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Abstract

We have developed a pra ctical scheme to take advantage of local typefac e homogeneity to
improve the acc urac y of a char ac ter classifie r. Given a polyfont classifie r which is ca pable of
rec ognizing any of 100 typefac es modera tely well, our method allows it to specia lize itself auto-
matically to the single — but otherwise unknown — typefac e it is re ading. Essentially, the clas-
sifier retr ains itself af ter examining some of the images, guided at first by the prese t classific ation
boundaries of the given classifier , and later by the behavior of the retr ained classifier . Experi-
mental trials on 6.4M pseudo-r andomly distorted images show that the method improves on 95 of
the 100 typefac es. It re duces the er ror ra te by a fac tor of 2.5, aver age d over 100 typefac es, when
applied to an alphabet of 80 ASCII char ac ters printed at ten point and digiti zed at 300
pixels/inch. This self- corr ecting method complements, and does not hinder, other methods for
improving OCR ac cura cy, such as linguist ic contextual ana lysis.

Keywords: char acte r re cognition, polyfont, self- corr ecting, lear ning

1. Introduct ion

We propose a pra ctical scheme to take advantage of local typefac e homogeneity to improve ac cura cy in
char acte r re cognition. We are motivated by the ease with which human re ader s adapt to new typefac es, even in
the absenc e of linguist ic or other contextual cues. We observe that, although among a large set of typefa ces sev-
era l distinct char ac ters may have similar shapes, within the same typefac e the shapes of distin ct char ac ters will
differ significantly.

S in gle -fo n t t e x t m a y b e e a s ie r t o r e a d

automat ically than mult iple-fon t text .

Figure 1: Examples of text printed in single and multiple typefa ces. Most modern polyfon t OCR algorith ms
will read the top line no better than the bottom line.

Figure 1 exhibits two lines of text, one printed in a single typefac e, and the other printed in many typefa ces. A
typical modern polyfont classifier can be expec ted to perf orm no better on one than on the other: this



insensitiv ity to typefa ce ca n be considere d har mful if it preve nts the classifier fr om adapting to single-font text
and so achieving higher acc ura cy.

Our method require s a high-per forma nce polyfont† classifier , and prior knowledge that the text is in a sin-
gle — but not nec essar ily known — typefa ce. The text may occur at one or more unknown type sizes. Given
these prec onditions , our method acts fully automatically and without fur ther cues. Good but imperf ect polyfont
classifier s ar e now not uncommon, and single-typefa ce problems ar e fr equently occ urring special ca ses. Using
the method does not pre clude any re sort to language context, nor does it mater ially re strict the use of better fea -
tures, metrics, and speed optimizations — thus it ca n fr ee ly combine with other future improvements. It does not
involve typefac e rec ogniti on or re quire a set of typefa ce- specific classifier s.

In terms of statistical pattern re cognition, our method fa lls in the rea lm of unsupervised or imperf ec tly
supervised par ameter estimation for mixture distributi ons. In spite of consider able interest in this topic in the six-
ties ([ CC64], [PH66], [Spr66] , [Sta68], [Ya k70]), to the best of our knowledge unsupervised classifica tion has
not been applied to OCR since the serie s of exper iments re ported in [NS66] and [NT 68]. Recently however ,
Mandler descr ibes a computer- assisted method of classifier design wher e 90% of the work is done by an ancillary
polyfont classifier [Man91] . Some curr ent OCR device s display single examples of pattern classe s that could not
be identified confidently: af ter the user provides labels, all the unknown patterns of ea ch class ar e re labeled.
Simil ar scheme s wer e demonstrated on prototype text rea der s in [AKM71] and [WCW82] .

Ear ly attempts at theore tical analysis of an iterative self- cor rec tive method ([ HA67], [NT68] ) showed that
under ce rtain assumptions, the mean of the rele vant class-c onditi onal probability distributi ons could be ac cura tely
estimated. Howeve r, the extreme ly re strictive assumptions that were postulated wer e never re alized in prac tice.
We will there for e re ly on large -sca le empirica l trials to demonstrate the robustness of the estimators even under
adver se initi al conditions. In addition to demonstrating the fea sibili ty of obtaining esse ntially single-font re cogni-
tion re sults in a polyfont setting, our exper iments show the value of a flexible OCR rese ar ch environment with
automated fac iliti es for classifier design, data manage ment, and per forma nce monitoring.

