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Abstract

We describe the results of large-scale experiments with
algorithms for unsupervised improvement of recognition of
book-images using fully automatic mutual-entropy-based
model adaptation. Each experiment is initialized with an
imperfect iconic model derived from errorful OCR results,
and a more or less perfect linguistic model, after which
our fully automatic adaptation algorithm corrects the iconic
model to achieve improved accuracy, guided only by evi-
dence within the test set. Mutual-entropy scores measure
disagreements between the two models and identify can-
didates for iconic model correction. Previously published
experiments have shown that word error rates fall mono-
tonically with passage length. Here we show similar results
for character error rates extending over far longer passages
up to fifty pages in length: we observed error rates were
driven from 25% down to 1.9%. We present new experimen-
tal results to support the motivating principle of our strat-
egy: that error rates and mutual-entropy scores are strongly
correlated. Also, we discuss theoretical, algorithmic, and
methodological challenges that we have encountered as we
scale up experiments towards complete books.1
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1. Introduction

We are investigating fully automatic methods for whole-book
recognition. In [11] we introduced an information-theoretic frame-
work for identifying significant disagreements between models—
the iconic model and thelinguistic model—and interpreting these
as candidates for corrections of one or the other of the two models

1Published inProceedings, IAPR 10th Int’l Conf. on Document Analy-
sis and Recognition (ICDAR2009), Barcelona, Spain, July 26-29, 2009.

so that, when the updated models are reapplied to perform recog-
nition, a lower error rate on the entire passage results.

Our research builds on over a decades’ work showing
that adaptive classifiers can improve accuracy without human
intervention[7]. Tao Hong[4] showed that within a book, strong
“visual” (image-based, iconic) consistency-constraints support au-
tomatic post-processing that reduces error. These successes ap-
pear, to us, to be due largely toisogeny— the tendency of par-
ticular documents to contain only a small subset of all the type-
faces, languages, image qualities, and other variabilities that oc-
cur in large collections[9]. It is well known that if models of the
typefaces, languages, etc were known, even if only approximately,
optimizing recognition jointly across all the models improves the
accuracy[1, 6, 8].

In a long, highly isogenous book, identical (or similar) char-
acter images will occur multiple times, and the same word will
also occur multiple times, independently. If the models are inac-
curate, the resulting errors cause repeated disagreements between
the models, which can be measured at character, word, and pas-
sage scales. Correct model adaptation, which leads to a better ac-
curacy, will presumably also lower passage-scale model disagree-
ment. Therefore passage-scale mutual entropy can drive model
correction and reduce error rates.

In [11], a small-scale experiment, on a single textline, using
an adaptation algorithm we now call ME1.0, illustrated policies
that allowed automatic corrections to be made to both models, and
showed empirically that both character error-rates and word-error
rates could fall as a result. In [10], using an improved algorithm
(ME2.0) which copes with segmentation errors and runs faster, we
experimented on passages up to ten pages in length, and observed
that the word recognition rate for longer words increased signifi-
cantly as passage length increased.

In this paper, we report experiments scaled up to fifty pages
in length, and we focus our attention on iconic-model corrections.
We have observed character error rates falling as a function of pas-
sage length, from an initial 25%, down to 1.9% on a passage of
fifty pages. We report compelling evidence of strong correlation
between word error rate and passage-scale mutual entropy, validat-
ing a key premise of our strategy. We have measured the effects of
varying the number of prototype images per character class in the



iconic model, and two or three perform better than one. We also
describe a successful randomization strategy for coping with the
computational complexity challenge of long passages.

In Section 2, we introduce the mathematical framework of our
approach. In Section 3, we motivate the design of the present ex-
periments and give details of the algorithmic enhancements tested.
In Section 4, we present and analyze the results of the experiments.
In Section 5, we discuss the results and draw conclusions. In Sec-
tion 6, we list future algorithmic enhancements and experiments.

2. Mathematical Framework

2.1. Probabilistic Models

In our framework, two different kinds of models are required:
an iconic model and a linguistic model. The iconic model, when
applied to recognition, must allow the computation ofa posteri-
ori probabilities for all the character classes. (Of course, many
such models are known [2]; we use Hamming-distance matching
to multiple character image templates.) For a linguistic model, we
expect to be given a lexicon (a dictionary containing valid words).
The lexicon should cover most valid words, but may be incom-
plete; we also expect probabilities to be assigned to each word in
the lexicon.

