effort. The system has been applied to more than 400
distinct table layouts, in large-scale applications on
over fifty million records altogether, and with high ac-
curacy: typically 97% to 99.98% characters correct is
achieved automatically, and this is efficiently manually
correctable to better than 99.99% using our GUI. The
high throughput of the system is assisted by the policy
of applying OCR only to fields identified as interesting
by fast layout analysis. This performance i1s so much
higher than any previously published on tables that it
is tempting to assert that restriction to known prede-
fined layouts and exploitation of field-specific context
are key determinants of success.
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ertheless the result fails sanity checks (based on mini-
mum and maximum number of characters, and regular
expressions), it will be resegmented up to three times
with different segmentation parameters.

The neural-net technology we use is a modified
LeNet2a with both convolutional and fully connected
layers [SBB92]. High-volume tables are provided with
nets specially trained on their typeface(s), while lower
volume tables use a generic multiple-typeface net. The
nets are trained on both real and synthetic image sam-
ples.

It should be clear that our policy of detailed pre-
definition not only permits a new table to be targeted
rapidly by clerical staff, using system defaults, but it
allows a large number of custom optimizations to be
introduced on a case by case basis by system engineers,
as unusual speed or accuracy demands arise.

9 Contextual Analysis

We have described how the alphabet of a field is
used to restrict classifiers, and how the minimum and
maximum width of a field is used to guide resegmen-
tation. In addition, the regular expression and/or lex-
icon associated with the field are used to ‘promote’
legal values for a field to the top of a list of interpre-
tations.

10 Implementation Issues

The table reader system runs in various UNIX en-
vironments on several hardware platforms including
Sun Sparcstations and PC-compatible systems. It re-
quires no specialized hardware. It accepts document
images from bi-level, grey-level, or dropout-color scan-
ners, and has been adapted to read a variety of digi-
tizing resolutions and paper sizes.

11 Applications

The table reader system has been used in a pro-
duction environment for over four years, reading bill
manifests. The total number of distinct table layouts
to which 1t has been applied exceeds 400. At the time
of writing, the definitions of 313 tables reside in the
system; over the last few years, over 100 other tables
have been defined and used, but not kept since their
format wasn’t seen often enough to justify the effort
of keeping track of them. We estimate that, during
the years 1995-1997, it was used to read 53.5 million
records (this, not characters or pages, is the statistic
of greatest interest to our users).

CPU time to process a page on a Sparc Ultra 1
model 170 ranges between 15 seconds to 1 minute
of CPU time; thirty seconds is typical. The sys-
tem achieves accuracy in the range 97% to 99.98%

characters correct, fully automatically. When mea-
sured on their training set, which is a mixture of
synthetic and real images of characters, the accuracy
of the neural nets is typically 99.7%. In practice,
accuracy varies: for example, on simple fixed-pitch
tables, customer-trained neural nets have achieved
accuracies better than 99.98% characters correct,
whereas on proportional-pitch tables with line-art that
touches characters and a dithered grey background,
the generic multiple-font classifier may require up to
3% of the characters to be examined manually. A
semi-manual correction stage (not described here) typ-
ically raises this to above 99.99%. Another measure
of efficiency that is particularly valuable to our cus-
tomers is the product of (a) the total elapsed time to
process a batch of records and (b) the number of clerks
required to perform the final correction, to the desired
accuracy. Our customers compared our system to an-
other vendors’ system in three trials during which our
system’s efficiency was superior by factors of 54, 80,

and 550.
12 Future Work

We are now introducing an automatic format ver-
ification step that will check relationships between
the contents of selected fields. We do not know
how to instruct our operators to choose ‘binarization’
thresholds for their document scanners that are ide-
ally matched to particular batches of table documents,
so our software must sometimes cope with barely us-
able bi-level images. We would very much like to be
able to ‘learn’ table formats semi-automatically from
examples, perhaps along the lines of [DD96], which
does not depend on line-art boundaries. We would
like to be able to identify tables automatically from
among a predefined set, possibly following [KA90] and
[WLS95]. Scanning resolution is still too low, relative
to the small size of the type often encountered: so the
character images are daunting small.

