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ABSTRACT

We offer a preliminary report on a research program to investigate versatile algorithms for document image

content extraction, that is locating regions containing handwriting, machine-print text, graphics, line-art, logos,
photographs, noise, etc. To solve this problem in its full generality requires coping with a vast diversity of
document and image types. Automatically trainable methods are highly desirable, as well as extremely high
speed in order to process large collections. Significant obstacles include the expense of preparing correctly
labeled (“ground-truthed”) samples, unresolved methodological questions in specifying the domain (e.g. what is
a representative collection of document images?), and a lack of consensus among researchers on how to evaluate
content-extraction performance. Our research strategy emphasizes versatility first: that is, we concentrate at
the outset on designing methods that promise to work across the broadest possible range of cases. This strategy
has several important implications: the classifiers must be trainable in reasonable time on vast data sets; and
expensive ground-truthed data sets must be complemented by amplification using generative models. These
and other design and architectural issues are discussed. We propose a trainable classification methodology that
marries k-d trees and hash-driven table lookup and describe preliminary experiments.

Keywords: Bayes decision theory, classification, k Nearest Neighbors, k-d trees, CART, spatial data structures,
computational geometry, hashing

1. INTRODUCTION

We are investigating unusually versatile algorithms for the document image content extraction problem:

Given an image of a document,
find regions containing handwriting, machine-print text, graphics, line-art, logos, photographs, noise, etc.

To solve this problem in full generality—given the great diversity of document and image types—we have decided to
emphasize, in our research strategy:

1. versatility first: concentrate first on designing methods that work across the broadest possible variety of cases
(document and image types);

2. voracious classifiers: trainable on billions of samples in reasonable time;

3. extremely high speed classification: ideally, nearly at I/O rates (as fast as the images can be read);

4. amplification: use real ground-truthed training samples as ‘seeds’ for massive synthetic generation of pseudoran-
domly perturbed samples for use in supplementary training;

5. confidence before accuracy: good estimates of the confidence of decisions is important; high accuracies are desirable
but even modest accuracy can be useful;

6. near-infinite space: i.e. design for best performance in a near-term future when main memory will be orders of
magnitude larger and faster than today; and

7. data-driven design: we won’t invest much effort in making what are, ultimately, arbitrary engineering decisions such
as choice of preprocessors and features; instead, we’ll try to allow the training data to determine these automatically
as far we can;
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2. DOCUMENT IMAGE CONTENT

Types of document images of interest include color, grey-level, and black-and-white; also, any size or resolution (digitizing
spatial sampling rate); and in any of a wide range of file formats (TIFF, JPEG, PNG, etc). We have chosen to convert
all image file formats in a three-channel color PNG file in the HSL (Hue, Saturation, and Luminance) color space;
Black-and-white or greylevel images convert into HSL images with fixed values for Hue and Saturation.

We are gathering a large collection of electronic images of pages containing the following types of content: handwriting
(HW), machine Print (MP), line Art (LA), photos (PH), math notation (MT), maps (MA), engineering drawings (ED),
chemical diagrams (CD), “junk” (e.g. margin and gutter noise, JK),and blank (BL). These content classes are intended
to capture the most commonly occuring types of document image regions. We attempted to collect document images
represented as bitonal (black and white), greyscale, and color (although some combinations are unlikely to be found,
such as Mathematics notation in color). It is of course technically possible to convert color images to greyscale, and
grayscale to bitonal, but we have eschewed this in order not to introduce arbitrary image processing decisions of our
own. Sources for these include: the Univ. Washington CD-ROM Data Bases (‘UW’), the Univ. Nevada, Las Vegas
Data Sets (‘UNLV’), various Library of Congress digital library sites such as the American Memory Project (‘AMem’),
the ISI Kolkata mathematics notation collection (‘ISI’), Lehigh University digital library collections (‘LU’), the National
Institute of Standards (‘NIST’), NASA Astrophysics Data System (‘ADS’), the New York Public Library (‘NYPL’), and
the National Library of Medicine (‘Med’). Document images that have been carefully “zoned,” and the zones labeled with
their content type appear to be a rare commodity: we found them principally in the UW, UNLV, and ISI collections. Our
collections to date are summarized below.