Section 2 gives the engineer ing context of our exper iments. In Section 3 the self- corr ection method is
descr ibed, and in Section 4 it is illustrated on a small-sca le problem. The principal results of this paper are given
in Section 5, which re ports on a large -sc ale exper imental trial. Section 6 discusses a more rea listi c var iation of
this exper iment. Section 7 summariz es the re sults and discusses future work.

2. The Engineering Context

The gener al require ments for applying our self- cor rec ting method are as follows. Ther e should exist a poly-
font classifier (the ‘‘ given classifie r’’ ) ca pable of disting uishing among N char acte r (symbol) classe s {c i } i = 1 ,N
acr oss a large number of typefac es with ‘‘ rea sonably good’’ acc ura cy. In addition, there should exist a classifier
technology that is trainable on sample images labeled with classes.

In our environment, the given classifie r is Bayesian. An unknown symbol image I is transfor med into an
M-dimensional binary feature ve ctor x ∈ { 0 , 1 }M which is normalized to be nominally invariant to type size and
location (by the method of [Bai88b]) . The classifier computes the a posteriori probabilities {P(c i x) } i = 1 ,N that

x belongs to eac h class c i , and re ports c best as the top choice , wher e best = argmax i {P(c i x) }. Eac h P(c i x)
is computed by ref ere nce to statistics stored in class prototypes T i , eac h of which includes the conditional fe ature
probabilities {P(x j c i ) } i = j ,... ,M that fea ture j is set to 1 among samples fr om class c i . The computation is car -
ried out as descr ibed in [DH73] , under the assumptions that the fea tures ar e class- conditionally independent and

† We use the terms font and typeface interchangeably, as is usual among computer typesetters, to mean a typeface design that
is distinguishable by shape. This differs from the conventions of letterpress typograph ers, for whom each different type size
creates a distinct font. Also, we consider Times Roman and Times Italic to be distinct typefaces even though they belong con-
ventionally to the same ‘‘typeface family. ’’ Within a typeface family, moderate variations in weight (light/bold ) and width
(condensed/expanded) , are represented in our trials by deformati ons due to the image defect model. Thus, our ‘‘100 fonts’’ rep-
resent approximat ely 50 complete body-text typeface families.



that the classes ar e equally likely. The conditional fea ture probabilities are ac tually estimates of the means of
Bernoulli distributi ons.

In addition, sensitivit y to type size and location (height above base line), which is essential for case distin c-
tions in the Latin alphabet, is ac hieved by the method of [Bai88a] : brief ly, this is ac complished by ref ere nce to
per- class first-or der statistics (mea n and varianc e) of size and location, also stored in the class prototypes. To
allow this to be tested, eac h image used in the exper iments is labeled with its true type size and baseline location.

The given classifier is thus completely specif ied by the set of prototypes T = {T i } i = 1 ,... ,N . The statistics
stored in them have been estimated during an off- line training phase fr om sample images labeled with true
classes. During self- corr ec tion, we will use this same training proc edure to estimate new prototypes from re la-
beled training samples.

The acc urac y of the classifier depends of course on many details, including the method for fe ature extra c-
tion, the size and quality of the training sample databa se, and the corr ectness of their class labels. In this study
we will assume that fe ature- extrac tion (a nd thus M) is fixed, but that the class prototypes may be re trained on the
fly given new or diffe rently-labe led training samples. The runtime re quire for (r e)tr aining is asymptotically lin-
ear in the number of training samples.

The throughput of the classifie r need not be linear in the number of classe s, since there ar e sublinear-time
algorithms for evaluating Bayes classifie rs; but, for rea sons of space , we will not elabora te on this here . Also, we
will not discuss complications resulting fr om missegmented (me rged or fr agmented) symbols.

In the trials discussed below, the given classifie r is similar to the one descr ibed in [Bai91], and has been
trained on at least 100 typefac es commonly used to print bodytext in 20th C. Amer ican publications. The number
of classes N = 80, comprising these printable-ASCII ‡ symbols:

A-Z a-z 0-9 . , -: ; *‘ ’ & $ ! ? % / ( ) [ ]

The number of binary-va lued fe atures M = 512: thus the vectors x are 512-bit strings. Test re sults repor ted in
[Bai91] shows good perf ormanc e at type sizes above 9 point at a spatial sampling ra te of 300 pixels/inch (ppi).