13 Conclusions

We have described a system for reading machine-
printed tables. Unlike most prior work on forms and
table analysis, the system does not depend on guid-
ance from line-art or fiducial marks. The most signifi-
cant technical advances in this work appear to be the
design of algorithms for identifying/segmenting record
lines in a known layout style, and the integration of
these algorithms with an ergonomically refined graph-
ical user interface for defining new layouts, and spec-
ifying contextual rules for each field. As a result, it
is capable of being manually retargeted to new table
layouts with a minimum of operator skill and manual



statements, government applications, inventory lists,
etc. We attempt to suppress these using ‘mid-pass’
filters (for lack of space, we don’t describe them here).

4.2 Elimination of Line-Art

Not only does our system make no use of line-art,
it goes to some trouble to ignore it. Some tables insert
line-art between almost every line of the table. Figure
3 shows an example.

Figure 3: A table with many horizontal lines, often
touching the characters.

Due to tight line-spacing, coarse digitizing resolu-
tion, and poor quality images, line-art close to the
records can touch characters.

We attempt to detect and remove horizontal lines.
This is complicated by the fact that such lines may be
slightly bent due to local skew or optical deformations.
Furthermore, the slope of lines may not be constant
everywhere: sometimes, the slopes ‘drift’” down the
page. We have developed a complex heuristic for han-
dling many of these cases, which for lack of space we
do not describe here. Any horizontal line-art found is
carefully removed, leaving the characters behind.

5 Locating Table(s) in the Page

The next major stage locates the region(s) in which
the table(s) is(are) placed. The page is deskewed us-
ing ‘pseudorotation.” Text lines are isolated; if two
or more tables are side by side, these lines may span
more than one table and therefore contain more than
one record. The number and location of columns are
estimated, using the total length of the ‘ink templates’
known to make up records in this table.

Now, a search is performed for the best match of the
‘ink template’ for the records to the actually occurring
text lines. This is accomplished in several steps. First,
each text line 1s projected vertically onto a horizontal
line, where the presence of black pixels is recorded by
+1 and their absence by -1. Then the ink template
for the record to be found is encoded, thus: +1, 0,
or -1 for each pixel within character positions whose
ink template value is ‘usually’, ‘sometimes’, or ‘never’,
respectively. Now, for each possible horizontal shift of
the record with respect to the text line, the inner prod-
uct of these two projections is computed, giving a cor-
relation score for each shift position: the highest score

indicates the best match. This is an elementary vari-
ant of ‘template matching’: mismatches are penalized
at any character position recorded as either ‘usually’
or ‘never’; but at ‘sometimes’ positions neither the
presence nor absence of a character is penalized. The
match scores, normalized by dividing by the number
of of +1 values in the record template, are compared
to a fixed threshold value. If the maximum match
score falls below threshold, the text line is judged not
to match the record template.

The set of text lines that match the record tem-
plates are kept, and all other artwork in the image is
discarded. For speed, this matching step is performed
at a digitization resolution coarser than in the input
image. The result, at this stage of processing, is zero,
one, or more candidate record text lines have been
located. Note that more than one record-line ink tem-
plate may be used, the record line with the highest
match score being chosen.

6 Identifying Records

Operating on the candidate record lines found
above, a similar search is now conducted, but at full
resolution. Its purpose is, for each text line, to refine
the location of the best match. It is possible for text
lines to be rejected (to fail to match) at this stage as
well: if so, their artwork is also discarded. By exam-
ining the horizontal shifts of the best matches, it is
possible to estimate the start and end positions of the
table. If there is enough space on the page for more
than one table, they are searched for using the same
method.

