gw g EW dgoued Lf
Sarg AT 2ol 29 Bl
Slol L EEAE 5 S HE EA
leﬂg.oﬂeglgly\fx]z}xloq&;df‘
ﬂﬂi%ﬂaﬂﬂﬁgﬁﬁmm¢
SxEe cHUa . 3 e
7Y gctuggn 3
PO Hapode cda
= Z 1A cTFEFZEcigegy
2TEe TeEEXN 8 pE
dodiy Taps gEasly
olMTIE woifk .z oorif¥
_x Ay AFetdtan
ETsm e sgSinde
geza muds Catexz
E€0 I CAY Rudsivw

0° 90°

Figure 3: Left: second block from bottom on right side of Figure 2. Center: minimum spanning tree connecting centers of components.
Right: Energy in coarse histogram of MST edge orientations - 90% of energy is near 90°.

5 Orientation of Text Lines in a Block

After block segmentation, text-line orientation is inferred for
each block separately. Our algorithm [8] relies on the universal
convention that characters are printed more tightly within a
text line than between text lines.

Given the black components in the block, we proceed to (1)
set aside very small and very large components, (2) idealize the
remaining components as points, (3) construct the minimum
spanning tree (MST) of the undirected graph defined by con-
necting all pairs of points, (4) analyze the distribution of MST
edges to decide horizontal, vertical, or possibly uncertain.

The centers of bounding boxes of components surviving the
size filter become the vertices in a fully-connected undirected
graph. Fortunately, all its edges need not be explicitly con-
structed, since we can first compute the Delaunay triangulation
of the vertices, which is a planar graph containing the MST. The
Delaunay triangulation can be computedin O(nlogn) time, and
the MST can be extracted from it in time O(n), where n is the
number of vertices (components).

Most edges of the MST lie within, rather than between, text
lines. We thus analyze a histogram of edges’ orientations: if the
mode of the histogram is near 0°, then we decide that the text
is horizontally oriented, and of course a mode near 90° implies
a vertical orientation.

In trials on over 100 pages representing a dozen writing sys-
tems, the algorithm inferred the correct orientation in 99% of
text blocks; mistakes can occur on noise and tabular data. Run-
time averaged 0.1 CPU s, with a maximum of 0.5 s.

Figure 3 shows the algorithm running on a block of Ko-
rean text. Korean is the most challenging, for this task, of the
writing systems that we have experimented with, due to spe-
cial properties of its Hangul symbol set. Hangul has 24 letters
which are combined in a two-dimensional fashion to form com-
posite syllabic symbols. Individual letters in a syllable are often
disconnected. Furthermore, words are short and so there are,
compared to other writing systems, a relatively large number of
inter-word gaps, many of which are as large as inter-line gaps. In
spite of these difficulties, we have been able to tune the heuristic
to perform reliably on Hangul.

6 Isolating Text Lines in a Block

We next segment an isolated skew- and shear- corrected
block of known orientation into text lines. An early version
of the method, developed on the Latin alphabet, is described
in [2]. We will describe it operating on horizontally oriented
blocks; on vertical blocks, we have implemented an analogous
method, rotated 90°. We first compute the horizontal projec-
tion, P, defined over the height of the block. In many published
projection methods, P; is the number of black pixels at height ¢,
but we project components abstracted as rectangular boxes of
the same center and area, slightly (X0.75) shrunken in height.

This reduces sensitivity to writing-system-dependent details of
symbol shape. Some prior methods apparently depend on the
existence of gaps of white space between lines and can fail due
to tight spacing, frequent diacritical marks, or small defects in
the image. We have largely, but not entirely, overcome such
difficulties by applying digital signal processing to P.

First we estimate the dominant line-spacing: D is the local
derivative of P, which is companded by taking square roots.
The autocorrelation A of D is then computed; the local maxima
in A are multiplied by an exponentially-decaying factor. The
surviving maxima sqy¢ is chosen as the dominant line-spacing.
This complex heuristicis motivated by the great diversity of text
profiles we have encountered: derivativesincrease the sensitivity
of the autocorrelation on short lines, companding moderates the
effect of variance in line length, and decay suppresses higher-
order harmonics resulting from missing lines.

S is then produced from P by convolving with a Gaussian
kernel of standard-error squ:/8.0. W is then produced by sup-
pressing in S local non-maxima. Non-zero values of W almost
always lie near the centers of maximum density of text lines,
one per line. The last step is to partition the block’s height.
For this the original profile P is used: within each gap between
adjacent pairs of line-centers, we find minima in the moving av-
erage function of P using a window 1/10 the gap height. These
minima partition the block into text lines. Figure 4 illustrates
the method on Thai text.

FEach component, including those set aside earlier, is assigned
to the text-line region in which the majority of its area lies. The
line’s connected components are sorted according to the reading
order of the language. Components which overlap (in vertical
projection) by more than 0.7 of the width of either are combined
into a single symbol.

This method required 1.3 CPU s on the image of Figure 4,
most of which is consumed in autocorrelation and smoothing.
The method is reliable on most writing systems when the ra-
tio of maximum to minimum text sizes within a block is < 3.
Mistakes typically occur in four ways: (a) diacrits may be split
into a separate line or assigned to the wrong line; (b) short lines
sandwiched between two long lines of the same text size may
merge with one of them; (c) short lines of large text close to a
block of smaller text may be fragmented; and (d) lines of small
text embedded in a block of larger text may be merged. Mistake
(a) is most pronounced on Thai text, which is heavily diacrited
both above and below, and uses double-height diacrits.

Digital signal processing, although often complex and heuris-
tic in practice, still seems to us the best broadly writing-system-
independent method of attack on the text-line segmentation
problem.