2.2. Independence Assumptions and Word
Recognition

Now let X denote a sequence ofT observations of character
images (i.e. a word that isT characters long), and letS denote the
true classes of these characters (in communication-theory terms, it
is the inner state sequence that generatesX):

X = (x1, x2, · · · , xT ) , S = (s1, s2, · · · , sT ) (1)

wherexi are character images, andsj are symbols of an alphabet.
We adopt the following independence assumption, that eachxi is
solely determined by its associatedsi:

P (xi|si,F) = P (xi|si) (2)

WhereF = (Y, K) , Y ⊆ X − {xi} andK ⊆ S − {si}. This
assumption is similar to the one chosen by Kopec and Chou in
their Document Image Decoding theory[5].

Our linguistic modelis P (S), the prior probability that wordS
is valid. Our independence assumption implies that

P (X|S) =

T
Y

i=1

P (xi|si) (3)

And

P (x1, x2, · · · , xT ) = α ·

T
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Our iconic modelis denoted by the functionP (s|x) for all
symbolss and all character imagesx. So we can deriveP (S|X),
the result of word recognition informed by both the iconic and lin-
guistic models:

P (S|X) =
1

α
·

T
Y

i=1

P (si|xi) ·
P (S)

T
Y

i=1

P (si)

(6)

2.3. Mutual Entropy Measurements On
Word Recognition

Themutual entropyM(P, P ′) between two distributionP and
P ′ is defined as:

M(P, P ′) = −
X

P · log P ′ (7)

and we apply it to measure the difference or “disagreement” be-
tween the distributionsP (S|X) and P ′(S|X), whereP (S|X)
is thea posteriorprobability distribution of the character stringS
given the image of the whole wordX, andP

′

(S|X) = P (s1|x1)·
P (s2|x2) · · · · ·P (sT |xT ) is the distribution of the character string
assuming that there is no linguistic constraints or the distributions
of individual characters are independent of one another.

A property of mutual entropy which is critically important to us
is that the more the distributionsP andP ′ differ from one another,
the greaterM(P, P ′) will be. Also, M can be further decom-
posed into per-character disagreement measurements as follows:

M =

T
X

i=1

M (si|X, si|xi) (8)

where

M (si|X, si|xi) = −
X

si

P (si|X) log P (si|xi) (9)

This measures disagreement on anindividual character imagexi:
that is, the disagreement between two probability distributions on
character classes: (1) the distribution resulting from application of
the iconic model alone, and (2) the distribution resulting from the
application of both the iconic and liguistic models. Thus we call
this character-scalemutual entropy.

And P (si|X) is the projection probability ofP (S|X) onto a
particular element of a field:P (si|X) =

P

sj ,j 6=i
P (S|X). If the

iconic output “agrees” with the linguistic model, the two distribu-
tions should be close to one another, resulting in a smallerM. If
classification based on the iconic model yields the correct word
interpretation but there is no corresponding word entry in the dic-
tionary, then the disagreement between the two models should be
high, which results in a high value ofM for that word. As a result,
mutual entropy measures the disagreement between the iconic and
linguistic models.

The disagreement for one character can be interpreted as a mea-
sure of the urgency of changing one model or the other. In order
to change the iconic model, we can modify theP (si|xi) for that



character’s image: one way of doing this is to swap in a new char-
acter template image. In order to change the linguistic model, we
can modify theP (S) for some word ’S’: one (crude) way to do
this is to delete or insert words from the dictionary.

As a result, we have three different kinds of measurements:

1. The character-scale mutual entropyM (si|X, si|xi): this
measures the model disagreements in regard to a specific
character. It can indicate the urgency of changing the iconic
model for that character.

2. Theword-scale mutual entropyM measures the model dis-
agreements in regard to a particular word. It can indicate the
urgency of changing the linguistic model for that word.

3. The passage-scale mutual entropy
P

M: this measures
the overall disagreements of the iconic model and linguis-
tic model . We choose to use this as the objective function to
drive improvements of both models.