7 Locating and Labeling Fields

Now, within each matched text line, the physical
structure of the ink template i1s used to locate the
start and end of each field. Fields flagged ‘not read’
are now discarded. The output of this stage is a set of
records containing fields containing segmented char-
acter images, and each field’s logical label is known.
Note that this has been achieved based on the presence
or absence of characters only. It does not depend on
the presence of line-art, fiducial marks, or any special
‘form features’; nor does it require OCR.

8 Symbol Recognition

For each field, the characters are read using neural
net classifiers. A field’s context may imply the use
of a special neural net trained off-line by the systems
engineer. Even if a special classifier is not invoked,
the alphabet (symbol set) used in classification will
be restricted to only those characters that can occur.

If the field contains proportional-pitch text, a clas-
sifier driven resegmentation scheme is invoked. If nev-



guide, for each record format (more than one may oc-
cur in a table), the user graphically selects each field,
naming it and indicating its width and typical ‘ink
profile.” The contextual constraints for each field are
entered.

Within a batch of images containing tables of the
same layout style, each page image is processed inde-
pendently of the rest. All pages are manually scanned
so that the text is upright. Each page undergoes a pre-
liminary layout analysis which is independent of layout
style: extraction of connected components, removal of
horizontal line-art, correction of skew, and isolation of
text lines. Fixed pitch is detected and used to guide
segmentation of text lines into characters using the
method of [TB93]. Then the ‘ink template’ models of
the records are applied: first, at a coarse resolution, to
identify probable record lines and thus — most impor-
tantly — to discard almost all non-record text, noise,
etc. Then, operating only on the probable record lines,
the process is repeated more carefully at full resolu-
tion, and including the segmentation of record lines
into fields.

From this stage forward, each field-image specified
by the user as important is processed independently,
OCR is attempted using neural nets that may be tai-
lored to the layout style or field. Finally, field-specific
contextual constraints including regular expressions
and lexica are applied, and the results for each record
are written out in a format specified by the user. Each
of these steps is explained in the following sections.

3 Table Definition via Graphical User
Interface

A table to be defined is assigned a name unique
within the system, and a little information about it
is typed in, e.g. whether the dominant typeface is
fixed- or proportional pitch (numeric data is often
fixed-pitch, but alphabetic fields (e.g. ‘AM’ and ‘PM”)
may be printed in proportional pitch).

The user selects a sub-image of the table to guide
the specification. The user selects one of the text lines,
by graphically indicating the start and end of each
field within it. To each field, the user assigns these
properties: (a) a name (unique within the table); (b)
a flag: ‘read’ or ‘not read’; (¢) the ‘ink profile’ (see be-
low); (d) the minimum and maximum number of char-
acters that can occur; (e) the alphabet that can occur;
(f) the neural net to use for recognition; (g) a regular
expression and/or a list of allowable words (‘lexicon’);
and (h) output formatting (for down-stream process-
ing). A field’s ‘ink profile’ is specified as follows: for
each character position, the user indicates how often
a printable character is expected to be seen there, ex-

pressed as one of: ‘usually’, ‘sometimes’, or ‘never’.
Figure 2 illustrates this.

Figure 2: Two examples of the specification of ‘ink
profiles’ for records.

The GUI is designed to make all this as intuitive
and foolproof as possible. The user is expected to be
able to count, but is not required to deal with real
numbers, measure or estimate quantities, or perform
arithmetic. Where the system needs such information,
it either measures it itself or infers it from the user’s
graphical input. The coarse quantization of character-
occurrence probabilities used in ‘ink profile’s was cho-
sen carefully to be easy for a mathematically unso-
phisticated user to estimate from visual examination
of a few examples. The user selects regular expres-
sions from a set defined in advance by an engineer —
only a few dozen of these have been needed. As a re-
sult, clerical staff with some data-entry training can
use the GUI effectively and routinely. Theses clerks’
educational background includes high school but no
systematic training in computer use, programming, or
engineering.

Immediately following the definition of the table
format, the user can run it repeatedly on sample pages,
looking for errors and changing the format and, rarely,
certain engineering parameters (such as a threshold
for accepting record-line matches) until performance
1s satisfactory.

