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Abstract. A CAPTCHA which humans find to be highly legible and which is
designed to resist automatic character–segmentation attacks is described. As first
detailed in [BR05], these ‘ScatterType’ challenges are images of machine-print
text whose characters have been pseudorandomly cut into pieces which have then
been forced to drift apart. This scattering is designed to repel automatic segment-
then-recognize computer vision attacks. We report results from an analysis of data
from a human legibility trial with 57 volunteers that yielded 4275 CAPTCHA
challenges and responses. We have located an operating regime—ranges of the
parameters that control cutting and scattering—within which human legibility is
high (better than 95% correct) even though the degradations due to scattering
remain severe.

Keywords: CAPTCHAs, human interactive proofs, document image analysis, abuse
of web sites and services, human/machine discrimination, Turing tests, OCR perfor-
mance evaluation, document image degradations, legibility of text, segmentation, frag-
mentation, Gestalt perception, style-consistent recognition

1 Introduction

In 1997 Andrei Broder and his colleagues at the DEC Systems Research Center, de-
veloped a scheme to block the abusive automatic submission of URLs to the AltaVista
web-site [Bro01,LBBB01]. Their approach was to challenge a potential user to read an
image of printed text formed specially so that machine vision (OCR) systems could
not read it but humans still could. Since that time, inspired also by Alan Turing’s
1950 proposal of methods for validating claims of artificial intelligence [Tur50], many
such CAPTCHAs—Completely Automated Public Turing tests to tell Computers and
Humans Apart—have been developed, including CMU’s EZ-Gimpy [BAL00, HB01],
PARC’s PessimalPrint [CBF01] and BaffleText [CB03], Paypal’s CAPTCHA [Pay02],
Microsoft’s CAPTCHA [SSB03], and Lehigh’s ScatterType [BR05]. As discussed more
fully in [BR05], fully or partially successful attacks on some of these CAPTCHAs
have been reported. We and other CAPTCHA researchers believe that many, perhaps
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most, CAPTCHAs now in use are vulnerable to (possibly custom-tailored) prepro-
cessing that segments the words into characters, followed by off-the-shelf or slightly
customized OCR. These observations motivated us to investigate CAPTCHAs which
resist character–segmentation attacks. In [BR05] we first described the ScatterType
CAPTCHA, in which each character image is fragmented using horizontal and verti-
cal cuts, then the fragments are forced apart until it is no longer straightforward auto-
matically to reassemble them into characters. Our personal knowledge of the segment-
and-recognize capabilities of commercial OCR machines—as attested by hundreds of
failure cases discussed in [RNN99]—gives us confidence that they pose no threat to
ScatterType today or for the forseeable future. However, this is a conjecture that must
be tested (see the section on Future Work).

We do not apply image degradations such as blurring, thinning, and additive noise
(cf. [Bai02]) so that will not obscure style-specific shape minutiae in the fragments
such as stroke width, serif form, curve shape, which we speculate may account for
the remarkable human legibility of these pervasively damaged images. Experimental
data reported in [BR05] also showed that subjective ratings of difficulty were strongly
(and usefully) correlated with illegibility. Since then we have carried out a systematic
exploration of the legibility of ScatterType as a function of the generating parameters.
The principal new result is the identification of an operating regime within which human
legibility exceeds 95 per cent.

2 Synthesizing ScatterType Challenges

In this section we briefly review the generating parameters (a fuller discussion is in
[BR05]). ScatterType challenges are synthesized by pseudorandomly choosing: (a) a
text-string; (b) a typeface; and (c) cutting and scattering parameters.

The text strings were generated using the pseudorandom variable–length character
n-gram Markov model described in [CB03], and filtered using an English spelling list
to eliminate all but a few English words. In these trials, no word was ever used twice—
even with different subjects—to ensure that mere familiarity with the words would not
affect legibility. The typefaces used were twenty-one FreeType fonts.

Cutting and scattering are applied, separately to each character (more precisely,
to each character’s image within its own ’bounding box’). A scaling dimension (the
“base length”) is set equal to the height of the shortest character in the alphabet. Image
operations are performed pseudorandomly to each character separately, controlled by
the following parameters.

