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Abstract

If current OCR engineering trends continue,
then, we believe, “general-purpose” systems —
that s, fully automatic and nonretargetable sys-
tems — will leave many potential users unsat-
isfied, and lucrative application niches unfilled,
for years to come. However, for users who care
enough to volunteer some manual effort — to
help customize the system to their document(s) —
significantly higher accuracy may be achievable,
without delay. We discuss in detail two state—
of-the—art document recognition systems — Lu-
cent Technologies’ Table Reader System (TRS)
and Xeror’s “document image decoding” (DID)
research prototype — which yield high accuracy
by reliance on explicitly stated models of proper-
ties of the target document, whether iconic (known
typefaces and image degradations), geometric (re-
stricted classes of layouts), or symbolic (linguis-
tic and pragmatic contertual constraints). How
great are the performance advantages that can be
realized by sacrificing automation in these ways?
To what extent can the necessary customizations
be (semi-)automated? We outline recent and
planned research at Xerox PARC motivated by
these questions.

1 Performance of Current OCR
Systems

The dominant type of present—day commercial
OCR system, whether on the desktop or in
service-bureau settings, is designed to operate
fully automatically, refusing to accept guidance
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from the user. The majority of desk—top users
welcome this since they are untrained and im-
patient with inconvenience. There is a similar
reliance on more or less completely automatic
operation in almost all of the highly specialized
OCR application niches such as postal-code and
financial-document processing, even though their
costly equipment is tended by trained staff in con-
trolled service-bureau settings. In this case, it
is largely the daunting throughput requirements
that dictate fully automatic operation.

Both of these user communities — the ca-
sual SOHO users and the sophisticated special-
document users — tolerate surprisingly low per-
formance. The latest competitive studies, at
UNLV in 1996 [1], showed, for example, that desk-
top OCR packages misrecognize 3—15% of charac-
ters — an intolerably high error rate, most users
would agree — in over 40% of magazine pages:
for other document categories, performance was
far worse. The best current systems for reading
hand-written courtesy amounts on checks [2] are
tuned to reject 33-55% of the input in order to
hold substitution errors below 1%. Similarly, the
best handwritten postal-address readers fail to “fi-
nalize” 35% of the input [3].

All of these technologies are improvable, of
course, and are improving: but slowly and at
a high cost. The UNLV data suggested that
the best desk—top OCR machines have been cut-
ting character error rates by about 15-20% per
year [1]. Every sanguine person hopes for sud-
den breakthroughs in performance — and individ-
ual researchers characteristically hope that these
will result from isolated technical innovations —
but the record of the last ten years does not en-



courage such hopes.

Instead, the pattern I see is that overall perfor-
mance of these increasingly complex systems does
not dramatically improve as a result of any single
localized improvement: say, a more accurate char-
acter classification algorithm, or a more refined
linguistic model, or a more robust layout segmen-
tor. On the contrary, as year after year the weak-
est components have been most improved, we are
entering a regime where the origins of errors are
more evenly distributed among the components of
the system. The principal driver of improvements
is large-scale empirical testing by ever-growing
test data bases, followed by tedious manual anal-
ysis of failure cases. These training and testing
databases are certainly large and growing larger,
but it is not feasible to collect them systematically
enough to guarantee coverage of the full cross-
product of ranges of typefaces, type sizes, image
degradations, layouts styles, scripts, languages,
etc etc that occur in practice. Even worse from an
engineering pont of view, it is becoming increas-
ingly problematic to isolate one cause, or even the
dominant cause, of specific failures. The cause 1s
more and more often a subtle ‘conspiracy’ among
the components of the system which is hard to
understand. ‘Fixing’ one problem breaks another.
So for multiple reasons it is often not clear even to
the researchers and engineers most familiar with
the internals of the machine where they should ap-
ply their next year’s efforts to achieve the largest
gain. Too often, all that can be found to work is
a specific manual patch for that particular case.
The systems are growing monotonically in the
number of lines of code and the number of mod-
ules with specialized functions.

The perceptions I list above are not mine
alone. At the TAPR DAS’98 Workshop in Nagano,
Japan, I took the opportunity to ask three en-
gineering managers of world-class OCR systems
about their rate of progress, and the most serious
obstacles to progress that they face. Most of them
agreed with most of the points above.

I do not mean to paint the bleakest possible
picture of the future. Ingenious researchers and
engineers continue to solve hard problems. If sys-
tems complexity bogs us down, certainly Moore’s
law buoys us up.