An experienced clerical worker can complete the
entire process of entering and experimentally checking
a new table layout in 10-15 minutes, on average.

If a case arises that cannot be readily handled
through the GUI, Bell Labs engineers intervene to
solve the problem algorithmically or by extending the
GIU. In recent months, this has occurred no more of-
ten than once in every twenty layouts.

4 Preliminary Layout Analysis

When the system reads a batch of pages contain-
ing tables in a known layout, each page undergoes
the following analysis (described in [TB93]). All black
8-connected components (‘blobs’) are extracted and
skew is corrected.
4.1 Background Suppression

Ornate background textures, watermarks, images,
and half-tone shading can cause problems: these oc-
cur on academic standardized test forms, credit card



Figure 1: Example of a horizontal textual ta-
ble layout. It contains two header lines, eight
record lines, and one trailer line. Each record con-
tains ten fixed-width fields that align vertically.
Each column of fields contains data of the same
type. Fields may be left-justified, right-justified,
or fixed-width. Note that line-art is not used to
delimit the fields. (Some characters are blacked-
out to respect privacy.)

in a form is usually fixed. However, in tables the num-
ber of record lines can vary. Often more than one table
occurs on a single page — above or alongside one an-
other — but this is rare in forms. Perhaps more often
in tables than in forms, the textual header and trailer
sections are not separated from the records by line-art.

The row-and-column structure of horizontal tables
suggests an analogy with relational data bases. We
can view each column as a data type, and each row as
a record describing an element of a relation over these
data types, within a certain schema. It is useful to
distinguish between the ‘physical’ structure of an im-
age of a record (a sequence of fixed-width text fields)
and the ‘logical’ structure of the record’s data (a set of
data-items labeled with field names). In these terms,
the purpose of the table reader is to locate physical
records within an image of the table (ignoring all an-
cillary text), segment them into physical fields, label
each field with 1ts data type, read the contents of each
field, and report the results as a set of records in a
relational data base of known schema.

The literature on automatic analysis of forms
(in our sense) is large: [CF90], [KA90], [PTG91],
[TFP92], and [LJS93] are representative early exam-
ples. By contrast, there are only a handful of papers
on tables.

Laurentini and Viada [LV92] describe an algorithm
for identifying the presence of tables in document im-
ages (with or without line-art), and for inferring ta-
ble structure which had not been previously specified.
They report experiments on twenty sample images.

Chandran and Kasturi [CK93] describe a system
for analyzing ‘tabulated data’ lacking a complete set
of line-art boundaries (‘demarcation lines’) separating
all fields. However, enough line-art must be seen to

judge the extent of the table, and line-art must sepa-
rate titles from record lines. Ttonori [Tton93] describe
a system with similar goals that can tolerate the ab-
sence of some, but not all, line-art. Both of these sys-
tems analyze projection profiles of the entire table (or,
sub-tables) to infer logical relationships among fields.

There is a brief allusion in [Stab95] to a system
for semi-automatically identifying lines in tables as
header, title, records, etc, and then splitting the record
lines into fields (‘columns’). No details of the algo-
rithms or applications are given.

In the applications we have seen so far, incoming
documents are routinely manually sorted into batches
containing a single table layout style. For this rea-
son, we have not yet attempted to recognize table lay-
out styles automatically. Further, we have required
that the layout style be predefined by the user in con-
siderable detail (described below). Thus, unlike the
systems mentioned above, ours does not attempt to
analyze unknown layouts. However, most other sys-
tems rely on the presence of at least some line-art, or
fiducial marks, to guide their analysis, while ours does
not.

In what appears to be an unprecedented systems
design, we have integrated our algorithms for identi-
fying and segmenting record lines in a known layout
style with an ergonomically refined graphical user in-
terface (GUT) for defining new layouts. As a result,
our system is capable of being manually retargeted to
a wide variety of new table layouts with a minimum of
effort by operators with only ‘data-entry’ skills. In this
manner, the system has been applied to more than 400
distinct table layouts in applications comprising over
fifty million records. Large scale tests have shown
that the system fully automatically achieves 97% to
99.98% characters correct. The GUI supports manual
correction (not described further here), which typi-
cally yields a semi-automatic accuracy of greater than
99.99%.

