6 Conclusions

We have investigated a new methodology for study-
ing recognition problems — first we construct a real-
istic generative model, then we empirically study the
resulting distributions to estimate tradeoffs between
computational requirements and the probability of er-
ror. Our experiments show that such simulations can
provide a rich source of statistics to guide designers of
classifiers, providing worst-case bounds on the com-
putational resources required to achieve specific error
and reject rates.

There are many open problems: estimators that can
yield tighter bounds should be sought; experiments on
more classes, more fonts, and larger images are needed;
the defect model must be more carefully validated;
and a sampling procedure providing a variance struc-
ture that facilitates statistical extrapolation would be
helpful.

In this methodology, domain knowledge is ex-
pressed in the image defect model, and thus is effec-
tively separated from the methodology for designing
classifiers. This offers an escape from the severe prac-
tical difficulties that result from the lack of real train-
ing data sets of adequate size. We have shown in this
paper a successful application of this methodology to
a challenging character recognition problem.
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Figure 6: R and H estimates of Bayes error for differ-
ent text sizes, shown with 95% confidence intervals.
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Figure 7: R and H estimates of Bayes error for differ-
ent text sizes, shown on log-scale of n.

lems are less difficult than they have been imagined.
For instance, the best achievable accuracy for 5 point
images (mostly smaller than 5x5 pixels), under our

defect model, is between 71.6% to 73.4% (26.6% to

28.4% error), which is far better than a random guess.
The impact of text size on the error rate is obvious.
The R and H estimates at n = 1,000, 000 differ by
only 1.03% for the 5 point images, but they differ by
3.63% for the 10 point images. This is so even though
we enjoy a large ratio of n to the dimension of the
feature vector (1,000,000/81). Although the dimen-
sion of the feature vector is the same for all text sizes,
the smaller images have constant zeros in most of the
dimensions, and thus the larger images have a higher
effective feature dimension, and this may help explain
the differences in the gaps. Another explanation is
that new samples of larger text sizes are less likely to
have occurred in the training set, and thus more often
have to resort to nearest-neighbor matching.
Achieving sharper estimates may be costly. An ex-
trapolation based on Figure 7 suggests that, for R and
H to converge to within 1% on 10 point text, between
10 and 100 million samples may be needed. Of course,
more nearly unbiased estimators would help. It seems
that extending these experiment to images of higher
resolution, and to more classes, may prove challenging.

5 Implications for Classifier Design

The classifier being studied is a brute-force design:
it simply stores all training samples and record with
each the frequency of occurrence of each class. A
new image is compared to all the stored samples. If
no match is found then the case can be rejected or
a nearest-neighbor is located instead. The time and
space requirements of such a classifier are great, per-
haps the greatest of all classification methods.

Given our essentially unlimited source of training
samples, and assuming we are given sufficient memory,
we can make the error rate of this classifier approach
the Bayes risk, and the reject rate approach zero (as
indicated by the declining fraction of unseen images
in Figure 5).

Figures 6
the range of accuracy achievable with a given num-

and 7 and their extrapolations show

ber of samples. For example, in our problem, the
estimated Bayes error for the 10 point images is be-
tween 1.43% and 5.39% with 1,000,000 training sam-
ples. If we reject when no exact match is found,
then from Figure 5 we know that a new sample of
‘c’ has a 37% chance of being rejected, and for ‘e’s
it is 48%. To achieve this accuracy one would need
to store 509,589 unique training samples (Figure 3)
and their corresponding class decisions, which takes
509, 589 x (81(the image) + 1(the class decision)) bits
= 5.2 Mbytes.



Table 1: Frequency of occurrence of identical images in both classes (measured with 500,000 samples

of each class).