Cutting Fraction Each character’s bounding box image is cut into rectangular blocks
of size equal to this fraction of the base length. The resulting x & y cut fractions
are held constant across all characters in the string, but the offset locations of the
cuts are chosen randomly uniformly independently for each character.

Expansion Fraction Fragments are moved apart by this fraction of base length held
constant across all characters in the string.

Horizontal Scatter Each row of fragments (resulting from horizontal cutting) is moved
horizontally by a displacement chosen independently for each row: this displace-
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ment, expressed as a fraction of the base length, is distributed normally with a given
mean and standard error. Adjacent rows alternate left and right movements.

Vertical Scatter Each fragment within a row (resulting from vertical cutting) is moved
vertically by a displacement chosen randomly independently for each fragment: this
displacement, expressed as a fraction of the base length, is distributed normally
with a given mean and standard error. Adjacent fragments within a row alternate up
and down movements.

The resulting images are combined, governed by this final parameter:

Character Separation The images of cut-and-scattered characters are combined (by
pixel-wise Boolean OR) into a final text string image by locating them using the
original vertical coordinate of the bounding box center, but separating the boxes
horizontally by this fraction of the width of the narrower of the two adjacent char-
acters’ bounding boxes.

ScatterType Parameter Range used in Trial
Cut Fraction (both x & y) 0.25-0.40

Expansion Fraction (both x & y) 0.10-0.30
Horizontal Scatter Mean 0.0-0.40

Vertical Scatter Mean 0.0-0.20
Scatter Standard Error (both h & v) 0.50

Character Separation 0.0-0.15

Fig. 1. ScatterType parameter ranges selected for the human legibility trial.

3 Legibility Trial

Students, faculty, and staff in the Lehigh CSE Dept, and researchers at Avaya Labs Re-
search, were invited to attempt to read ScatterType challenges using ordinary browsers,
served by a PHP GUI backed by a MySQL database. A snapshot of the challenge page
is shown in Figure ??.

After reading the text and typing the text in, subjects rated the “difficulty level” from
“Easy” to “Impossible”.

4 Experimental Results

A total of 4275 ScatterType challenges were used in the human legibility trial: they
are illustrated in Figures ??-??, at three subjective levels of difficulty: “Easy,” medium
difficulty, and “Impossible.”

Human legibility—percentage of challenges correctly read—is summarized in Fig-
ure ??. Overall, human legibility averaged 53%, and exceeded 73% for the two easi-
est levels. Legibility was strongly correlated with subjective difficulty level, falling off
monotonically with increasing subjective difficulty (details in [BR05]).
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Fig. 2. An example of a ScatterType legibility trial challenge page. The Difficulty Level radio
buttons (marked ’Easy’ to ’Impossible) were colored Blue, Green, Yellow, Orange, and Red. The
text at the top of the page refers to the previously answered challenge.

Fig. 3. ScatterType challenges rated by subjects as “Easy” (difficulty level 1 out of 5). All of these
examples were read correctly: “aferatic,” “memari,” “heiwho,” “nampaign.”

Fig. 4. ScatterType challenges rated by subjects as being of medium difficulty (difficulty level 3
out of 5). Only one of these examples was read correctly (correct/attempt): “ovorch”/”overch”,
“wouwould”, “adager”/“atlager”, “weland”/”wejund”.
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Fig. 5. ScatterType challenges rated by subjects as “Impossible” (difficulty level 5 out of
5). None of these examples were read correctly (correct/attempt): “echaeva”/”acchown”,
“gealthas”/”gualing”, “beadave”/”bothere”, “engaberse”/”caquired”

Difficulty Level
ALL 1 2 3 4 5

Total challenges 4275 610 1056 1105 962 542
% correct answers 52.6 81.3 73.5 56.0 32.8 7.7

Fig. 6. Human reading performance as a function of the difficulty level that the subject selected.

5 A Highly Legible Regime

We have systematically explored the improvements in legibility that can be expected
from judicious choices of generating parameters (distributions that control cutting and
scattering). We began our project with 4275 ScatterType challenges collected in the
human legibility trial. The overall legibility of that set (the fractions of challenges read
and typed correctly) was 53%.