The rest of this paper describes the system architec-
ture (Section 2), definition of new tables (Section 3),
preliminary layout analysis (Section 4), coping with
multiple tables per page (Section 5), identification of
records (Section 6), logical segmentation of records
into fields (Section 7), symbol recognition (Section 8),
contextual analysis (Section 9), implementation issues
(Section 10), applications (Section 11), future work
(Section 12), and conclusions (Section 13).

2 System Architecture

Before attempting to read pages in a new table lay-
out style, the layout style must be named and manu-
ally defined using a GUI. Using a sample image as a
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Abstract

We describe the architecture of a system for read-
ing machine-printed documents in known predefined
tabular-data layout styles. In these tables, textual data
are presented in record lines made up of fived-width
fields. Tables often do not rely on line-art (ruled lines)
to delimit fields, and in this way differ crucially from
fized forms. Qur system performs these steps: copes
with multiple tables per page; identifies records within
tables; segments records into fields; and recognizes
characters within fields, constrained by field-specific
contextual knowledge. Obstacles to good performance
on tables include small print, tight line-spacing, poor-
quality text (such as photocopies), and line-art or back-
ground patterns that touch the text. Precise skew-
correction and pitch-estimation, and high-performance
OCR using neural nets proved crucial in overcoming
these obstacles. The most significant technical ad-
vances in this work appear to be algorithms for identi-
fying and segmenting records with known layout, and
integration of these algorithms with a graphical user
interface (GUI) for defining new layouts. This GUI
has been ergonomically designed to make efficient and
intuitive use of exemplary images, so that the skill and
manual effort required to retarget the system to new
table layouts are held to a mintmum. The system has
been applied in this way to more than 400 distinct tab-
ular layouts. During the last three years the system has
read over fifty million records with high accuracy.

1 Introduction

We describe an easily retargetable ‘table reader’
technology. By tables we mean a class of page lay-
outs in which the data are presented in ‘record’ text
lines made up of fixed-width fields containing char-
acters. Text in tables is usually printed in fixed-pitch
typefaces and the records are aligned so that the fields
‘stack’ in columns. Tabular data occur frequently in

machine-printed documents, bills, and manifests sup-
porting many business sectors including telecommuni-
cations, health care, finance, insurance, government,
and public utilities.

The research literature does not consistently dis-
tinguish between “tables” and “forms”: for example,
[TS94, WLS95, GK95, HD95, Ishi95] use the terms
‘form,” ‘table,” and ‘table form’ almost interchange-
ably. We propose that it is useful to distinguish be-
tween them, as follows:

e in “forms,” the fields are delimited by line-art
boundaries generally describing rectangular boxes
enclosing the fields; whereas

e in “tables,” explicitly printed field boundaries are
often omitted, their function being served by the
readily apparent columns of text formed by the
vertical alignment of fixed-width fields making up
the record lines.

Certainly, both tables and forms, in this sense, de-
scribe sets of fields each of which holds data — of-
ten, short strings of text — of a known type, with
narrowly constrained format and semantics. But the
structure of tables is often simpler than forms: tables
are almost always laid out as a 2-dimensional row-
and-column matrix of fields. Laurentini and Viada,
in their thoughtful discussion [LV92] of ‘tabular ma-
terial’ in documents, suggest that tables are a class
of forms whose structure is so obvious that line-art
is superfluous. They distinguish between horizontal
and wvertical tables: in a horizontal table, each column
contains data of the same type; in vertical tables, each
row contains data of the same type. Horizontal tables
are by far the more common: we do not discuss ver-
tical tables further here. An example of a horizontal
table is shown in Figure 1.

Within each record line of a table, the number of
fields is typically fixed. Similarly, the number of fields