Text size 5 pt 6 pt 7 pt 8 pt 9 pt 10 pt
1) Number of shared images in two classes 2,825 8,127 14,113 17,288 14,446 7,917
2) % all distinct images 29.6% 24.3% 15.1% 8.2% 4.1% 1.6%
3) % all distinct images of ‘c’s 47.6% 42.8% 30.4% 18.0% 8.9% 3.4%
4) % all distinct images of ‘e’s 43.9% 36.0% 23.1% 13.2% 6.9% 2.8%
5) Corresponding number of samples 987,314 | 935,117 | 743,299 | 478,838 | 236,578 | 90,882
6) % all samples 98.7% 93.5% 74.3% 47.9% 23.7% 9.1%
7) % shared in all samples of ‘c’s 99.0% 95.3% 81.8% 57.3% 32.9% 12.7%
8) % shared in all samples of ‘e’s 98.5% 91.8% 66.9% 38.5% 14.4% 5.5%

identical to a sample of ‘c’s. This could be caused by
the fact that there are more shape variations in ‘e’s (a
larger number of distinct images) than in ‘c’s, and by
the characteristics of our defect model.

Notice that although the distributions overlap
heavily, the frequency of occurrence of the images
shared by both classes could differ significantly be-
tween the two classes. For instance, at 5 point, only
475 (17%) of the 2825 images shared by the two classes
occur with equal probability in both classes. This sug-
gests that, by using the frequency information, classi-
fication of the confusable images can be more accurate
than random guesses. In the next section, we attempt
to estimate the minimum probability of error for these
samples when frequency is used.

4 Empirical Estimate of Bayes Error

The Bayes probability of error is the minimum
probability of error achieved when the Bayes decision
rule is used. For discrimination between two classes
c1 and cs, the Bayes decision rule for a sample x 1s to

decide ¢1 if p(c1|x) > p(ca|z); otherwise decide ca.

For discrete x, the Bayes error is given by [4]

Pe) = Z p(z, )+ Z p(z,e1),

TER, TER2

where Ry = {z|p(e1]z) > p(ea]|z)} and
Ry = {z[p(ez|z) > p(er|z)}.

We construct a Bayes classifier using this decision
rule, where p(ci|z), p(cz|z), p(c1, ) and p(ce, z) are
estimated by frequency substitution with a training
sample set of size n. For samples not included in the
training set, the probabilities are estimated by the fre-
quencies at their nearest neighbor (under Hamming
distance). As n increases, the number of unseen im-
ages approaches zero, and so the error rate of this

classifier approaches that of an ideal classifier that pos-
sesses perfect knowledge of p(ci|z) and p(cz|z), that
is, it approaches the Bayes probability of error.

Using our data model it is possible in principle to
generate samples indefinitely, and so drive up accuracy
until it reaches the Bayes limit. However, in practice
we are constrained by finite computational resources;
thus the rate of change of the accuracy estimate as a
function of n is of practical importance. As for the
choice of an estimator, many have been proposed in
the literature [8] [5]. Here we choose to apply the
resubstitution method and the holdout method. In
the resubstitution method (we denote it R), the sam-
ple set that is used to estimate the posterior proba-
bilities and to construct the classifier is also used to
measure the error; this is biased optimistically. In the
holdout method (H), a reserved sample set images (we
use 10,000), disjoint from those used in constructing
the classifier, is used to measure the error; this is bi-
ased pessimistically. As sample size n increases (and
the number of features is held constant), it has been
conjectured that the difference between these two es-
timates vanishes in the limit [8]. Tt has also been
suggested that a linear combination of the two esti-
mates gives an essentially unbiased estimate for the
true error[5].

Figure 6 shows the estimates and the correspond-
ing 95% confidence intervals obtained for different text
sizes, and Figure 7 shows the same data on log scale
of n (estimates with n < 10,000 are omitted for clar-
ity). For a better approximation of normality, the con-
fidence intervals were computed on the transformed
statistic log(p/(1 — p)) (where p = 1 — Ror 1 — H)
and then back transformed. Since the H estimates
were computed using fewer samples, their confidence
intervals are larger.

