (e.g.
x 10) spatial sampling rate than the input; (4) we
do not, in general, know the parameters of the image
degradation model; and, (5) we may know some con-
straints on the class of images, such as the frequent
occurrence along their boundaries of straight lines,
sharp corners, and curves of large radius. For these
reasons we foresee advantages in algorithms specially
adapted to the problem domain.

We anticipate several applications of such an al-
gorithm. One is speeding up the adaptation of an
OCR system to a given document, by a procedure of
the following sort: for each of the most commonly
confused symbols, a few images are lifted and their
ideal prototype is inferred and input to the generator,
which can write a much larger training set than can
be collected from the document. Another application
is calibration of a degradation model (estimation of
its parameters) to a document for which ideal proto-
types are unknown.

We have investigated a family of algorithms which
superimpose the input images, add up the intensities
at each point, and threshold the result. Methods of
this sort have been occasionally reported in the OCR
literature [11], but we are not aware of any attempt
to analyze their asymptotic performance or improve
them by special pre- and post-processing.

There are several generally related papers in the lit-
erature on document image analysis which are worth
mentioning although they neither attack the same
problem nor use the same method. Billawa, Hart, and
Peairs [5] studied the restoration of repeated defects
at known locations in an image (e.g. scratches on a
copier platen). Shin et al [13] explored not dissimilar
methods for the purpose of contrast enhancement.
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2 The Algorithm

The basic idea of the Image Averaging algorithm is to
superimpose the input images, add up the intensities
at each point, and threshold the result to obtain a
new binary image. A broad class of algorithms can
be expressed in this form by suitably preprocessing
each input image and postprocessing the final output
as suggested by Figure 1.

After the input images have been preprocessed,
they can be superimposed by simply finding the cen-
troid of each input image to subpixel accuracy and
shifting the images so that the centroids coincide. It is
also possible to use a feedback process to try to read-
just the relative positions once a tentative consensus
image is available as Hastie et. al. do [7], but this
involves considerable complexity and does not avoid
the theoretical limitations discussed in Section 4.

The superimposed inputs can be converted to a bi-
nary image by simple thresholding or by an edge de-
tection algorithm such as Avrahami and Pratt [1].

As the picture suggests, the most important func-
tion of the postprocessing step is to smooth out the
high-frequency “wobbles” in the outlines produced
by the thresholding process. Adding up input im-
ages and thresholding them reduces the magnitude
of this noise so that the wobbles are more readily dis-
tinguished from desired features such as the serifs on
the letter “A” in Figure 1. The smoothing algorithm
needs to operate on polygonal outlines and produce
output that fits the input as closely as possible while
smoothing out wobbles up to some specified magni-
tude. There should be no attempt to minimize the
number of vertices in the output at the expense of
quality of fit.

A good choice of smoothing algorithm is Hobby’s
algorithm [8]. This algorithm minimizes the num-
ber of inflections in the resulting polygonal outlines
subject to a bound on the deviation. It produces a
description of a class of outlines that obey these cri-
teria so that the output can be chosen to fit the input
as well as possible. The post-processing step consists
of choosing the maximum deviation parameter as a
yet-to-be determined function of the number of input
images and running Hobby’s algorithm.

The other essential component of the Image Aver-
aging algorithm is the preprocessing step. One option
is to omit the preprocessing and just treat the inputs
as binary images where the pixels are unit squares.
This gives the Naiwve Averaging algorithm.

Alternatively, Hobby’s polygonal smoothing algo-
rithm can be applied to the input images as part of
the preprocessing step, but this must be done care-
fully to avoid destroying significant features. We con-

preprocess | (smooth and

add gray)

superimpose, add
up and threshold

postprocess | (smooth and
sharpen corners)

Figure 1: An example of how the algorithm performs
with simulated input images as might be obtained
from a 7 point font at approximately 300 dots/inch.
Only the first two of 100 input images are shown here.
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sidered various preprocessing options some involving
the smoothing algorithm and some not. The op-
tions were evaluated both empirically and according
to their theoretical performance as the number of in-
put images approaches infinity. The details appear in
later sections; we first concentrate on presenting the
most successful preprocessing strategies.