We used Tin Kam Ho’s Mirage (http://cm.bell-labs.com/who/tkh/mirage/index.html)
data analysis tool. For each challenge, we loaded the generation input parameters, the
typeface used, the true word, the word guessed by user, the time taken by user to enter
the guess, and the user’s rating of subjective difficulty. We examined histograms and
scatter plots (colorcoded by subjective difficulty if read correctly, with black indicat-
ing a mistake) of many single and paired features, looking for strong correlations with
either objective or subjective difficulty.

One of the first features examined was the cutting fraction (set equal in both x and
y directions), which had been coarsely discretized as either 0.25, 0.32, or 0.40. The
cutting fraction determines the size of the rectangular blocks each of the characters
bounding boxes are cut into. Therefore a smaller cutting fraction will result in more
cuts and more boxes which would seem to imply the smaller the cut fraction, the more
difficult the challenge should be to read. We created a Mirage histogram (Figure ??)
with the vertical cut fraction on the X axis: our hypothesis was confirmed since for the
three distributions of vertical cut fraction 0.25 was the only one to have more illegible
than legible samples.

We then created a scatter plot (Figure ??) with the mean horizontal scatter distance
on the x-axis and the mean vertical scatter distance on the y-axis. These features deter-
mine how far each row of fragments (as created by the cutting fraction described above)
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Fig. 7. Mirage histogram of difficulty levels (black marks mistakes) as a function of the Cut-
Fraction parameter. The value 0.25 was the only one to have more illegible than legible samples.
Black indicates a reading mistake: for legible samples, the colors red, orange, yellow, green, and
blue indicate five subjective difficulty levels from “impossible” to “easy”.
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is displaced. The overall displacement is a positive random number that is distributed
normally with a mean and standard error. In this experiment we are considering just the
means which range between 0.0 and 0.40 horizontally and 0.0 and 0.20 vertically. The
scatter plot in Mirage strongly indicates a higher concentration of legible challenges in
the lower left hand part of the graph near the origin. Without normalizing the scales, we
initially estimate best performance would result by classifying all instances within an
Euclidean distance of 0.25 from the origin as legible.

Fig. 8. Mirage scatter plot of the Mean Horizontal Scatter (X-axis) versus Mean Vertical Scatter
(Y-axis) parameters. Legible samples clustered strongly near the (0,0) origin. Black indicates a
reading mistake: for legible samples, the colors red, orange, yellow, green, and blue indicate five
subjective difficulty levels from “impossible” to “easy”.

Further exploration did not reveal any other features or pairs of features with strong
correlation (positive or negative) to legibility. Two other features that we examined
closely (though not within Mirage) are the font and character sets. As shown in an
earlier analysis [BR05], four fonts perform significantly worse than the rest, and some
characters were confused more frequently than others. The first step we took toward
locating a high-legibility regime was to limit the mean scatter distances (since those
parameters appeared to show the strongest correlation to legibility in our analysis using
Mirage). Consider parameter d, the Euclidean distance of an instance from the origin
of the scatter plot (Figure ??) of mean horizontal scatter distance versus mean vertical
scatter distance. Our initial estimate of setting d < 0.25 resulted in a 25% increase
(Figure ??), while still correctly classifying over one quarter of the challenges.
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We then removed all cut fraction values equal to 0.25 for the reasons described
above. These results, however, sharply reduced the set of challenges classified while
improving legibility only slightly (Figure ??). However the evidence of worsening per-
formance when it was equal to 0.25 convinced us to omit this value of the parameter.
Our next step was to begin removing fonts and characters that did not perform well in
the trial. However, the analysis of font pruning in [BR05] showed that removing the
four worst fonts resulted in positive but insignificant increases in performance at all
subjective difficulty levels, especially for the two easiest levels. We repeated the analy-
sis of removing fonts, in combination with the reduction of the cut fraction and scatter
distances and verified that it did not have any correlation to improving legibility (Fig-
ure ??). Thus we guessed that pruning fonts was unlikely to help. (Later, after pruning
the worst performing characters, this hunch proved correct: pruning fonts in addition
caused a loss of legibility of four per cent.)