This paper and [Bai91] both use large pseudo-r andomly gener ated test sets, using a model of distortions
[Bai92] ca used by printing and imaging. Although it has not yet been established to what extent this model is
complete and repr ese ntative, our exper ience suggests that the resulting data sets ar e as cha llenging to prese nt-day
OCR algorithms as the majority of naturally occur ring printed text. We gener ated 6.4M images, more than in any
collection of re al images of mac hine-print known to us. Certainly, these more uniformly repr ese nt all possible
combinations of typefa ces, symbols, and type sizes, than ad hoc collections. All the trials wer e conducted on
images at a spatial sampling ra te of 300 pixels/inch.

3. A Met hod for Self- Corre ct ion

We will now descr ibe the self- corr ection method. At the outset, we ar e given a classifier spec ified by its set
of class prototypes T0 . Also, we are given a set of isolated symbol images I = {I k } k = 1 ,... ,K whose class labels
are unknown. The method proce eds in three stages:

Stage 1 Read the entire sample set I, classifying eac h symbol image I k using the given classifier T0 . Let ck
0 be

the top-choice class re ported for image I k .

Stage 2 For ea ch class c i , estimate a new class prototype T i
1 using the retraining set of images

I i
1 = {I k : ck

0 = c i }; that is, retr ain assuming that the given classifie r’s top-choice classes ar e the
true classe s. Call the re sulting set of prototypes T1 .

Stage 3 Reclassify eac h image in I using T1 .

The assumption used in Stage 2 does not, of course , always hold true, since the given classifier is not per fec t.
Thus the method gener ally retr ains on imperf ec tly labeled samples: such ‘‘ lear ning fr om poisoned data’’ is

‡ We exclude the ASCII symbols @ # + = < > ˆ ˜ { } _  since artwork for them was not provided in all 100 typefaces.



gener ally agre ed to be a risky prac tice.

If it happens that I i
1 is empty, then of course class c i is not re trained and T i

1 = T i
0 as befor e. Retraining

can be iterated: for eac h n ≥ 1, use the top-choice class labels repor ted by classifier Tn to train the next classi-
fier Tn + 1 , in the obvious analogous manner .

4. An Illustrative Trial

Let us illust rate the method on a small problem. We choose six symbols { 0, O, Q, D, G, C } that ar e often
confused, and a typefa ce, Avant Gar de Book Oblique, on which the method behave s in a way typical of most. In
this typefac e, the symbols appea r as follows:

0 O Q D G C
For eac h of these symbols, we gener ated 200 distorted images, at a nominal type size of 10 point; a fe w of these
are shown (magnifie d) in Figure 2.

Figure 2: Fifteen pseud o-rand omly distorte d images for each of the six symbols used in the trial, illustra ting
the degrad ations introd uced by the image defect model on 10 point text at 300 ppi.

The top-choice confusion matrix of the given polyfont classifier on this data is shown in Figure 3.

t o p - c h o i c e
0 O Q D G C

0 96 104 0 0 0 0 52.0
t O 0 200 0 0 0 0 0.0
r Q 0 1 199 0 0 0 0.5
u D 0 50 4 146 0 0 27.0
e G 0 0 0 0 197 3 1.5

C 0 0 0 0 2 198 1.0

0.0 43.7 2.0 0.0 1.0 1.5 13. 67

Figure 3: The top-ch oice confus ion matrix of the given polyfo nt classifi er on classes { 0, O, Q, D, G, C },
printed in Avan t Garde Book Oblique at 10 point and 300 ppi, 200 pseudo -rando mly distort ed images each.
Error rates are shown as perc entage s.

The confusion matrix is re ad as follows. Eac h (r ow,column) entry ( i , j) gives the number of images of true class
c i which wer e classified as top-choice class c j . Thus, of 200 images of ‘0’ (numer ic zer o), 96 wer e corr ec tly
classified, 104 wer e incorr ectly classifie d as ‘O’ (alphabe tic oh), none as ‘Q’ , and so for th. At the fa r right of
eac h row, the overa ll er ror ra te for that class is shown (in perc ent): thus, 52% of the images of ‘0’ wer e misclas-
sified. At the bottom of eac h column, the perc ent er ror ra te for that top-choice class is shown: thus, 0.0% of
images classified as ‘0’ wer e in fac t misclassified, but 43.7% of top-choice ‘O’ s were misclassified. At the
extreme bottom-right of the matrix, the over all er ror ra te is shown: 13.67% of the 1200 images wer e misclassi-
fied.