2.1 Preprocessing by Smoothing the
Outlines

One approach to preprocessing is to take each ras-
terized input image and try to guess the underlying
shape that generated it. This can be thought of as
“Inverse rasterization,” and the algorithm of [8] can
do it as shown in Figure 2.

(®)

Figure 2: (a) A comparison of the original out-
lines (thin lines) with the smoothed versions (thick
lines) for one of input images from Figure 1; (b) the
smoothed outlines filled in.

The smoothing algorithm has an error tolerance pa-
rameter € that must be set to at most % pixel in order
to guarantee that a simple rasterization process could
regenerate the original input outlines. In fact, it may
be better to choose a value like € = % in order to avoid
smoothing out features that may be significant. Us-
ing this preprocessing strategy for Image Averaging

yields the Presmoothing algorithm.

2.2 Adding up the Inputs and Thresh-
olding

Once we have polygonal outlines for each of the input
images, how do we add them up? One way would be
to build a data structure that divides the plane into
regions according to the number of input images that
overlap at each point. This would require maintain-
ing a potentially very large number of polygonal re-
gions and figuring out how to update them given the
outlines that describe a new input image.

A more practical approach is first to rasterize
each polygonal outline using any reasonable scan-

conversion algorithm, and then add up the rasterized
images. This rasterization should be done at a res-
olution substantially higher than that of the input
images since the resolution limits the precision of the
final output. It is best to use a run-length represen-
tation so that the run time and space requirements
will not be quadratic in the resolution.

Scale each input by some factor o, and assume that
the scan-conversion algorithm finds all triplets of in-
tegers (z,y, d) such that the scaled outlines cross the
segment (z,y)(z + 1,y) and d = +1 depending on
whether the crossing is in the downward or upward
direction. After all the inputs have been rasterized
in this fashion, we can collect all the triplets with
a given y-value and sort them according to z. En-
forcing a threshold ¢ involves scanning the sorted list,
maintaining the cumulative total of the d values and
saving only those triplets that raise the total from ¢t—1
to t or lower it from ¢ to ¢ — 1. Knuth has published
detailed implementations of all these algorithms [9,
Parts 19,20,22].

2.3 Preprocessing via Smooth-Shaded
Outlines

Rather than trying to guess the underlying shape
from looking at an input image, a better preprocess-
ing strategy might be to try to express the range of
possibilities. In other words, the preprocessed image
should have fuzzy edges that simulate the result of
averaging all the possible underlying images. This
can be done by taking a closer look at the output
of Hobby’s smoothing algorithm [8]. In addition to
the polygonal approximation indicated by the dashed
line in Figure 3, there is a sequence of trapezoids that
the dashed line passes through. Instead of using the
dashed line as a black-white boundary, each trapezoid
can have smoothly varying gray levels such that the
dashed line is 50% dark and the darkness reaches 0%
and 100% at the parallel segments of the trapezoid
boundary (thick lines in the figure). Tmage Averag-
ing using this preprocessing strategy with tolerance
€= % gives the Smooth-Shading algorithm.

In order to make use of images with smooth-shaded
edges as described above, we need to generalize the
idea of rasterizing the images at a higher resolution
and adding up the rasterizations. Consider a hori-
zontal scan line passing through such an image. The
darkness is a piecewise-linear function of the z co-
ordinate along the line and the slope discontinuities
occur at points where the scan line crosses trapezoid
boundaries as shown in Figure 4.

We can rasterize the trapezoids to get (z,y,d)
triples as before, but the d values should represent
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Figure 3: (a) An outline extracted from an input im-
age; (b) the results of Hobby’s smoothing algorithm
with tolerance ¢ = % The smoothed polygonal out-
line is the dashed line and the other lines delimit
trapezoids that define a range of alternative outlines.