In the preliminary analysis in [BR05], removing the five characters with the highest
”confusability”(’q’, ’c’, ’i’, ’o’, and ’u’) brought us rapidly to above 90%. Combined
with our new restrictions, we achieved a legibility close to 93% (Figure ??).

From this analysis we concluded that restricting mean scatter distances and pruning
the worst performing characters both are strongly positively correlated with legibil-
ity, while using larger cut fraction can be somewhat useful when combined with other
policies. Removing poorly performing fonts however seem to offer little benefit in in-
creasing legibility (at least in our ”simpler” parameter space).

We continued to experiment with features to see if it would be possible to drive the
legibility any higher. First we removed the next 3 worst performing characters (’z’, ’j’
and ’h’) and set d < 0.15 and removed cut fractions = 0.25 and increased legibility to
94.26% for 115 instances. Removing the next three most confused characters (’f’, ’n’
and ’l’) improved legibility to 95.00%, but for only 38 instances.

Taking another approach, we return to the original 5 characters removed and in-
stead continue to decrease the d threshold to 0.1 and manage to increase legibility even
further, and for more correctly classified instances than above, reaching legibility of
97.5

Obviously, a more systematic and careful study of the confusability of characters
is necessary to determine which have the greatest detrimental effect on legibility, but
we have shown that through removing a small subset of easily confusable characters
and manipulating the values two parameters from the original trials, legibility could be
raised with confidence to above 95%.

6 A Negative Result on Image Complexity

We also investigated one way to construct classifiers for legibility in spaces determined
by features that can be extracted from the images of the challenges after they are gen-
erated. We tested the ’Perimetric Image Complexity’ metric that has been reported to
be correlated negatively with legibility in the BaffleText trial [CB02]. But, as we will
briefly report, this image metric failed to predict illegibility of ScatterType challenges.

Perimetric Image Complexity is an easily computed feature of any bilevel (black
and white) image, as the ratio of the square of the perimeter over the black area, where
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d Cut Fraction Fonts Removed Chars Removed Legibility Correct Instances
< 0.25 0.25 - 0.40 None None 0.697 1656
< 0.20 0.25 - 0.40 None None 0.755 1309
< 0.15 0.25 - 0.40 None None 0.815 809
< 0.25 0.32 - 0.40 None None 0.715 1278
< 0.20 0.32 - 0.40 None None 0.761 1001
< 0.15 0.32 - 0.40 None None 0.814 613
< 0.25 0.32 - 0.40 4 Worst None 0.744 1074
< 0.20 0.32 - 0.40 4 Worst None 0.780 893
< 0.15 0.32 - 0.40 4 Worst None 0.813 503
< 0.25 0.32 - 0.40 None Q, C, I, O, U 0.788 305
< 0.20 0.32 - 0.40 None Q, C, I, O, U 0.840 226
< 0.15 0.32 - 0.40 None Q, C, I, O, U 0.929 143
< 0.10 0.32 - 0.40 None Q, C, I, O, U 0.975 78

Fig. 9. Parameter ranges used to locate a high-legibility regime. d = Euclidean distance of an
instance from origin of plot of mean horizontal scatter distance versus mean vertical scatter dis-
tance.

the perimeter is the length of the black/white boundary in pixels. High values correlate
positively with fragmentation. In ScatterType we observed many cases where a word
image was cut into a great number of pieces and yet remained legible. These cases were
numerous enough to vitiate the utility of this metric to predict legibility.

7 Generating New Trials

A first step toward conducting another experiment on the human legibility of these
images is to generate new trials with a parameter space constrained by our findings
from the first experiment. Words containing the five most confused characters from the
first trial were removed and the range for the cut fraction was reduced to 0.32 to 0.40.
This was done because the smaller the cut fraction, the more blocks each character is
cut into, and in the first experiments this corresponded to increasing difficulty. Also, all
parameters that had been coarsely discretized in the first experiment were now more
finely distributed (the number of levels for each parameters was increased to 100).

