
Distinguishing Mathematics Notation from
English Text using Computational Geometry

Derek M. Drake
Lehigh University, CSE Dept.
Bethlehem, PA 18015 USA
dmd7@lehigh.edu

Henry S. Baird
Lehigh University, CSE Dept.
Bethlehem, PA 18015 USA
baird@cse.lehigh.edu

Abstract

A trainable method for distinguishing between mathe-
matics notation and natural language (here, English) in
images of textlines, using computational geometry meth-
ods only with no assistance from symbol recognition, is de-
scribed. The input to our method is a “neighbor graph”
extracted from a bilevel image of an isolated textline by the
method of Kise [8]: this is a pruned form of Delaunay tri-
angulation of the set of locations of black connected com-
ponents. Our method first attempts to classify each vertex
and, separately, each edge of the neighbor graph as belong-
ing to math or English; then these results are combined to
yield a classification of the entire textline. All three clas-
sifiers are automatically trainable. Features for the ver-
tex and edge classifiers were selected semi-manually from
a large number in a process driven by training data: this
stage is potentially fully automatable. In experiments on
images scanned from books and images generated synthet-
ically, this methodology converged in three iterations to a
textline classifier with an error rate of less than one per-
cent.

1 Introduction

The capability of distinguishing between different types
of content within a page image can improve the perfor-
mance of document analysis systems. In today’s commer-
cial OCR machines, recognition of mathematical notation
remains far inferior to recognition of natural language text.
In applications where mathematical content is important, it
is perhaps better to identify it, isolate it, and protect it from
the blundering attentions of the text recognition subsystem.
Labeled math subimages could then be presented to readers

0Accepted for publication in Proc., IAPR 8th Int’l Conf. on Document
Analysis and Recognition, Seoul, Korea, August 29 – September 1, 2005.
[in press]

and browsers of the OCR results as collections of images
uncorrupted by OCR errors, for example in “visual math
indexes” to assist fast search. Also, since several experi-
mental systems exist to recognize mathematics [10, 5, 3]
which run independently of commercial OCR machines, au-
tomatic isolation of math images could allow them to be ap-
plied selectively where they are most likely to succeed. The
Infty system [12] is an example of such an integration.

Mathematics notation is often largely—though seldom
entirely—independent of the natural language of the sur-
rounding text, and so there may be important uses for a
“language-free” mathematics recognition system applicable
independently of any language-specific OCR system.

For these reasons, we suggest that it is interesting to in-
vestigate techniques for identifying mathematics notation
automatically within document images that can easily be
extended to work well within a wide variety of natural lan-
guages. This paper reports a step towards this capability:
although we report tests only on English language docu-
ments, our methodology has been designed to admit easy
extension to other languages in three ways:

1. it does not depend on any symbol classifier;

2. it does not depend on prior knowledge of character
font, size, or spacing; and

3. it is largely automatically trainable (in particular, it
does not rely on any handcoded special case analysis).

The promise of this approach is illustrated by the fact in
only three iterations of the methodology—refining the fea-
ture set each time—we arrived at a classifier that discrimi-
nated between math and textline-images with an error rate
of less than one percent.

2 Prior Work

Pioneering methods for recognizing math and text, by
Okamoto [10], performed this separation by hand. Later

1



methods, investigated by Fateman [5], consisted of sepa-
rating black connected components into two tentatively la-
beled math/text classes: heuristics assign classes initially
and then iterate. This method works with both inline and
display math but tends to have trouble with italics and num-
bers, wrongly assigning them to the math class. Both of
these methods depend on recognizers for every character
and symbol that can occur. Choudhury et al [3] extracted
both inline and display math using spatial layout cues (in-
dentation, centering, etc) plus recognition of a dozen or so
special symbols: this paper also gives a valuable survey of
other related prior work, which will not repeat here for lack
of space.

After studying these methods we remained unconvinced
that reliance on symbol recognition is necessary or desir-
able. We observed that mathematics, compared to text,
tends to contain characters of more variable sizes, more
characters that are positioned diagonally and vertically rel-
ative to adjacent characters, and more variable spacing. We
conjectured that these peculiar spatial properties might be
sufficient cues in the vast majority of cases. We have been
influenced in this belief by the success of computational ge-
ometry methods [1, 6, 11] on a wide variety of page lay-
out analysis tasks. Kise et al’s trailblazing studies [7, 8]
proved that an analysis of Delaunay triangulations—and
a pruned version of them called “neighbor graphs” (more
on this below)—of the locations of black connected com-
ponents supports accurate and versatile segmentation into
textblocks and textlines. Lu et al [9] use a similar method
using features from the neighbor graph for grouping words.