100%

darkness

0%

z coordinate on scan line

Figure 4: A section of a smooth-shaded image and
the trapezoids that defined it. The graph shows the
relative darkness along the dashed scan line.

changes in the slope of the darkness function, not
changes in the darkness itself. After rasterizing the
trapezoids from all the input images, it is a simple
matter to recreate the total darkness function from
the z-sorted (z,y, d) triples on a particular scan line.
The main difficulties are computing the correct d val-
ues and preventing accumulated rounding errors from
getting too large. This gives Algorithm 1. (See also
Figure 5).

P

Figure 5: A typical trapezoid for Algorithm 1 and
one of the scan lines y = y passing through it. The
y = ¥ line is shown dashed.

In order to avoid accumulating errors in AD in
Step 8 of the algorithm, the third component of each
triple in (1) should be stored as a fixed-point num-
ber. There can still be accumulated error in the total
darkness D, but this is partially alleviated by prop-
erties of the trapezoids from [8]: trapezoids with a
large horizontal extent tend to have Y;z = Y;_; r and
Yir = Yi_1,r so that ' = d” in (1). (The bottom-
most trapezoid in Figure 3b is an example of this.)

3 Experimental Results

We have experimented with the three special test
shapes shown in Figure 6 and two Latin characters:
the Helvetica capital ‘R’ and Times Roman capital
‘R’. All trials were run on input images pseudoran-
domly generated by a program implementing the pa-
rameterized image defect model described in [2]. The
degraded images were at a nominal text size of 8
point, and imaged at a spatial sampling rate of 300
pixel/inch. The discrepancies between approximated
and ideal boundaries are expressed in units of in-
put pixel-width. In order to estimate the algorithm’s
asymptotic performance, randomized trials on 250 in-
put images were repeated 25 times and their means
and standard errors computed.

Table 1 reports the results of experiments on im-
ages degraded by uniformly randomized spatial sam-
pling error. It shows how the three algorithms per-
formed on the test shapes and on the Helvetica and
Times-Roman ‘R’s. The smooth-shading algorithms
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Algorithm 1 How to do the “add up and threshold”
step given a set of input outlines, a scale factor o and
a threshold T

1. Initialize j < 1.

2. Apply the Hobby’s smoothing algorithm [8] to
the j-th outline, obtaining P;r = (X;r,Yir) and
PiR = (XZ'R,YYZ'R) fOI‘ 1= 0, 1, 2, N ,77,]'.

3. Let P,z = o P;r, and P;p = o P;p for each i. Then
initialize 7 «— 1.

4. Find all integers y such that the trapezoid
Pi_l,RPiRPiLPi_LL intersects the line y = y and
execute Step b for each pair of intersection points
(z',y) and (2", y).

5. Compute darkness values d' and d" for (z',y)
and (2", y) by letting the darkness be 1 at P;_; 1.
and P, 0at P;_; g and P;g, and varying lin-

early in between. Then store triples
d' — d' d — d"
2y, — and 2y, — .
|r// . I“'| |:L‘” . l,/l (1)

6. If 1 < n;, increment ¢ and go back to Step 4.

7. If there are more outlines, increment j and go
back to Step 2.

8. For each y such that there are triples with y = y,
sort the triples by x and scan them in order,
maintaining total darkness D and rate of change
of darkness AD. Each time the total darkness
crosses the threshold T, output the point (z,y)
where this happens.

Test shape 1 Test shape 2 Test shape 3

Figure 6: Three test shapes that were used in the
experiments.

did significantly better than naive averaging and pre-
smoothing, and the test shapes were significantly eas-
ier than the ‘R’s.

input smooth naive pre-

shape shading averaging | smoothing
Test 1 0.08+0.01 | 0.11+0.02 | 0.16 £ 0.03
Test 2 0.124+0.02 | 0.18+0.06 | 0.18 £ 0.01
Test 3 0.124+0.01 | 0.16+0.03 | 0.20+ 0.04
Times R | 0.474+0.05 | 0.53+0.05 | 0.514+0.10
Helv. R | 0.63+0.04 | 0.684+0.12 | 0.66+0.11

Table 1: Error in recovering the ideal shape for vari-
ous algorithms and input shapes under uniform spa-
tial sampling error. Entries of the form p + ¢ mean
that the mean is g and the standard error is o.