But, overall I feel that OCR engineering current
trends support these conclusions:

e the search for more strongly general-purpose,

higher-performance document recognition
systems will continue to absorb large en-
gineering resources and continue to yield
only incremental overall performance im-
provements;

e since no one system, in markets with many
players, is able to sprint ahead of the oth-
ers, competition on technical grounds will not
slacken; and

e most players will have no choice but to con-
tinue incremental refinements within their 1d-
iosyncratic, slowly evolving, and increasingly
complex system architectures.

This 1s bad news for the many users whose par-
ticular documents are poorly served by current
machines. They may have to wait years for tech-
nology that performs adequately on their class
of documents. Potentially lucrative application
niches will remain unfilled.

2 The Cage for Model-Directed
Recognition

One way to summarize the state of the art of OCR
systems i1s that we cannot now, and will not for
many years, simultaneously achieve these three
desirable properties:

e high accuracy, i.e. near-perfect character-by-
character transcription;

e versatility: applicability to many types of
documents, image qualities, etc; and

e full automation, requiring no assistance from
the user.

How then can research help these many under-
served users in the near term?

What if we relax one or more of these goals?
If, for example, we attack problems that do not
require high accuracy, can we achieve versatility
and automation? Yes, clearly: one example is the
use of OCR as a front end for word-token-based
information retrieval. It has been amply docu-
mented that recall and precision are little affected
by OCR error rates [4].

What if we sacrifice versatility? There are hosts
of successful examples of this approach, from the
adoption of the OCR-A font standard to special-
forms readers.



What if we sacrifice automation, and so ask the
user to intervene manually for each document (or
document class)? This is the alternative research
direction discussed in this paper. It is, of course,
not new: in fact, it was already reasonably well ar-
ticulated in May of 1992 by a few DIA researchers
attending the first DARPA-funded Document Un-
derstanding Workshop, held at Xerox PARC. The
“Model-Based OCR” panel of the workshop in-
cluded Phil Chou, Andrew Gilles, Dan Hutten-
locher, Tapas Kanungo, Gary Kopec, Prasana
Mulgaonkar, Theo Pavlidis, Azriel Rosenfeld, Sar-
gur Srihari, Steve Munt, Steve Dennis, and the
present author. We were excited by the potential
of a research program that somehow would ex-
ploit explicitly specified and often detailed mod-
els of the input document in hopes of achieving
far higher performance (accuracy and speed) and
versatility (range of documents handled) than any
of the then—existing systems or their likely succes-
sors.

This panel concluded by recommending that
DARPA encourage the development of:

(a) “a core technology in which all the assump-
tions about the writing system, language con-
straints, context, are explicit such that they
can be replaced by new modules [...];”

(b) “alternative architectures and algorithms in-
cluding promising novel approaches whose
initial performance is inferior [...];”

(¢) “uniform technology which is transportable
across a variety of writing systems [...];” and

(d) “a core technology for developing and using
explicit, quantitative, parameterized models
of [image] distortion [...]”.

It is remarkable to look back, six years later, and
see with what tenacity a few of us — Gary and
Phil at PARC; myself, David Ittner, and Tin Kam
Ho at Bell Labs; and Tapas and Bob Haralick at
Univ. Washington — struggled to realize these
dreams. Gary and Phil seemed to me to be most
committed to goals (a) and (b), while Tapas, Bob,
and the Bell Labs folks focussed on (¢) with a low-
level but persistent pursuit of (d).

All four of these goals were felt to be daunt-
ingly ambitious at the time. They were crafted in
conscious contrast to the engineering — and re-
search — methodologies dominant at that time.

They are, in fact, continuing today. At consider-
able risk of oversimplification, and with no desire
to understate the creativity, skill, and energy with
which they have been pursued, I may characterize
them as follows. The emphasis is on modulariza-
tion of OCR systems into (typically) a pipeline of
specialized components performing physical lay-
out analysis and interpretation, isolated-character
classification, hypothesize-and-test word segmen-
Each of these
components is developed to a large degree in 1sola-
tion from the others. With the exception of image
classification and some aspects of contextual anal-

tation, and contextual analysis.

ysis, they are not trainable by example but must
be substantially hand crafted and manually tuned
for good results. They are rarely based on an ex-
plicit model of the class of documents to be read,
so there is no escape from large-scale (but still
unsystematic) empirical testing regimes which in-
evitably escalate to the limits of affordability. No
matter how well the components perform in iso-
lation, their integration is an unpredictable and
often frustratingly unstable engineering exercise.