Bitonal Greyscale Color

HW AMem UNLV NIST AMem UNLV LU AMem NYPL

MP UW AMem UNLV NIST Med UW UNLV AMem LU ADS NYPL AMem NYPL

LA AMem DL UNLV AMem LU ISRI AMem NYPL

PH UNLV UNLV AMem LU NYPL AMem DL

MT ISI UW ADS LU (none)

MA NYPL AMem NYPL AMem NYPL AMem

ED UW LU (none)

CD UW (none) (none)

JK all all all

BL all all all

We have collected 7123 page images total from these sources. We are aware of other doc-image databases which we plan
to include soon. Our software can automatically incorporate existing ground-truth in the form of rectangular zones; for
other images we have developed an interactive ground-truthing tool.

3. STATISTICAL FRAMEWORK FOR CLASSIFICATION

To motivate our technical approach we briefly review a few ideas well documented in the statistical pattern recognition
literature. Each training and test sample will be a pixel in a document image, and each pixel owns d features which are
scalar properties extracted by image processing in the vicinity of that pixel. Note that we have chosen to classify pixels
not regions as most previous R&D projects have done; this is to avoid the arbitrariness and restrictiveness inevitably
connected with the choice of a limited class of region shapes. (The most popular region shape in the literature is the
isothetic rectangular zone, which offers many engineering advantages but is often a bad fit to page layouts.) Our statistical
sample space (the “universe”) U = Rd, the multidimensional reals. We expect the dimensionality d ≈ 100. A
member of the sample space is called x,y, z, etc.

All samples belong to one of m classes C = {cj}j=1,...,m. The number of classes m will, we expect, be ≈ 10.

The components {xi}i=1,...,d of an observed sample x are of course measurable features. Within the Rd space we choose
to use the Infinity (L∞) norm ‖x − y‖

∞
≡ maxd

i=1{|xi − yi|}. Training data consists of a set of samples T⊂ Rd

labeled with their classes. Since a single page image can contain 8-10M pixels, the number of training samples n ≡ |T|
can easily exceed 1 billion. The true class of each training sample is given by a ground-truth function G : T → C.

Many pattern recognition researchers believe that the choice of metric has less influence on the accuracy of a classifier
than properties of the training data,1 such as large size and representativeness. It is therefore interesting to explore
classification methods which can make use of very large training sets. Note that in our context c � d � n.



4. A NEARLY IDEAL CLASSIFIER (FOR OUR PURPOSES)

Our classification problem can be stated as

Given T, G, and a previously unseen sample x,
find the most probable class c for x.

Adopting a naive Bayesian approach, we choose cmax = argmaxcj∈C{P (cj |x,T,G)} where P (cj |x,T,G) denotes the
posterior probability of class cj given the new observation x and the prior knowledge expressed in training data T and
G. One algorithm for the Classification problem is k-nearest neighbors (kNN):

K Nearest Neighbors algorithm

INPUT: T, G, k ∈ N+, and x

OUTPUT: c ∈ C

Step 1. within T, find k nearest neighbors of x

that is, find a set Y ⊂ T, |Y | = k, s.t.
∀y ∈ Y ∀z ∈ T − Y ‖x − y‖ ≤ ‖x − z‖

Step 2. within Y , use G to find the most frequently occurring class, breaking ties at random.

For any particular set of features, assuming that the training data is representative, the kNN algorithm enjoys a valuable
theoretical property: as the size of the training set increases, the error rate of kNN approaches no worse than twice the
Bayes error.2 It also generalizes directly to more than two classes (unlike several competing methods such as neural nets
and classification trees). Finally, it has has often been competitive in accuracy (if not always in speed) with more recently
developed methodologies such as neural nets and support-vector machines. For these reasons, we consider kNN to be a
nearly ideal classifier.

There is of course a straightforward exhaustive-search algorithm for Step 1 of time complexity Θ(ndk). A slightly
refined algorithm using heaps reduces this to Θ( n d logk ). Since both c and k � n, the runtime of Step 2 is negligible;
so, hereafter, we will speak as if kNN consists only of Step 1.

We have implemented this (for k = 5) and, in early small scale experiments, have seen it yield pixel classification rates
greater than 98% correct.