The test runs used Algorithm 2 from Section 4 to
deal with the sharp corners in the test shapes. This
performed as well as the analysis leads us to expect
on the three test shapes, but less well on the ‘R’s.

We also experimented with more complex docu-
ment-image degradations, which have not yet yielded
to analysis. Table 2 shows the effect of combining
these degradations with uniform spatial sampling er-
ror. The degradation labeled S in the table is skew
(rotation) varying normally with mean 0.0 and stan-
dard error 4.0 (degrees). For each image, this skew
angle was passed to the image averaging algorithm,
which attempted to correct for it; our motivation for
this policy is that skew can often be estimated accu-
rately from the complete page image.

input Defect model

shape U U+ S U+ B
Test 1 0.08+0.01 | 0.16+0.01 | 0.19+ 0.02
Test 2 0.1240.02 | 0.32+0.04 | 0.26 £ 0.03
Test 3 0.124+0.01 | 0.23+0.05 | 0.31 £ 0.05
Times R | 0.47+0.05 | 0.66+0.04 | 0.70 &+ 0.02
Helv. R | 0.63+0.04 | 0.67+0.05 | 1.44+ 0.06

Table 2: Error in recovering the ideal shape for the
smooth-shading algorithm with various input shapes
and image defect models. In the column labels, U
refers to uniform spatial sampling error, S refers to
known random skew, and B refers to randomized
blurring and thresholding. Entries of the form p+ o
mean that the mean is p and the standard error is .

The degradation labeled B in Table 2 is blurring
and thresholding: the blurring is a circularly symmet-
ric Gaussian kernel whose standard error varies nor-
mally with mean 0.5 and standard error 0.5 (units of
input pixels); and the threshold varies normally with
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mean 0.5 and standard error 0.125 (intensity). This
did not increase the errors much relative to the results
for the variable-skew trials, with one striking excep-
tion: on the Times-Roman ‘R’, the error was much
larger (mean 1.50, o 0.06); on inspection, this was
clearly due to blunting of the tips of sharp serifs.

4 The Sharp-Corner Problem

The algorithms tested in Section 3 tend to produce
poor results for shapes that have sharp corners unless
the thresholding process 1s modified or a special post-
processing step is used. Before explaining the reme-
dies to this problem, we need to know what causes
this effect and how its magnitude of depends on the
preprocessing strategy.

Figure 7 shows what happens near a 90° corner
with the Naive Averaging algorithm. Each input im-
age 1s generated by sampling the test shape on a ran-
domly shifted grid. Adding these images and thresh-
olding them produces a rounded corner as shown by
the dark shaded region in the figure. (Like all the fig-
ures in this section, Figure 7 is based on a coordinate
system with positive y oriented upward.)

Figure 7: A magnified portion of the lower-right cor-
ner on Test shape 2. The dark-shaded region is the
result of adding-up and thresholding with no prepro-
cessing. It is superimposed on the original test shape
(lightly shaded). The dashed square shows the size
of one input pixel.

The Image Averaging algorithm attempts to align
the resulting input images by shifting them so that
their centroids coincide. If we make the optimistic
assumption that this process correctly compensates
for the random shift in the sample grid, we have the
perfect positioning assumpition. Under this assump-
tion, the process of generating input images followed
by Naive Averaging is equivalent to the following:

1. Select n random points Py, Ps, ..., P, in the unit
square and let P; + Z? be the set of grid points
obtained by adding integers to the z and y com-
ponents of F;.

2. For each (#,y) and each ¢ < n, the square

F—-<r<i+-, G--<y<ig+

N | —
N | —
N | —

contains a unique point from P; + Z2 There are
n such points for each (z,y). Color (Z,y) black
if at least n/2 of these are in the test shape.