So far, we’ve defined different measurements that operate at
three different scales: character-scale, word-scale, and passage-
scale. Do they have any relationship to the recognition rate?
We conjecture that passage-scale mutual-entropy is strongly nega-
tively correlated with recognition rate. Our strategy is to minimize
these disagreements through a process of model adaptation: that
is, applying a sequence of corrections to both models.

3. Experimental Design

The principal goals of the work reported here are to test the per-
formance of the ME2.0 algorithm on long passages, and to charac-
terize the efficacy of two algorithmic enhancements: (1) speeding-
up by randomization of a potentially expensive inner-loop compu-
tation that decides when to accept an adaptation; and (2) allowing
each character code to possess more than two prototype templates
in the iconic model.

In the experiment reported here (using ME2.0), model adapta-
tion proceeds by a sequence ofepochs. In one epoch, every word
in the passage is examined: its top-choice word interpretation (re-
sulting from the current models) assigns a character class label
si to each characterxi in the word. Among these, the algorithm
chooses the pair(x∗, s∗) with the highest character-scale disagree-
ment within the word, then attempts to adapt the iconic model for
character classs∗ by picking one of its templates at random and
replacing it withx∗. This attempted adaptation is evaluated, and
may be accepted as acorrection. or undone and discarded.

Thus the total number of adaptations attempted in an epoch
equals the number of words in the passage, and is in general larger
than the number of corrections accepted. Evaluating an attempted
adaptation is accomplished, within our theoretical framework, by
recomputing the passage-scale mutual entropy due to the adapta-
tion: if it decreases, the adaptation is accepted. However, if this
recomputation is performed in a brute-force manner, it will take
time proportional to the passage length; and the number of words
is also proportional to passage length; so each epoch would in time
quadratic in the passage length.

This motivates our randomization enhancement: instead of re-
computing passage-scale mutual entropy onall words in the pas-
sage, we choose a certain fraction of the words at random, and
estimate the change on them.

Figure 1. A sample textual image used in the
experiments

In these experiments, we use page images plus an imper-
fect OCR transcript for one of the books (“Popular tales of the
west highlands”) provided in the publically released Google Book
Search Dataset [3](an example image is shown in Figure 1). In
this book, each page contains roughly 350 words, and we use up
to 50 pages on the experiments in this paper. We used this OCR
transcript to perform word segmentation alignment, and we proof-
read the transcript and the alignment manually. We are grateful to
Prof. Cheng and his students in the Beijing Information Science
and Technology University for assistance in ground-truthing.

We initialized the iconic model from a short passage, yielding
a low inital accuracy of sixty percent words correct and fifty-five
percent characters correct. The linguistic model was initialized
with the 4562 words occurring in 50 pages’ groundtruth: thus it
is a “perfect lexicon” for the 50 pages, and a superset for smaller
passage lengths. (This contrasts with our previous papers, where
the linguistic model was initialized from a public-domain dictio-
nary containing around 50,000 words which did not fully cover the
test set.) The joint recognition results from these initialized mod-
els yielded an approximately 25% character error rate: this is the
“initial error rate” to which we compare our adaptation results.

4. Experimental Results

The principal experimental result is that character error rate
falls as a function of the length of the passage operated upon by
our adaptation algorithm. In Figure 2 the initial character error
rate of 25% is shown as circles (o), and the average final character
error rate, after adaptation over three epochs, is shown as stars (*).
The horizontal axis (passage length in pages) and the vertical axis
(character error rate) are displayed in log scale. Character error
rates are measured on the word recognition result given by Equa-
tion 6. Passage lengths include 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16,
25 and 50 separately. The 50-page result was computed in a sin-
gle experiment; the others, form < 50 pages, were computed as
averages over⌊ 50/m ⌋ experiments on nonoverlapping subsets of
pages. In every case, the final error rate was smaller than the initial
error rate, and error rates fall almost monoonically as a function of
passage length.

We plot the results of linear regression in log-log scale: the
cross-correlation coefficient was−0.95, which indicates a strong
negative linear relationship. The residuals suggest that the fall in
error rate is still strongly marked up to about ten pages, and it
continues to fall significantly up to twenty-five pages. It is hard
to project these data beyond fifty pages, but further statistically
significant improvement does not seem to be ruled out.