Many techniques for speeding up kNN have been studied3 including partial distance,4 editing (using, e.g., the triangle
inequality property of metrics), tree search, locality-sensitive hashing5,6 etc—for reasons of space we can not discuss them
in detail here, except to mention that, as n increases: partial-distance and editing generally improve runtimes by fixed
factors only; tree search promises runtimes sublinear in n but at the cost of a blowup in space that is exponential in
d; and locality sensitive hashing is sometimes fast but is known to exhibit costly asymptotic behavior on the simple
parametric distributions that we know how to analyze. Thus although many of these may perform well in practice, we
do not know, as yet, how to guarantee good performance across a broad range of cases. We are interested by highly
nonuniform distributions of T within Rd for which hashing techniques perhaps combined with geometric tree search, may
offer a way forward. To explore this, we next review approximation algorithms for kNN.

5. APPROXIMATIONS TO KNN

Radius Search problem

Given T, r ∈ R, and x,
find all points of T within radius r of x: that is, the set Yr ≡ { y ∈ T s.t. ‖x − y‖ ≤ r }

If r � s, we can expect that finding Yr will be easier than finding Ys. (Of course, generally |Yr| < |Ys| also, in which
case reporting the result of the search will take longer. But we choose to neglect runtimes that depend on the size of the
output, for reasons that will become clear later.) If |Yr| = k, then radius search is equivalent to kNN. If |Yr| ≈ k, then we
will say that radius search approximates kNN. (Of course, this notion of approximation does not address the key issue,
which is how much less accurate radius search classification is than kNN classification.)

It might be cheaper to compute approximations to radius search.

Nested Radius Search problem

Given T, {ri}i=1,...,s ∈ R, r1 < r2 < . . . < rs, and x,
find sets ⊂ T within radii ri of x: that is,

Yri
≡ { y ∈ T s.t. ‖x − y‖ ≤ ri }



Note that Yr1
⊆ Yr2

⊆ . . . ⊆ Yrs . If rk < rl, then it may be possible, through judicious choice of data structures and
algorithms, to compute Yrl

faster than Yrk
.

Approximate Radius Search problem

Given T, r ∈ R, ε ∈ R and x,
find sets Y L and Y U ⊂ T such that

Yr−ε ⊆ Y L ⊆ Yr ⊆ Y U ⊆ Yr+ε

That is, Y L and Y U approximate Yr within ε. As ε → 0, Y L → Yr (from below) and Y U → Yr (from above), and so
Approximate Radius Search converges to Radius Search. When ε is large, it should be easier to solve Approximate Radius
Search than to solve Radius Search.

How can Approximate Radius Search be used for classification? Well, if it happens that |Y L| = |Y U |, then Y L =
Y U = Yr and, exactly as in kNN, we can choose the most frequently occurring class in that set. Lets call the frequency
of occurrence of each class cj in Y L “fL

j ” and similarly, in Y U , “fU
j ”. Let the most frequently occurring classes in these

sets be maxcL and maxcU ; if these happen to be the same class, we will of course choose that class. But if they differ,
then we have several policy choices:

• we can compute average frequencies for each cj , e.g. faver
j ≡ (fL

j + fU
j )/2, and then choose the class with the

highest average frequency;

• we can use the value k from kNN to assist in the decision, for example, if |Y L| is closer to k than Y U , we choose
the most frequently occurring class in Y L (and vice versa).

Thus Approximate Radius Search can be used as a basis for classification and offers a range of engineering tradeoffs
between accuracy and speed.

6. APPROXIMATE RADIUS SEARCH UNDER THE INFINITY NORM

With the Infinity Norm as our metric, then Radius Search becomes a multidimensional range search (or “region query”)
in which the search regions are hypercubes of radius r centered on the query sample x. Multidimensional range searching
is an intensively explored topic78910 by researchers in the computational geometry, image processing, pattern recognition,
and graphics research communities. However, the special requirements of pattern classification may lead us in fresh
directions. For example, in the literature, range searching is commonly discussed as a generalization of point searching,
which in turn is characterized as a generalization of dictionaries to multidimensional data. Dictionaries are classically
designed to support three basic operations: insert a single data item, find an item (returning its associated metadata, or
returning ‘not found’), and delete an item. Data structures and algorithms for dictionaries are thus dynamic: designed to
process an arbitrary sequence of these three operations efficiently.