This rule for deciding the color of (Z, §) amounts to
looking at a crude estimate of the area of the intersec-
tion of the square (2) and the test shape. Since the ex-
pected error in this estimate is O(1/4/n), the limiting
behavior for large n is to include those points (z, y)
for which at least half of the square (2) is in the test
shape. This defines a function F4 that maps a test
shape into the expected result of Naive Averaging.

Since any line through the center of a square divides
it into two equal pieces, Fiy4 maps any half plane into
itself. Now consider the 90° wedge W defined by

<0, y>0 (3)

as shown in Figure 8a. If z < —%, the intersection
of (2) and W has area > % when y > 0. If § > %,
the intersection is at least 50% covered when z < 0.
Ifz > % or y < —%, the intersection area is always
0. Hence Fya(W) must equal W except possibly for
points (Z,¥y) in a unit square centered on the origin.
(This is the dashed square in Figure 8a.)

If (Z,y) is in the dashed square, the intersection of

(2) with W has area

Al o

Setting this equal to % gives a hyperbola that passes
though (—%, 0) and (0, %) This is the curved bound-
ary of the dark shaded region in Figure 8b. Note
how the experimental result in Figure 7 agrees with
computed shape shown in Figure 8b.

The point is that the expected asymptotic result
Fna(W) deviates from W by a certain fraction of
an input pixel and this distance depends only on the
shape of W. The following theorem formalizes the
idea that the result of Naive Averaging on W ap-
proaches Fya (W) as the number of input images ap-

proaches infinity.

Theorem 4.1 For any region W and any probabil-
ity p, there exist families of regions W, and Wt that
satisfy W, C Fya(W) C W;t, approach Fya(W)
as n approaches oo, and have the following proper-
ties: for any point Pt ¢ W}, generating n input
images by sampling W with randomly shifted grids
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Figure 8: (a) A 90° wedge W and a region (dashed)
where Fya(W) might disagree with W; (b) The
expected result Fya(W) of Naive Averaging (dark
shaded) and the difference W \ Fya(W) (lightly
shaded). Wedge W extends to infinity leftward and
upward.

and doing Naive Averaging under the perfect posi-
tioning assumption produces a result Wya where the
probability that Pt € Wya is at most p; similarly,
any P~ € W, 1s outside of Wya with probability at
most p.

Proof. We define W, and W,} in terms of parameters
yet-to-be-chosen parameters a;; and a;f. Let W, be
the set of all (z,y) for which the intersection of W
with the square (2) has area at least a;; ; region Wt
is similar except the area bound is a}. This gives
W C Fya(W) C W whenever a; > 1 > aof.
Furthermore, W, and W, approach Fya(W) if a;,
and o} approach % as n approaches co.

It remains to show that o} and a;, can be chosen
so that PT € Wya and P~ & Wya with arbitrarily
small probability. At (z,y) = PT, the fraction o of
square (2) within W is at most at, and is < %
The probability that T contains at least n/2 of the
n sample points in square (2) is

> <Z) of(1—a)" <2 3 af(1—a)"t

k>n/2 k>n/2
anam/2(1 — q)ln/2]
- 1— o (5)
l-«o
n.n/2(1 _ \n/2 _ 2\n/2
< 2" 1(_12a @) < (4o — 4a?) . (6)
T 1-2a

For any fixed a < %, this approaches zero as n ap-

proaches co. Hence solving

(4o} — 4(aH)?)"/?
1= 2a} =f

for ;b yields a function that approaches % as n ap-
proaches co. Since (6) bounds the probability that
Pt € Wya, this o satisfies the theorem.

The probability that P~ & W4 is the probability
that more than n/2 of the sample points in square
(2) are outside of W when (Z, y) is such that at most
1 — «; of the square is outside W. Choosing «a,, =
1 — a;f makes this probability at most p as required.

d

4.1 The Asymptotic Behavior of Pres-
moothing and Smooth Shading

We have analyzed Naive Averaging under the per-
fect positioning assumption with only spatial sam-
pling error. Even under these favorable conditions,
it approaches something different from the desired
shape as the number of input images approaches in-
finity. Do the Presmoothing and Smooth Shading
algorithms suffer from similar defects?