We first attempted to create trials of four different complexity levels, differentiated
solely by the scatter distances. This created four classes of trials, labeled as too hard,
hard, medium and easy. Upon inspecting the images generated from these parameters,
a clear, incremental increase in difficulty was obvious across all four classes, however
all of the classes seemed uniformly more difficult than anticipated. The easy class was
expected to be almost trivial to read, yet from simply looking at those trials, it was
obvious we would have to be very optimistic to expect the legibility of those trials to be
over 90

Realizing that simply limiting the scatter distances from the original experiment was
simply not enough to raise legibility as high as we hoped, we experimented with creat-
ing two more simpler classes, labeled as simple and trivial, by altering the parameters
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for expansion fraction and cut fraction. In general, the larger the cut fraction becomes,
the fewer cuts that are placed in the character, and this should typically result in more
legible images, as long as the expansion fraction is also not too large. As expected, the
resulting class labeled simple was much easier to read, primarily because of fewer cuts
being made to the character, and the class labeled trivial, was very near to the original
plain text.

8 Discussion of Sample Images

The following six images illustrate the six subranges of parameters that we chose after
analysis of the first experiment. We have named these classes “trivial” (Figure ??),
“simple” (Figure ??), easy (Figure ??), “medium hard” (Figure ??), “hard” (Figure ??)
and “too hard” (Figure ??). These names are to some extent arbitrary, but they capture
our intuition about legibility within each subrange. This is a step towards understanding
the ScatterType parameter space well enough to allow us to generate challenges in real
time possessing a specified difficulty. In the following six examples, the true word is
“telghby” and the font is Courier New Bold.

Fig. 10. A “Trivial” example, generated using a large cut fraction, a small expansion fraction, and
no overlap due to the character separation parameter. It is indeed highly legible, so much so that
some human readers might not suspect that it was a test of skill.

Fig. 11. A “Simple” example, generated with a cut fraction value that allows roughly two or three
cuts and a slightly larger expansion fraction than “trivial” cases. The characters are also slightly
less separated.

As these Figures illustrate, from case to case there is a gradual but perceptible in-
crease in difficulty of these images. One potential problem with all six of these partic-
ular examples is that it does not seem difficult to segment the characters using vertical
cuts in large white spaces: of course this could make them more vulnerable to attack,
regardless of the degradation of the individual characters.
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Fig. 12. An “Easy” example, generated with an expansion fraction greater than for “simple” cases:
but it is still easy to segment characters using vertical strokes within wide white space channels.
Note that the base of the letter ’h’ is starting to merge so that it begins to resemble the letter ’b’:
but we believe that for most readers it will be obvious that they remain distinct characters.

Fig. 13. A “Medium Hard” example, generated using nearly the same parameters as in the “easy”
cases. The principal change is an increase in the scatter distance, which in this example degrades
legibility noticeably compared to Figure ??.

Fig. 14. A “Hard” example, generated using the same parameters as “medium hard” cases, except
that scatter distance has been increased. The letter ’t’ that starts the word is now nearly obliterated.
We can still distinguish ’h’ from ’b’ but it is now difficult to tell which is which.

Fig. 15. A “Too Hard” example, generated using an even larger scatter distance than for the “hard”
cases. At this level of difficulty, words often become illegible. Note that the letter ’b’ no longer
seems to have an appropriate height.

Fig. 16. The correct word is “wexped”. This image has been generated using “easy” parameters
but it’s not highly legible. The cause appears to be small character separation, especially between
’e’,’x’ and ’p’. Without knowing the word, it seems difficult to recover the ’x’. This illustrates the
difficulty of achieving 100% legibility within the current ScatterType parameter space.
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Fig. 17. The correct word is “veral”. As in Figure ?? above, it has been scattered using “easy”
parameters, but in a different font. Despite small character separation it isn’t as difficult to seg-
ment as the prior example. This illustrates the problematic fact that font choice can dominate the
effects of the scattering parameters, and in a manner that is hard to predict.

Fig. 18. The correct word is “tpassed”. This also was generated using “easy” parameters. It’s
interesting to see two ’s’ characters treated so differently within the same word.