By contrast, in classification, insertions are performed all at once in an offline batch operation (the “training stage”)
in which all the data (training samples) are simultaneously available. Deletion never occurs (although we may choose to
summarize sets of data points statistically rather than storing all of them explicitly). Thus the data structure is static.
Finding is the only operation which is online and must run fast; and it may also be possible to batch a large set of find
operations. Thus much of the literature on dynamic multidimensional search is not directly relevant to classification.

Let us review techniques for multidimensional search that may assist us in choosing, adapting, or crafting new data
structures and algorithms suitable for classification.

6.1. Adaptive k-d Trees

One multidimensional search technique with broad applicability is Bentley’s k-d trees.11 The variant of k-d trees most
relevant to classification seems to be the adaptive k-d tree.12 Briefly, these partition the set of points recursively in stages:
at each stage one of the partitions is divided into two subpartitions; we will assume that it is possible to choose cuts that
achieve balance, that is, to divide into subpartitions containing roughly the same number of points. Division is by cutting
along one of the dimensions i ∈ {1, . . . , d}, i.e. by choosing a threshold value and assigning each of the partition’s points x

to subpartition (a) or (b) according to whether its xi component value is (a) less than, or (b) greater than or equal to the
threshold. (In some implementations, the threshold corresponds to a component value for one of the points, which is then
stored in the interior node of the search tree; but will we assume here that all points are stored in leaf nodes). Generally,
at each stage a different dimension is cut: one simple strategy is to cycle (and if necessary recyle) through the dimensions
in a fixed order; another strategy is to cut the currently most populous partition. Cutting proceeds until all partitions



contain few enough points to invite a final fast sequential search. The final partitions are generally hyperrectangles (not
always hypercubes) with orthogonal sides (parallel to the coordinate axes of Rd).

Balancing each cut ensures that find operations execute in Θ(log n) time in the worst case. Consistent with a guarantee
of such logarithmic-time finds, Bentley’s k-d tree construction achieves a minimum number of cuts and thus a minimum
number of partitions (close to n/p, where p is the number of points in the final partitions; in our context, assuming
p = 10, this is still huge, ≈ 108). The threshold value chosen for each cut depends on the distribution of points within the
partition to be cut, so the thresholds are not independently predictable: that is, none (after the first) can be computed
without knowledge of the cut thresholds in some earlier stages. Further, given a previously unseen x it is not possible to
compute the d upper and lower bounds of its k-d hyperrectangle (within which it lies) without traversing the k-d tree.
Thus locating x’s k-d hyperrectangle requires Θ( log n ) time.

The pruning power of k-d trees speeds up range searches. Given a query point x and a radius r, defining a search
hypercube, it is straightforward to generalize the find algorithm to explore all k-d tree nodes whose subtrees overlap the
search hypercube. The asymptotic runtime of such variants has been studied:13 reports that the worst-case number of
tree nodes explored is Θ( d n1−1/d ). In our context, this may (or may not) promise much improvement over brute-force

search, since (neglecting the multiplicative constant) d n1−1/d ≈ 100(109)
0.99

= 100(108.91) = 1010.91 � 108 ≈ n
Of course this may be a pessimistic bound for several reasons. Whether or not k-d tree range searches are efficient for
classification may ultimately be decidable only by experiment.

6.2. Multidimensional Tries

An alternative data structure that assists multidimensional search is a recursive partitioning of the space using fixed cuts.
Suppose that for each dimension i ∈ {1, . . . , d}, lower and upper bounds Li and Ui on the values of the components xi

are known. Then one may choose to place cuts at midpoints of these ranges, i.e. at (Li + Ui)/2, and later, when cutting
those partitions, recursively cut at the midpoint of the (now smaller) ranges. A search trie can be constructed in a manner
exactly analogous to k-d trees with the exception that the distribution of the data is ignored in choosing cut thresholds.
It will no longer be possible to guarantee balanced cuts and thus most of the time and space optimality properties of k-d
trees are lost. However, there are gains: for example, the values of the cut thresholds can be predicted (they all are of
course predetermined by {Li, Ui}i=1,...,d). As a consequence, if the total number of cuts r is known, the hyperrectangle
within which any query (test) sample x lies can be computed in Θ(r) time. We will call these recursive midpoint-cut trie
hyperrectangles partitions (they are often called ‘bins’ or ‘cells’ in the kNN literature).