First, consider the presmoothing algorithm. It is
harder to analyze than Naive Averaging because the
polygonal smoothing algorithm expands the area af-
fected by each sample point. In the simple case
of the 90° wedge (3), the analysis is easy because
the smoothing algorithm leaves such 90° corners un-
changed. Hence, the previous analysis holds and the
expected result as the number of input images n
approaches infinity deviates from the 90° wedge as
shown in Figure 8.

Now consider the Smooth Shading algorithm for
the 90° wedge W given by (3) under the perfect po-
sitioning assumption. The preprocessed image differs
from that of the Naive Algorithm in that the sharp
edges shown in Figure 9a are replaced by gradual
shading from black to white over some distance 2¢
as shown in Figure 9b. (The recommended value for

. . . 1
€ in Section 2.3 is 3.)

(a)

Figure 9: (a) A 90° wedge; (b) the effect the prepro-
cessing used by the Smooth Shading algorithm. The
dashed line shows the corresponding position of the

edge of the 90° wedge.

For Naive Averaging, the expected darkness at a
point (Z, y) before the thresholding step was the area
of the 90° wedge W inside the (Z,y) centered unit
square (2). For Smooth Shading, the corresponding
rule is similar except that the 90° wedge is replaced
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by the smooth-shaded version in Figure 9b and the
area becomes the integral of the shading density over
the square.

For example if (z,y) = (—%, %) and ¢ = %, the
shading density functions for (2) are as in Figure 10.
There are three subregions where the shading density
is nonzero, and a different shading density function
applies within each subregion as indicated in the fig-

ure. For the subregion labeled %, the integral is

/1/3 <15 ) <1+3y>
=Y - dy

16 \ 26 2

3 15 19y  3y2
[P,
1652 52 2
£+ 19 1173
104 ' 1248 48 1248

Similar computations show that the integral of %

over the indicated region is % and the integral of 1
over the indicated rectangle is % This gives a total

of 12 4 % + % = 1 indicating that thresholding

1248
at % places (Z,9) = ( 1) is on the boundary.

Figure 10: Shading density functions for the square
(2) with (z,y) = (—11—3, %) and ¢ = %
Since (—11—3, %) is not on the boundary of W,
the expected result of Smooth Shading on the 90°
wedge W differs from W by a constant amount,
even as the number of inputs approaches infinity. It
does not seem worthwhile to try to derive expres-
sions that define the boundary of the expected re-
sult W' of Smooth Shading on W under the perfect
positioning assumption with only spatial sampling er-
ror, but the authors’ numerical experiments indicate
that the closest approach to (0,0) is approximately
(—0.181,0.181) and that the total area of W\ W' is

approximately 0.091.

4.2 Restoring Sharp Corners

The function Fya(W) that models the effects of spa-
tial sampling error followed by Naive Averaging is
equivalent to blurring and then thresholding. Specif-
ically, the blurring function is to convolve with a unit

square of uniform density. This suggests replacing the
thresholding step with deblurring followed by thresh-
olding. The motion deblurring algorithm of Lee and
Vardi is appropriate for this application [10, 14].

Alternatively, we can try to invert the function Fiya
or whatever function is appropriate for the form of
Image Averaging that is being used. This pseudo-
inverse can be applied after smoothing the outlines
extracted from the thresholded image as a final post-
processing step. This strategy was adopted for the
following reasons:

1. Smooth Shading and Presmoothing are hard to
model with blurring functions, and these strate-
gies performed better than Naive Averaging in
our tests.

2. Dropping the perfect positioning assumption and
allowing error sources other than spatial sam-
pling error makes it hard to know what blurring
kernel to use.