Figure 2. Character error rate (%) decreases
as a function of passage length (in pages).
Stars(*) indicate average character error
rates after three epochs of the model adap-
tation algorithm, and circles(o) indicate the
initial error rate before adaptation. Both axes
are displayed in log-scale. The straight line is
a plot of a linear regression for the star data
points.

The next experimental result illuminates the efficacy of allow-
ing more than two prototype templates for each character class in
the iconic model. The motive of this new policy is that we expect
that a larger number of prototype templates may be needed to rep-
resent variations within long passages. We designed experriments
to study the relationship between the number of templates per class
and the accuracy of adaptation. We choose a set of eight pages for
these experiments, one for each number of templates from one to
ten. In each experiment, we ran as many epochs are were needed
for the character error rate to stabilize. The results are plotted in
Figure 3 (note: the data point for templates=9 is missing). These
data suggest that, for a passage length of eight pages, the number
of prototype templates per character class should be expanded to
three at least. Not shown in this figure are our observations that the
number of epochs required for convergence increased as a function
of the number of templates. So although it appears to be safe to al-
low more than three templates, this may increase runtime required
for best results.

The present implementation of ME2.0 has a runtime quadratic
in passage length: it goes through the passage word-by-word to
examine the potential iconic correction within each word; and it
computes the passage level mutual entropy after each suggested
correction to judge whether to adopt it. We have tested a ran-
domization technique to reduce computation complexity: instead
of computing passage-scale mutual entropy on the entire passage,
this randomly selects words from within the entire passage with a
given sampling factor, and estimates the change in passage-scale
mutual entropy to judge whether to adopt a correction. Figure 4
shows that with a sampling rate of12.43%, the error rate of the
result rises by only one percent over the optimal (achieved by the

Figure 3. Character error rate (%) as a func-
tion of the number of prototype templates
used to represent a single character class in
the iconic model. Computed on a passage
of eight pages with a randomization factor of
0.125. Adaptation was allowed to iterate until
error rates stabilized.

Figure 4. Character error rate (%) as a func-
tion of the random sampling factor used to
accept adaptations. A randomization factor
of 0.124 gives a speed-up of a factor of 8,
while achieving an error rate within one per
cent of not randomizing at all.



Figure 5. The relationship between the falling
passage-scale mutual entropy and the in-
creasing trend of the word accuracy. The
straight line is a plot of a linear regression
for the data points.

brute force algorithm) but the algorithm speeds up by a factor of
8.

We have observed a strong relationship between the final ac-
curacy and the passage-length mutual entropy, as shown in Fig-
ure 5. From the curve, we can tell that decreasing passage mu-
tual entropy correlates strongly to increasing word accuracy. Thus
we feel more confident that the fundamental technical principle of
our approach—that mutual entropy tracks accuracy—continues to
hold.

5. Discussion and Conclusions

The often nearly monotonic improvement of word and charac-
ter accuracy as passage-length increases remains highly encourag-
ing. The enhancement to randomize the passage to evaluating the
change of the mutual entropy suggests the algorithm can tackle a
scale of experiment much larger than 50 pages this paper has ex-
perimented on. (We did not use the randomization technique in all
experiments in Figure 2.) The enhancement to the iconic model
allowing more than two templates per character is clearly valu-
able; at the present scale of experiments the sufficient number of
templates appears to be three. And the seemingly low asymptote
in Figure 3 suggests that it is safe to increase the template upper
limit to cope with the arising complexity of the sample set when
we scale up the experiment. The accumulation of new evidence
continues to support our working hypothesis that passage-scale
mutual entropy is strongly negatively correlated with accuracy.

6. Future Work

The most urgent questions concern how well the algorithms,
with its various enhancements, will perform as the experiments
scale up to approach passages that embrace entire books. The ef-

ficacy of randomization of the estimation of passage-scale mutual
entropy promises that there are no insurmountable runtime obsta-
cles to scaling-up to hundreds of pages. Also, the evidence sug-
gests that accuracies with continue to rise, and we do not yet see
clear evidence of a low asymptote. As passage length increases,
we may find that the optimal number of templates per character
class may grow beyond three. Policies for applying corrections to
the iconic model have several interesting variations including re-
placing the template which most mismatches the current character.
to achieve significant scale-ups.
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