3 Development of the Math/Text Classifier

We began with existing code, kindly provided by Pro-
fessor Koichi Kise of Osaka Prefecture University for the
algorithms of [7, 8]. Due to lack of space we must refer
the reader to his papers for a complete tutorial introduction
to the following sketch. Briefly, Kise’s algorithms operate
on bilevel (black & white) images of documents, extract-
ing from it a set of black connected components (which we
will call ‘bcc’s hereafter). An example of such an image is
shown in Figure 1. For this set of bcc’s, Kise computes a
variant of the Delauney triangulation where, in an impor-
tant innovation, he uses “area” sites where each area con-
sists of the set of black pixels of one bcc, instead of point
sites as is usual in the computational geometry literature.
Each ‘node’ in his triangulation represents a single bcc and
every bcc is represented by a node. ‘Edges’ in the triangu-
lation connect two neighboring nodes and therefore capture
information about the local relative arrangement of nearby
bccs. The triangulation is pruned of redundant edges, giv-
ing what Kise calls the “neighbor graph.” An example of a
neighbor graph, corresponding to the image in Figure 1, is

Figure 1. Example of a Bilevel Image of a Math
Textline. Note that each character is gener-
ally, but not always, a separate black con-
nected component.

Figure 2. Example of Kise’s Neighbor Graph
of a Math Textline Image. The graph is drawn
over the math textline image. Note that each
edge of the graph connects two neighboring
black connected components.

shown in Figure 2. Both Kise’s neighbor graphs and stan-
dard point-site Delauney triangulations possess a property
that is critically important for our purpose: they are invari-
ant under similarity transformation (translation, scale, and
rotation). Thus they do not require prior knowledge of dig-
itizing resolution (spatial sampling rate), type size, position
on the page, and skew angle.

We made a few minor modifications to Kise’s code:

• we selected a runtime option that includes all small
bcc’s (the code ignores small bcc’s by default);

• we allowed textlines to be arbitrary trees instead of
near-linear paths; and

• we modified Kise’s ‘line extractor’ program to write
feature vectors for edges and nodes of the neighbor
graph.

We extracted features directly from the edges and nodes
of the neighbor graph. These features were chosen to cap-
ture information about spatial arrangements, especially lo-
cal relative location, of bcc’s. Note that many of these fea-
tures are sensitive to changes in skew angle (it would be
possible in principle to moderate this sensitivity by express-
ing edges’ orientation relative to the overall textline orien-
tation).

For each edge, we computed 29 binary-valued (boolean)
features:

2



1. Feature 1: Shadowing bit – do the two bcc’s connected
by this edge ‘shadow’ each other (overlap when pro-
jected horizontally)?

2. Features 2–9 (mutually exclusive): Angle classifica-
tion – bit 2 is set if angle between the two bcc’s (bcc1
& bcc2) is in range [−90,−77.5), bit 3 if in range
[−77.5,−55),. . . , bit 9 if ≥77.5.

3. 10–19 (mutually exclusive): Area ratio =
min(area(bcc1),area(bcc2))
max(area(bcc1),area(bcc2)) , bit 10 is set if area ratio is
in range [0.0, 0.1), bit 11 set if in range [0.1, 0.2),. . . ,
bit 19 set if ≥0.9.

4. 20–29 (mutually exclusive): Diameter ratio =
min(diameter cc1,diameter cc2)

max(diameter(bcc1),diameter(bcc2)) , bit 20 set if ratio in range
[0.0, 0.1), ..., bit 29 set if ≥0.9.

For each node, we computed 77 binary features:

1. 1–13 (mutually exclusive): Aspect Ratio = width
height , Bit 1

is set if ratio in range [0.0, 0.25),. . . , bit 13 is set if ≥
3.0.

2. 14–33 (mutually exclusive): Diameter and Area Ratio
= diameter

area . Bit 14 is set if ratio in range [0.0, 0.05),. . . ,
bit 33 set if ratio ≥ 0.95.

3. 34–44 (mutually exclusive): Fanup = number of nodes
to which this node has an edge to that has an angle in
the range [45.0, 135]. Bit 34 is set if 0,. . . , bit 44 is set
if ≥ 10.

4. 45–55 (mutually exclusive): Fandown = number of
nodes to which this node has an edge to that has an
angle in the range [225.0, 315.0]. Bit 45 is set if 0,. . . ,
bit 55 is set if ≥ 10.