6.2.1. Bit-Interleaving

Partitions resulting from tries as above can be addressed using bit-interleaving. Let < dk, mk >k=1,...,r be a sequence
of cuts, where, at cut k, dk is the dimension chosen to be cut and mk is the midpoint of the partition chosen for that
cut. Among the partitions of feature space that result, a test sample x will fall in a partition that can be described
by a sequence of decisions bk = (xdk

> mk) taking on the value False (‘0’) or True (‘1’) as x lies below or above the
cut respectively. Equivalently, any bit-sequence < bk >k = 1, . . . , r of length r bits determines the boundaries of some
partition, and so can be thought of as an address for it. To summarize: given a test sample x and a sequence of r cuts,
we can compute in Θ(r) time the bit-interleaved address of the partition within which x lies. In practice this calculation
is far faster than the metric calculation and is lost in the noise.

Now in this context—as in most if not all naturally occurring image pattern recognition problems—we expect that
training and test data are nonuniformly distributed (”skewed”) in feature space, and specifically when r is large that only
a small fraction of the resulting small partitions will be occupied by any training data. If this assumption holds true
in practice, only a few distinct bit-interleaved addresses will occur in even a very large training set, and so it may be
possible to use a dictionary data structure to manage them. The feasibility of this approach depends crucially of course
on how many distinct values of bit-interleaved addresses occur in practice. Experiments on our document images where
n = 10, 000, 000, d = 15, and r < 75 suggest that the number of occupied partitions, as a function of the length of their
bit-interleaved address, is asymptotically roughly cubic. For r = 50 the absolute number observed was about 2,100,000,
which is of course easily manageable by single-stage hashing with the hash table contained in main memory.

In another trial with d = 15, n = 844,525 training points, tested on 192,405 points, brute force 5NN achieved a
correct classification rate of 70% but required a huge computation (163 billion distance calculations). By contrast, hashing
bit-interleaved addresses of length r = 32 bits achieved a 148-times speed-up while still classifying 66% of the points
correctly. Longer bit-interleaved addresses were faster still and only a little less accurate: at r = 40 bits, we saw a
3470-times speed-up and an accuracy of 58%. However, at r = 48 bits accuracy fell to 26% which seems to be too low
to be useful.



Figure 1. A bilevel document image (on the left) and its per-pixel classification (on the right). Dark green indicates
the photo (PH) content class (concentrated iaong the left edge and upper left corner), light blue indicates machine print
text (MP) (most of the center of the page), magenta indicates handwriting (HW) (along the right margin and scattered),
and light gray indicates unclassifiable (JK) (the outermost margins). Although the per-pixel classification correct rate is
only 77%, the principal regions and their identities are clearly indicated and it may be possible to refine them reliably in
post-processing stages.

We have reason to believe that a per-pixel correct classifcation rate well below 100% may still be useful: in the
following Figure, the correct classification rate is 77% but the principal regions of text and photo are clearly delimited so
that it seems to us it will be easy to refine them in downstream stages of processing to support a variey of uses.

These experimental results, though preliminary, encourage us to press ahead in an exploration of fast approximate
kNN methods using hashing and related techniques.

7. DISCUSSION AND FUTURE WORK

However, we may soon face other theoretical and practical obstacles to building fast approximate kNN algorithms using
bit-interleaved-address hashing. How can we ensure that a partition addressed by a bit-interleaved address contains all

of the training samples that may fall within a kNN set, or an approximate-radius NN set? It is easy to see that, in the
worst case, this extra offline preprocessing (and space requirements) may be exponential in d. Also, exponential space
may be needed to store redundant copies of the test samples. Again these issues must be tested empirically and analyzed
further.

In a personal communication Jon Bentley has suggested to us that a hybrid of classification trees (CARTs14) and k-d
trees may provide a circumvention of these potential problems. Specifically, the first few levels of a CART could perhaps
be compressed using a hashing scheme similar to bit-interleaving; but it is not yet clear how to make this work.
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