The end result of these dominant methodolo-
gies, for most leading OCR technology develop-
ers, has been a large and steadily growing soft-
ware suite which is difficult to improve systemati-
cally and which therefore drains larger and larger
engineering resources in return for chronically in-
cremental performance improvements. As tempt-
ing as it must often be to restart from scratch and
rearchitect more rationally, their large investment
in code and the uncertainties of the OCR state of
the art argue against radical course corrections. It
was this morass of individually plausible but col-
lectively ad hoc methods that the panel foresaw
and were trying to circumvent.

What progress has been made towards these
four “Model-Based OCR” goals, and what should
be attempted next? The rest of this paper gives a
partial answer to these questions: partial in that
it emphasizes work in which the author has been,
and remains, personally involved.

The next two sections describe two model—
directed OCR systems which embody many of
these principles. The first is a retargetable table—
reader product developed by a team in Bell Labo-
ratories (including the present author), first used
on a large scale within AT&T, and now offered
for sale by Lucent Technologies. The second is
an experimental prototype within Xerox PARC,



whose development was led by Gary Kopec and
Phil Chou, and which has been successfully ap-
plied to a variety of uniquely challenging docu-
ments, especially in the context of the UC Berke-
ley Digital Library Initiative project. Although
Phil has left Xerox and Gary died in December
1998, extensions and refinements of the DID sys-
tem remain active topics of research at PARC by
a team that includes the present author. We list
a number of open research problems, engineering
challenges, and opportunities for feasibility trials
and joint work.

3 A Retargetable Table Reader

At least one model-directed, manually retar-
getable document image analysis system exists
and 1s heavily used today. It is a system for read-
ing machine-printed documents in known pre-
defined tabular-data layout styles [5] (telephone
bills, to be precise). In these tables, textual data
are presented in ‘record’ lines made up of fixed—
width fields. Tables often do not rely on line—art
(ruled lines) to delimit fields, and in this way dif-
fer crucially from fixed forms. This table-reader
system performs these steps: identifies multiple
tables per page; identifies records within tables
(ignoring non—record text); segments records into
fields; and recognizes characters within fields, con-
strained by field—specific contextual knowledge.

Obstacles to good performance on these tables
included small print, tight line-spacing, poor—
quality text (such as photocopies), and line-art
or background patterns that touch the text. Pre-
cise skew—correction and pitch—estimation, and
high—performance OCR. using neural nets proved
crucial in overcoming these obstacles. However,
the principal obstacle to building a system of this
sort was the wide variability of layouts among the
hundreds of table form types encountered. The
variability would overwhelm any fixed, fully auto-
matic system; if each distinct “form model” had
to be manually specified, then the retargeting ef-
fort must be small and “deskilled.” Therefore the
most significant technical advances in this work
appear to be algorithms for identifying and seg-
menting records with known layout, together with
the integration of these algorithms with an effi-
cient graphical user interface (GUI) for defining
new layouts.

Unlike most prior work on forms and table anal-
ysis, the system does not depend on guidance

from line—art or fiducial marks. The operator de-
scribes a new layout model by annotating images
of a sample page (noting the location of fields,
and whether certain characters are required or op-
tional, etc). This example is thus abstracted into
“record-line template” which is matched (using
simple convolution-based methods) to every text—
line in the image, to distinguish record lines from
non—-record text and to splt each record line into
fields. The model-specification GUI has been er-
gonomically designed to make efficient and intu-
itive use of exemplary images, so that the skill
and manual effort required to retarget the system
to new table layouts are held to a minimum. In
fact, each tabular layout model can typically be
specified in less than 15 minutes by a clerk with
data—entry skills.

In short, the system succeeds because a user can
quickly specify a layout model which can then be
effectively and fully automatically applied to ev-
ery page of tables of the same layout. The system
has been applied in this way to more than 400
distinct tabular layouts. Over a period of three
years the system read over fifty million records
with high accuracy. Large scale tests have shown
that the system fully automatically achieves 97%
to 99.98% characters correct. The GUT also sup-
ports manual correction, which typically yields a
semi-automatic accuracy of greater than 99.99%.

This performance is so much higher than any
previously published on tables, and the range of
table—types handled is so much greater than any
previous commercial table—reader system, that it
is tempting to assert that the key determinants of
success were (a) restriction to known predefined
layouts and (b) exploitation of field—specific con-
text. That is, manual specification and automatic
exploitation of detailed models.