5. 56–66 (mutually exclusive): Fanright = number of
nodes to which this node has an edge to that has an
angle in the range [315.0, 45.0]. Bit 56 is set if 0,. . . ,
bit 66 is set if ≥ 10.

6. 67–77 (mutually exclusive): Fanleft = number of
nodes to which this node has an edge to that has an
angle in the range [135.0, 225.0]. Bit 67 is set if 0,. . . ,
bit 77 is set if ≥ 10.

We then trained three classifiers: for edges, nodes, and
textlines. Both the node and edge classifiers are quadratic
classifiers, while the textline classifier is a simple threshold-
ing classifier. Quadratic features are obtained by Boolean
ANDing every pair of binary features. After making the
standard assumptions that features are class conditionally
independent and that class priors are equally probable, we
arrive at the following textbook [4] quadratic classifier:

��������
��	�


��
��� ���������
�� 	 ������� �"!$# �%� �'&(

Figure 3. Sample Math Textline

)+*-,/.10-2436587-9;:=<?>A@B:DC8@B,FEGE�2G>IHJ*K,/9J2 L",F9+M�@NHJ,F9?,FM=H;2G>KOPHJ:Q:PRS0K36*UTVH;,FM"5%W
Figure 4. Sample Text Textline

Let g(x) be a discriminant function for either a node or
an edge, and let pij = P (xi = 1, xj = 1|math) and qij =
P (xi = 1, xj = 1|text). Then

g(x) =

d
∑

j=1

d
∑

k=j+1

ln

(

pjk(1 − qjk)

qjk(1 − pjk)

)

xjxk+

d
∑

k=1

ln

(

1 − pk

1 − qk

)

where d is the dimensionality of the feature vector x. We
decide ‘math’ if g(x) > 0 and ‘text’ otherwise.

The textline classifier is constructed as follows. First,
the training set is read in and used to train the classifiers
to calculate decision boundaries and estimate class condi-
tional probabilities. Then, the nodes and edges correspond-
ing to a textline are read in and each node and edge is classi-
fied as either math or text. The classifiers are combined by
thresholding their results and deciding the type of textline
by choosing ‘math’ if the sum of math nodes and math
edges is larger than the sum of text nodes and text edges,
and deciding ‘text’ otherwise

4 Experimental Results

The input to both training and testing phases were im-
ages of isolated textlines which we cut out of page images
manually, or synthesized in isolation using LATEX. We first
trained and tested the edge and node classifiers on the data
set described in Table 1. An example of the math and text
textlines used is given in Figures 3 and 4.

Tables 2 and 3 show the node and edge classifier’s confu-
sion matrices on the training set and Tables 4 and 5 show the
confusion matrices for the test set. Tables 6 and 7 show the
thresholding classifier’s confusion matrices. Finally, Table
8 summarizes the combination of the three classifiers and
their error rates. More extensive data testing will be needed
to determine if these error rates will generalize.

From Table 8, we can see that even though each of the in-
dividual classifiers had relatively poor classification power,
the combined thresholding classifier was able to take ad-
vantage of the uncorrelated errors of each and thus provide
much higher classification power.

In Figure 5 we show the three misclassified textlines with
their neighbor graph edges drawn over them. The failures

3



Data Set: Training Testing
Component Type

Math Edges 3827 4005
Text Edges 5531 5317
Math Nodes 2273 2269
Text Nodes 5000 4803

Math Textlines 68 68
Text Textlines 64 64

Table 1. Total Edge and Node counts and Total
Textline counts for Training and Testing Data
Sets

Classified as: Math Text
True class

Math 1986 287
Text 363 4637

Table 2. Training Set Node Confusion Matrix

Classified as: Math Text
True class

Math 2668 1159
Text 1121 4410

Table 3. Training Set Edge Confusion Matrix

Classified as: Math Text
True class

Math 2007 262
Text 359 4444

Table 4. Testing Set Node Confusion Matrix

Classified as: Math Text
True class

Math 2902 1103
Text 1094 4223

Table 5. Testing Set Edge Confusion Matrix

Classified as: Math Text
True class

Math 66 2
Text 0 64

Table 6. Training Set Textline Confusion Ma-
trix

Classified as: Math Text
True class

Math 67 1
Text 0 64

Table 7. Testing Set Textline Confusion Matrix

Data Set: Training Testing
Component Type

Math Textlines 0.029 0.015
Text Textlines 0.000 0.000

Textlines Overall 0.015 0.008

Table 8. Textline Error Rates

apparently occurred because all three are largely horizontal
text with very few transitions above and below the textline.
That we make fewer errors on the training set than on the
test set is perhaps an artifact of the small sample size.