We have seen that even the optimistically biased
R estimate of Bayes error is nonzero for all our text
sizes. Therefore the goal of building perfect classifiers
for them is unrealistic. On the other hand, these prob-
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Figure 3: Number of distinct images found in the sam-

ple collection.
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Figure 4: Cumulative frequency of images
and 10 pt (from top to bottom).

at 5,6,7,8,9

Assuming that the images are generated randomly,
we can ask, at each step, ‘what is the probability
that the next image will be identical to one already
seen?’ We estimate this probability by a sliding-
window method. Starting with an empty set, we add
new samples in batches of fixed size (10,000). Before
each new batch is added, we determine how many of
the new samples have been seen in any of the earlier
batches. The frequency of previously unseen images
declines quickly as the sample size grows (Figure 5).
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Figure 5: Changes in the fraction of unseen images in
each additional 10,000 images.

To assess the difficulty of discrimination it is impor-
tant to measure the overlap of the class-conditional
distributions. One measure of this is the frequency
of occurrence of images shared by both classes. For
these images, if frequency information is not used, the
class can be decided only at random. Table 1 summa-
rizes the overlap statistics for our entire collection of
samples.

Table 1 shows that, at 5 point, the distributions
overlap heavily. Identical pairs can be found between
99.0% of the ‘c’s and 98.5% of the ‘e’s (lines 7 and 8),
and only 1.3% of the samples can be uniquely classi-
fied. On the other hand, at 10 point, only 9.1% of all
samples (line 6) are potentially confusable. This gives
a measure of the difficulty of the problem, and it is
clearly affected by the text size.

Another interesting observation from Table 1 is the
asymmetry between ‘c’s and ‘e’s. For all text sizes,
larger fractions of ‘c’s are confusable with ‘e’s than
vice versa. In other words, ‘e’s are less likely to be



Figure 1: Ideal images of ‘c’ and ‘e’ in the Adobe
Times Roman typeface.

this model, scored 99.7% accuracy on real images of
English books [1]. More thorough validation of such
models is currently an active research topic.

Text size has a marked effect on OCR accuracy [6].
To study the difficulty of recognition as a function
of text size, we created 1,000,000 images (500,000 for
each class) at each of six text sizes (5, 6, 7, 8, 9 and
10 point). The images were generated at a spatial
sampling rate of 100 pixels/inch (ppi), and thus are
similar to those occurring in challenging real-world
OCR problems, such as those arising in low-resolution
FAXes (100x200 ppi). Figure 2 shows some of these
sample images.

Among images at this resolution and within this
range of text sizes, the vast majority (99.98%) fit
within a grid of 9x9 pixels and thus can be repre-
sented by an 81-component binary vector (we center
images in the grid). The empirical distribution of sam-
ples within this 81-dimensional space is the principal
object of our study. We are interested in those char-
acteristics of the distributions that affect both the ac-
curacy and time/space demands of a classifier.

3 Characteristics of Sample Distribu-
tions

The first characteristic we investigated was the fre-
quency of occurrence of an image in each class. In
an 81-dimensional binary space, there are at most
281 ~ 2.4 x 10%* distinct points each corresponding
to an image. The large volume of the space has led
to a belief that classifying by exact match is infeasi-
ble due to the hopelessly large number of prototypes
needed. Yet not every one of these images has an equal
probability of occurrence in each class. If the distribu-
tions have a strong central tendency, a limited number
of prototypes might be sufficient to represent a large
fraction of all images that are likely to occur, so that
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Figure 2: Sample images of ¢’s (upper group) and e’s
(lower group) at 100 ppi and in 10, 9, 8, 7, 6, and 5
point (from top to bottom in each group).

at least a partial solution to the recognition problem
can be obtained within practical limits.