3. Post-processing the final outlines requires signif-
icantly less space and run time than deblurring
would.

As the above points imply, correcting for the sharp
corner problem is necessarily a somewhat heuristic
procedure. We just need to start with something that
has parameters to choose and does roughly the op-
posite of what Fiys does. In order to get a better
understanding of Fia, consider the region W that
satisfies
y>miz, y>mex, where —1<m <mg<l1
as shown in Figure 11. We need an expression for
the area of the square (2) within W when |z| < 1
and (z,y) is such that W contains (Z + %, y+ %) but
neither of the points (z + %, y— %)

Figure 11: The region W for the derivation of Fiya
with the square (2) dashed. In this case m; = 0.15
and my = 0.85. Note that W extends to infinity
leftward and upward.

Page 8



This area 1s

Il
<2
+

This hits the boundary of W at (—%,—%ml) and

(%, %mQ) and passes through (0, ™2g™1).

Now consider the total area inside W but below
Fna(W). This is the integral of (7) on —% <z< %
minus the integral of max(m;xz, maz) over the same

interval. Integrating (7) gives

my — My my — My
o 0T
and
1/2
/ max(miz, maz) de
—1/2
0 1/2
:/ mlxd;v—}—/ ’I’TLQl‘dgL‘:—EJ{_@.
—1/2 0 8 8

Thus the area of W\ Fya(W) is =27

This suggests that a pseudo inverse of Fya(W)
should add area near each convex corner of W and
subtract area near each concave corner. The amount
of area should be roughly proportional to the angle
at the corner. Algorithm 2 shows one way to per-
form this operation on a polygonal outline. It adds 7y
units of area per radian, where 7 is a parameter to be

determined empirically. For small angles, the above

argument suggests additional area ™2-"™1 for an an-
gle of approximately 1712711_172112 so that v = W;ii”“.

This ranges from 21—4 to 11—2 depending on m; and ms.
We also found an area difference of 0.091 for Smooth
Shading with an angle of 7. This suggest v = %

5 An Application

We applied an image averaging method (smooth
shading) to a challenging OCR problem, a selection
from which is shown in Figure 12. This consists of ten
pages of text which appears to have been typewrit-
ten then photo-offset: the image quality is variable

Algorithm 2 An algorithm for postprocessing the
smoothed outlines from the thresholded image to cor-
rect for the sharp corner problem by adding 7 units
of area per radian.

1. Let 4" = 4/20 and repeat Steps 2—6 20 times.

2. For each polygon edge, compute a shift amount
si = v (0; + ¢;)/(2l;) where I; is the length of
the edge and 6; and ¢; are the angles at the sur-
rounding vertices.

3. For each edge, find the line ¢; obtained by shift-
ing the edge perpendicularly s; units to its right.

4. For each vertex v;, find the point v; where the ¢;
and ¢; for the edges incident on v; intersect. This
forms a new polygon whose edges are parallel to
those of the old polygon.

5. For each edge of the new polygon whose orien-
tation is opposite that of the corresponding old
polygon edge, collapse the edge to a point where
the £; and ¢; for the surrounding edges intersect.

6. Repeat Step 5 until all the edge orientations
agree. Then update the old polygon to equal
the new polygon.
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and often low. The text is a collection of 50 puz-
zle cryptograms for hobbyists; as a result, contextual
constraints are unusually weak. The “body text”—
setting aside the headers—contains 23684 characters
including word-spaces. The single fixed-pitch type-
writer face remains unidentified (we have not at-
tempted to match it with the faces in our collection
of typographer’s artwork).

E g
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Figure 12: A magnified portion of the body text of a
collection of puzzle cryptograms for hobbyists. The
pages were originally typewritten, and then photo-
offset.

We processed these images in two phases. In the
first phase, we ran our experimental page reader using
a classifier trained on twenty fixed-pitch faces. This
involved page layout, fixed-pitch processing, charac-
ter classification, shape-directed resegmentation, and
crude contextual filtering (i.e. each space-delimited
word was expected to be either all upper case alpha-
betic or all numeric). We measured the “classifica-
tion error” of this phase as follows. First, we semi-
manually identified every pair of strings of characters
(T, E) where T is from the ground truth and F is
the string erroneously substituted for 7' by the page
reader. T or F may include spaces and may be empty.
Each (T, E) pair is locally minimal in that 7" and F
share no character. We adopted the policy that each
pair contributes to the error count a score equal to
the maximum of the lengths of 7" and E, unless that
number exceeds 10, in which case it is ignored (forced
to zero), on the somewhat arbitrary assumption that
the pair results from a layout, rather than a classifi-
cation, mistake. Under this policy we counted 1706
classification errors, for an nominal error rate of 7.2%
of the characters.