Thus, this table reader system (now offered for
sale by Lucent Technologies) is an example of a
model-directed OCR system of the type we en-
visaged. It has successfully colonized a previously
underserved application niche.

It is significant that this application niche is
a service-bureau operation, where the operating
staff (however non-technical their entry skills) can
be trained and managed, and where engineers are
available to back them up in the occasional diffi-
cult case. This is a far cry from desk-top casual-

use OCR.



4 The Document Image Decoding
Prototype

As early as 1990 Gary Kopec and Phil Chou
of Xerox PARC were consciously adapting to
OCR the paradigms characteristic of the early
days of signal processing research, especially the
communications—theory framework [6]: applied to
document images, this views any observed docu-
ment image as a signal which has been synthesized
through several distinct stages: the underlying
message (e.g. the ASCIT text) is first “encoded”
as an ideal image by choices of typefaces and
page layout, and this ideal image 1s, in turn, “de-
graded” by noise introduced during printing and
scanning, yielding the observed image. Recog-
nition 1s then viewed, in this framework, as an
attempt to “decode” the observed signal by esti-
mating the most probable transmitted message,
among all messages implied by the models, that
may have led to it. The models of encoding that
Gary and Phil used usually involved probabilis-
tic finite—state machines and rigid character tem-
plate images. The typical model of degradation
was probabilistic asymmetric bit-flip.

Gary and Phil’s collaboration was, it seems to
me, distinguished from the work of their peers
most clearly by two principles:

e every stage of the system is explicitly mod-

eled; and

e the system, as a whole, is simultaneously op-
timized by minimizing the expected “loss”
between the message sent and the message

decoded.

Everyone else in the DIA field — including my-
self — backed away from one or both of these
principles, at times, in the face of theoretical dif-
ficulties or from a desire to exhibit a near-term
practical success.

In the face of many technical difficulties Gary,
Phil, and their collaborators managed to illustrate
many strengths of this approach [7,8,9,10,11].
They showed that their family of encoding mod-
els — probabilistic regular grammars, sometimes
attributed — was rich enough to capture not only
plain text but textual markup, logical layout la-
beling, highly structured technical text and ta-
bles, and mathematical expressions — even music
notation. By insisting that the system be opti-
mized simultaneously as a whole, not a single com-

ponent at a time, they obviated several artificial
distinctions — notably between recognition and
segmentation of characters — which trigger com-
plexity, confusion, and errors in other systems.
They showed that the optimal decoding (for a 0-
1 loss function) could be approximately found by
a segmental Viterbi search through the 2-D trellis
implied by the composition of the synthesis mod-
els. The models were formally and practically sep-
arate from the recognition (search) engine, and as
a result many ways were found to improve (e.g.
speed up) the search engine independent of any
model. They found ways to infer some aspects of
the models — e.g. character bi—gram probabilities
and character templates — automatically from
ground-truthed training data (using maximum-
likelihood estimation), thus reducing the effort to
retarget the system to particular documents.

Perhaps most impressively, from the point of
view of potential users of the system, they showed
repeatedly that it could drop the character error
rate, by up to an order of magnitude in many
cases, compared to commercial OCR systems.
There are well-understood technical reasons for
this extraordinary advantage. Our decoding al-
gorithm gives, by rigorous probabilistic search,
the best possible result given the model and the
scanned image: the result is exactly that data
which is most likely to give rise to the printed and
scanned image. Thus although our results can be
improved using a better model — a more com-
plex, more specific model that fits the document
better — nevertheless whenever we use a specific
model we do as well as possible consistent with 1t.

Further, by judicious use of attributed gram-
mars in modeling the encoding stage, the logical
structure of text — e.g. the functional parts of
a dictionary entry — can be captured and pre-
served, as a beneficial side—effect of recognition.
Few if any commercial OCR, systems offer such a
feature; the manual effort to add the structural
tags to the plain ASCII that they produce is usu-
ally prohibitive.

As of a year ago, certain weaknesses were nev-
ertheless still apparent. The asymmetric bit-flip
model of degradation had proven brittle in prac-
tice; later extensions to “multi-level templates”
allowed close approximation of arbitrary blur and
additive noise, but not to other common degra-
dations such as affine distortions. First attempts
to incorporate language models richer than uni-



gram character probabilities caused an explosion
in time complexity. In spite of the fact that, given
a modest amount of ground-truthed training data,
character templates could be learned almost fully
automatically, it was still the case that the man-
ual effort and technical skill required to use the
system was often excessive. Compounding this
was the fact that the system was composed from
routines in several languages (both C and LISP).