We summarize our findings as follows. The distri-
bution of 5 point images is the most compressed —
out of the 500,000 samples of ‘c’s, only 5,939 distinct
images were seen; and of the 500,000 samples of ‘e’s,
only 6,431. On average the ratios of overdetermination
are 84 and 78 respectively. Even for the 10 point im-
ages, which 1s the most dispersed, a significant number
of repetitions are observed. Out of the 500,000 sam-
ples of each class, there are 230,054 distinct ‘c’s and
287,452 distinct ‘e’s, and the ratio of overdetermina-
tion is 2.17 and 1.74 respectively. Figure 3 shows the
increase in the number of distinct images as a function
of the sample set size.

The occurrence of each distinct image in the sam-
ple set is highly nonuniform. Figure 4 shows the cu-
mulative frequency of the sample distributions, where
distinct images are ordered by their frequency of oc-
currence. For instance, 90% of the 5 point samples
are identical to one of less than 4% of the distinct im-
ages at that size. This central tendency is stronger
for the ‘c’s than for the ‘e’s. At 10 point, 60% of the
‘c’s are included in 18% of the distinct images, but the
same number of the ‘e’s are distributed over 30% of
the distinct images.
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Abstract

We describe an experiment in estimating the Bayes
error of a concrete image classification problem: a dif-
ficult, practically important, two—class character recog-
nition problem. The Bayes error gives the “intrinsic
difficulty” of the problem since it is the minimum er-
ror achievable by any classification method. Since for
many realistically complex problems, deriving this an-
alytically appears to be hopeless, we approach the task
empirically. We proceed first by expressing the prob-
lem precisely in terms of ideal prototype tmages and
an tmage defect model, and then by carrying out the
estimation on pseudorandomly simulated data. Arriv-
ing at sharp estimates seems inevitably to require both
large sample sizes — in our trial, over a mullion 1m-
ages — and careful statistical extrapolation. The study
of the data reveals many interesting statistics, which
allow the prediction of the worsi—case time/space re-
quirements for any given classifier performance, ex-
pressed as a combination of error and reject rates.

1 Introduction

The machine vision scientific and engineering com-
munities suffer, we believe, from a scarcity of perfor-
mance guarantees. By this we mean that potential
users of machine vision technology can rarely expect
definite answers, without first carrying out expensive
custom engineering trials, to questions such as the fol-
lowing.

e Can a machine be built for my problem which will
achieve accuracy X7

e Ifso, what are its runtime/memory requirements?

e What is the best accuracy possible in practice on
my problem?

e What is the best accuracy possible in principle on
my problem?

The intractability of these questions results from many
causes, including the difficulty of unambiguously spec-
ifying vision problems, the immature state of methods
for estimating the difficulty of problems, and the in-
ternal complexity of machine vision systems.

In this paper, we describe first steps towards a
methodology for answering such questions, and its ap-
plication to a concrete, realistically complex, practi-
cally important problem in character recognition. We
hope that this work lays the foundation for a method
of automatically constructing classifiers that are guar-
anteed to achieve any user—specified accuracy, lim-
ited only by the problem’s intrinsic difficulty and, of
course, the computational resources available.

2 Data Generation

We consider the problem of discriminating the
lower—case letters ‘c’ and ‘e’ in the Adobe Times—
Roman typeface. This problem is of practical interest,
difficult but not hopeless, and is not easily resolved
by geometric context [6]. A study of commercial OCR
machines [7] ranks ‘¢’—‘c’ and ‘c’—‘e’ as the 2nd and
14th most common confusions.

We define this problem precisely in terms of ideal
image artwork (Figure 1) that is degraded by a quan-
titative model of the physics of printing and imag-
ing [2] [3]. The model specifies a distribution on a
number of distortion parameters; by sampling pseudo-
randomly from this multi-variate distribution, we gen-
erate an indefinitely long sequence of distorted images.
This defect model is designed to produce shape distor-
tions similar to those occurring in real-world document
images. A rough validation of the model has been
carried out in experiments in which a page reader,
using a classifier trained only on synthetic data from