In the second phase, we attempted to improve the
error rate completely automatically by applying the
image averaging algorithm, as follows. We sorted the
character images from the first phase by their top-
choice character labels (a subset of the images labeled
“1” is shown in Figure 13. No attempt, automatic or
manual, was made to set aside erroneously labeled
images.

Then, for each character label, all of its images
were given as input to the image averaging algorithm.

-

Figure 13: These are 67 magnified images selected
from the total of 1009 labeled “I”. Many, but not
most, are mislabeled. Some are fragments of char-
acters due to missegmentation, and some are pencil
annotations.

Each output of the image averaging algorithm—the
entire alphabet is shown in Figure 14.—was then used
as an “ideal artwork” seed for input to a pseudoran-
dom generator that wrote 150 degraded images (Fig-
ure 15 shows examples for “I”). These were used to
train a classifier which was used to read the pages
a second time. The output was then scored, as de-
scribed above. The result was a 20% reduction in
error, to 1376 errors, or nominal error rate of 5.8%.

0123456789
ABCDEFGHI
JKLMNOPQR
STUVWXYZ

Figure 14: The body text consisted only of upper case
alphabetics and numerals. The “I” shown here should
be compared with the images in Figure 13, a subset
of those from which it was automatically inferred.

We do not yet know how to characterize the cir-
cumstances under which this strategy, of inferring
prototypes from sets of possibly imperfectly labeled
images, will be safe. All we can say at present is
that, in this particular application, faced with an av-
erage error rate of about 7%, it worked well. If a user
were willing to oversee the method, a quick glance at
the inferred prototypes should be sufficient to guard
against disaster.

Another strategy for automatically retraining a
classifier on imperfectly labeled data has been de-
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Figure 15: For each letter of the alphabet, 150 images
were generated using the prototype artwork inferred
by the image averaging algorithm.

scribed in [4]. The present work departs from this in
(a) not using the real images directly; and (b) relying
heavily on synthetic images from an image degrada-
tion model. In future work, we hope to test whether
these differences are relatively advantageous and dis-
advantageous. It should be straightforward to pursue
both of these strategies simultaneously on the same
document—potentially combining their advantages—
simply by mixing the real and synthetic data before
retraining.

Perhaps, in the future, we can find ways to infer au-
tomatically, not merely faithful prototypes for char-
acter artwork, but the parameters of the document’s
image degradation as well: this may allow even more
effective automatic bootstrapping.

6 Summary

We have described an algorithm for image restoration
which is specially adapted to applications in docu-
ment image analysis. It accepts as input a set of
bilevel images, and attempts to infer from them a
single bilevel image at a higher spatial sampling rate.
This output image should be similar to the ideal
prototype of which the input images are degraded
derivatives. Our basic approach follows prior art by
“averaging” the images: the input images are super-
imposed, intensities are added up, and the result is
thresholded. We show that a naive implementation
of this is inferior to an algorithm which specially pre-
processes the input images and postprocesses the re-
sult. The analysis concentrates on degradations due
to uniform spatial sampling error. Experimental tri-
als on a variety of degradations and symbol shapes are
described. Results on artificial test shapes illustrate
the advantages of the new algorithm, particularly in
ameliorating rounding effects at sharp angles along

the boundary.

Future work should include analysis and experi-
ments on a wider variety of symbol shapes and degra-
dations, including images lifted from actual docu-
ments. There also needs to be more work on the
sharp corner problem, particularly the alternative
mentioned in Section 4.2 involving deconvolution. Al-
gorithm 2 is ad hoc and performed poorly on features
such as the serifs on the Times Roman ‘R’.
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