But perhaps the most serious deficiency of the
system was its low speed: it often ran two or-
ders of magnitude or more slower than competing
commercially available systems.

Happily, within the past year, significant
progress has been made on some of these fronts.
Algorithmic improvements to the search — not
yet published — have yielded an order of magni-
tude speed-up, with no loss of accuracy or gener-
ality, over a large test set. All of the system com-
ponents needed for ordinary use (on, e.g., English
text) is now written entirely in Python and C, is
readily portable to several computing platforms,
and is thus able to be shared with collaborators.

This system is now ready for further feasibility
trials. Some trials will be carried out this sum-
mer, in close association with the UC Berkeley
Digital Library Initiative project. We are select-
ing one or more botanical reference books which
are effectively illegible by commercial OCR sys-
tems for various reasons (uncommon typefaces,
low image quality, or highly structured text), and
whose contents are not yet on—line and would
complement the already large and useful data
base assembled in the UCB ‘CalFlora’ website (cf.

http://elib.cs.berkeley.edu/calflora/botanical .html).

We intend to retarget the DID system to each
of these books, and thus provide, through the
UC Berkeley Digital Library, unique scholarly
resources to the botanical research community,
years earlier than existing commercially available
OCR systems could make possible.

So, in summary, our present technology offers
a tradeoff: far higher accuracy and (uniquely)
preservation of structure wversus some manual
start-up effort and significantly longer runtimes.
This contrasts with current commercial OCR
packages, which require no manual effort and are
much faster, but which are oblivious to the docu-
ment’s structure and whose accuracy is fixed and
unimprovable. If their error rate happens to be
too high on your document, you have no way,

short of manually correcting the output, to im-
prove it. The actual trade-offs that are achievable
in practice with the DID system appear to de-
pend strongly on details of each document and
the workflow surrounding it.

We understand in general terms how to pick
different operating points on the DID trade-off
curves: for example, how to reduce error by us-
ing more complex, and therefore more restrictive,
grammars. More complex grammars not only of-
ten reduce error, but they allow more refined tag-
ging of the output. Generally the more complex
the grammar and the more symbols and typefaces
that are expected, the slower and more expensive
the decoding: but we are exploring new heuris-
tics that promise speed-ups with no sacrifice of
accuracy or tagging.

The most promising immediate future direc-
tions for DID research, it seems to us in the DID
area at PARC, include:

e incorporating language models inferable from
corpora, without large speed penalties;

e incorporating more realistic image degrada-
tion models (e.g. [12] or [13]); and

o further ‘deskilling’ of the retargeting task to
bring it within the reach of non-expert users.

We believe the time has come to look out-
side PARC for commercially attractive applica-
tions where these trade-offs can be concretely ex-
plored. Here is a sketch of a possible field trial of
the decoder software, as part of a semi-automatic
workflow requiring the conversion of a sequence
of documents to text with an accuracy far higher
than commercially available OCR systems can
uniformly provide.

The engineer in the field, at first
working closely with PARC, will:

1. select, from the set of documents
to be converted, those which are
most likely to benefit from decod-
ing: these will typically be relatively
long (tens or hundreds of pages) and
possess uniform printing character-
istics (e.g. only a few fonts and type
sizes, and similar image ‘quality’);

2. manually transcribe — or merely cor-
rect the commercial-OCR output of



— a subset of each document (a few
pages at most);

3. run our automatic

typeface-inference tool;

4. specify the document layout gram-
mar and design the output encod-
ing, by editing a special file (for
many documents, a good model
may already exist, and can be
merely taken ‘off the shelf’); and

5. run the decoder on the complete
documents, for far higher accuracy
and detailed structural tagging.

We would be happy to discuss joint feasibility tri-
als or collaborative research with interested par-
ties.

5 Conclusions

We have argued that present OCR engineering
practice will leave many potential users under-
served for years to come. In the meantime, moti-
vated users who are willing to invest some effort
in manually customizing a retargetable OCR sys-
tem to their (class of) document(s) may succeed.
We have shown that model-directed, manually re-
targetable OCR systems have made substantial
progress since their inception almost a decade ago.
Successful applications have been built: at least
one 1s heavily used. Laboratory prototypes are
making steady progress, and are ready for ex-
tended feasibility trials.
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