The CPU runtime required for classification is modest.
On a SunBlade 150 (UltrasSparc IIe) 650 MHz machine,
classifiying a test image of textline required 0.075 CPU
seconds on average. The code has not been optimized for
speed. The asymptotic runtime requiremenats are also low:
to build the neighbor graph approximately O(nlogn) where
n is the no. of bcc’s and of course constant time per edge
and per vertex to classify.

5 Conclusions & Future Work

In the test on 132 images of math and text lines, only one
error was seen, for an error rate less than 0.76%; at 95% sta-
tistical confidence, this implies an error rate less than 3%.
Computational geometry analysis of page layout thus ap-
pears to be a promising way to discriminate between math-
ematics notation and natural language text within images of
textlines.

Although so far we have tested only English-language
documents, we anticipate that our methodology will admit
easy extension to other languages, due to these three prop-
erties:

1. it does not depend on any symbol classifier;

2. it does not rely on prior knowledge of font, size, or
spacing; and

3. it is largely automatically trainable.

It may be possible to correct many of the mistakes we
have seen by adding a few features that, like the ones we
have have used so far, capture purely spatial relationships

4



Figure 5. The three incorrectly classified textlines: all, of course, are math textlines wrongly classified
as English text. The first two images are from the training set of 132 textline images, while the last is
from the test set of 132 images. We have drawn, over the text, the neighbor graph for each.

among black connected components (bcc’s): the distribu-
tions of horizontal spacing between bcc’s, and the distribu-
tion of heights of bcc’s, both seem promising.

We are interested also in applying our classifier to the
problem of locating “inline” math expressions (i.e. mixed
with text within the same textline). Ultimately we’d like to
extend the approach to assist in the detection of textlines
themselves, whether they are dominantly math or text, or a
mixture.

References

[1] H. S. Baird, “Background Structure in Document Im-
ages,” in H. Bunke, P. S. P. Wang, & H. S. Baird (Eds.),
Document Image Analysis, World Scientific, Singa-
pore, pp. 17-34, 1994.

[2] R. Cattoni, T. Coianiz, S. Messelodi, C. M. Mod-
ena, “Geometric Layout Analysis Techniques for Doc-
ument Image Understanding: a Review,” Technical re-
port, IRST, Trento, Italy, 1998.

[3] S. P. Chowdhury, S. Mandal, A. K. Das, B. Chanda,
“Automatic Segmentation of Math-Zones from Doc-
ument Images,” Proc., IAPR 7th ICDAR, Edinburgh,
Scotland, August 4–6, 2003.

[4] R. Duda, P. Hart, D. Stork, Pattern Classification (2nd
Ed.), John Wiley & Sons, October 2000.

[5] R. Fateman, “How to find Mathematics on a Scanned
Page,” Proc., SPIE, Vol. 3967, pp. 98–109, 1999.

[6] D. Ittner, H. S. Baird, “Language-Free Layout Analy-
sis,” Proc., IAPR 2nd Int’l Conf. on Document Anal-
ysis & Recognition, Tsukuba Science City, Japan, pp.
336-340, October 1993.

[7] K. Kise, M. Iwata, K. Matsumoto, “On the Appli-
cation of Voronoi Diagrams to Page Segmentation,”
Proc., Workshop on Document Layout Interpreta-
tion and its Applications (DLIA99), Bangalore, India,
September 18, 1999.

[8] K. Kise, A. Sato, M. Iwata, “Segmentation of Page
Images using the Area Voronoi Diagram,” Computer
Vision and Image Understanding, 70, 1998, 370–382.

[9] Y. Lu, Z. Wang, C. L. Tan, “Word Grouping in Doc-
ument Images Based on Voronoi Tessellation,” In-
ternational Workshop on Document Analysis Systems
(DAS), Florence, Italy, Sept 8–10 2004.

[10] M. Okamoto, A. Miyazawa, “An experimental imple-
mentation of a document recognition system for pa-
pers containing mathematical expressions,” Structured
Document Image Analysis, Springer-Verlag, 1992,
36–51.

[11] G. Toussaint, “Computational Geometry for Docu-
ment Analysis,” Proc., 3rd Annual Symp. Document
Analysis and Information Retrieval, pp. 23–42, 1994.

[12] M. Suzuki, T. Kanahori, N. Ohtake, and K. Yam-
aguchi, “An Integrated OCR Software for Mathemat-
ical Documents and Its Output with Accessibility,” in
Blind People: Access to Mathematics, Springer-Verlag
(LNCS Vol. 3118), 2004.

5