Fig. 19. The correct word is “spental”. This was also generated using “easy” parameters, but this
case happens to achieve the desirable characteristic of being difficult to segment into characters.
However, it is potentially ambiguous in its last three letters.

Fig. 20. The correct word is “neved”. It is generated using “easy” parameters, but characters are
easier to segment than the case in Figure ??. Note that each ’e’ is rendered quite differently, and
’n’ seems implausibly “mirrored.”

Fig. 21. The correct word is “mempear”. Generated using easy parameters, it is difficult to seg-
ment, but not because of small or negative character separation. Here, it’s due to large expansion
fraction and scatter distance operating within each character.

Fig. 22. The correct word is “wested”. Generated using “medium hard” parameters, the larger
scatter distance nearly destroys the legibility of the ’s’. Even small increases in parameters can
have large effects.



XIII

Fig. 23. The correct word is “travame”. It was generated using only “medium hard” parameters
however, due to interactions with the chosen font, it is uncommonly difficult to read (and to
segment). This is another illustration of the interactions between scatter parameters and font
which are difficult to predict and control.

Fig. 24. The correct word is “wezre”. Generated using “too hard” parameters, it is for the most
part satisfactorily illegible. However it would not perhaps be difficult to segment.

We have also selected examples that illustrate instructive and problematic aspects
of our approach: we discuss them below.

After generating 100 sample images for each class and viewing them, we are con-
vinced that it will be necessary to give more careful consideration to the role that font
choice plays in legibility. After the first experiment, we concluded that the effect that
the worst performing fonts had was greatest on those images generated with the highest
subjective difficulty and for the more legible trials, the choice of font did not play as
large a part in determining subjective difficulty. While this still appears to hold, it is not
obvious that the least confused fonts actually do enhance legibility across all classes of
parameters used, as seen in (Figure ??), where using a subjectively easy font makes a
word generated with the “too hard” parameters almost legible.

We have seen a great deal of evidence that ScatterType is capable of generating
cases where automatic segmentation into characters would be highly problematic, while
the images remain legible. This desirable property is the result of two factors: small or
negative character separation of course, but also importantly large scatter distances and
expansion fractions. By judicious choice of parameters we now believe we can generate
a high fraction of cases with this property, but we do not yet fully understand how to
guarantee it in all cases.

Fig. 25. The correct word is “thern”. Generated using “too hard” parameters, it is indeed difficult
to read, but easier than most other words generated with same parameters. Even in the more
difficult regions of the parameter space, the font chosen can make a large difference in legibility.
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9 Discussion and Future Work

A systematic analysis of the first ScatterType human legibility trial data has identified an
operating regime—a combination of restrictions placed on generating parameters and
pruning of the character set—which achieves legibility better than 95%. Within that
regime we can pseudorandomly generate many millions of distinct ScatterType chal-
lenges. But the correlation of the generating parameters with these desirable properties
is weak and we have nearly exhausted our experimental data in locating this regime.
Future work to refine the characterization of this regime must await future legibility
trials, if only to replenish the data set.

We also hope to investigate a related question: how well can we automatically select
those that are likely to possess a given subjective difficulty level?

The fact that ScatterType amplifies certain character-pair confusions and not others
in an idiosyncratic way might be exploitable. If further study reveals that the distribution
of mistakes differ between human readers and machine vision systems, we may be able
to craft policies that forgive the mistakes that humans are prone to while red-flagging
machine mistakes.

One reviewer suggested that the Gestalt laws of continuity (of, e.g., straight and
curved lines perceived as continuos inspite of breaks) may go far to explain the point of
collapse of legibility. This deserves careful analysis.

Another reviewer suggested that since certain characters (e.g. ’c’, ’e’, and ’o’) are
more vulnerable to ScatterType degradations, they should be generated with restricted
range of parameters. This technique might alleviate the problem of generating a suffi-
cient number of nonsense words within a pruned alphabet.

Of course every CAPTCHA including ScatterType must be tested systematically
using the best available OCR engines, and should be offered to the research community
for attack by experimental machine vision methods.
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