After self- corr ection, the new classifier (now specialize d to a single typefac e) exhibits the confusion matrix
shown in Figure 4.



t o p - c h o i c e
0 O Q D G C

0 178 22 0 0 0 0 11.0
t O 0 200 0 0 0 0 0.0
r Q 0 0 200 0 0 0 0.0
u D 0 26 0 174 0 0 13.0
e G 0 0 0 0 200 0 0.0

C 0 0 0 0 0 200 0.0

0.0 19.4 0.0 0.0 0.0 0.0 4.0 0

Figure 4: The top-ch oice confus ion matrix of the self-c orrecte d single -font classif ier on classe s { 0, O, Q, D,
G, C }, printed in Avan t Garde Book Oblique at 10 point and 300 ppi, 200 pseudo -rando mly distort ed images
each. Error rates are show n as perce ntages .

Note that the overa ll err or ra te has fallen to 4%, a re duction by a fac tor of ×3.5. Throughout this study, we repor t
improvement in terms of er ror- reduc tion fac tors in order to compar e re sults acr oss typefa ces. An err or-r eduction
fac tor of ×1.0 means no improvement in ac cura cy; a fac tor of ×2.0 mea ns that 50% of the er ror s ar e cor rec ted;
×3.5 mea ns that 71% of er rors ar e corr ecte d.

The ef fec t on the top-choice ‘O’ images may seem rema rkable. Even though almost 44% of the data wer e
poisoned, retr aining repe lled over half of them.

If the method is iterated once again, the re sult is as shown in Figure 5.

t o p - c h o i c e
0 O Q D G C

0 196 3 0 1 0 0 2.0
t O 0 200 0 0 0 0 0.0
r Q 0 0 200 0 0 0 0.0
u D 2 16 0 182 0 0 9.0
e G 0 0 0 0 200 0 0.0

C 0 0 0 0 0 200 0.0

1.0 8.7 0.0 0.5 0.0 0.0 1.8 3

Figure 5: The top-ch oice confus ion matrix after two itera tions of self-c orrect ion, on classe s
{ 0, O, Q, D, G, C }, printed in Avan t Garde Book Obliqu e at 10 point and 300 ppi, 200 pseudo -rando mly dis-
torted images each. Error rates are shown as perc entage s.

The er ror ra te has fa llen again, to 1.83%, a fur ther re duction of ×2.2, for a total reduc tion of ×7.5 compar ed to the
given classifier . Further iterations of the method on this data yield only small improvements: af ter five iterations,
the err or rate drops to 1.33%, for a total re duction of ×10.3.

An upper bound on the improvement possible through retr aining can be estimated by the following compu-
tation: retr ain on the images using their true class labels, and then test on the same data. In the circ umstances of
this trial, this yields an err or rate of 0.67%, for an improvement by ×20. Although this is a biased and highly ar ti-
ficial statistic, it suggests that there may be room for further improvement in the method.

When the same exper iment is run on ea ch of the 100 typefa ces used in [Bai91] (se e Appendix A), we
observe that 94 them enjoyed some improvement af ter one iteration, with an aver age† re duction in the err or rate
by ×3.4 (so Avant Garde Book Oblique is a typical exa mple). Iter ating five times yielded a better overa ll aver age

† When computing these averages, improvement factors greater than 25 were truncated to 25, to avoid exaggerations due to a
few extraordin ary factors (some are greater than 100!).



err or reduc tion (×4.6), but at a cost: only 81 of the typefa ces improved overa ll. The estimated upper bound on
improvement is ×11, about twice as good as what was achie ved. On some typefa ces the er ror ra te increases
through all iterations, and on others the err or ra te decr ea ses at first but incre ases in later iterations.

This six-symbol exa mple has illustrated the principal fe atures of the method. The next sections will re port
the results of large r and more re alistic trials.

5. A 100-Font, Large-Alphabet Experiment

Next, we investigate the succe ss ra te of the method using a larger trial, on the 80 ASCII symbols listed in
Section 2, and at a wider ra nge of type sizes: 6, 10, 12, and 16 point. Six point type (at 300 ppi) is below the
threshold of reliably good per forma nce using modern commer cial OCR machines. Ten and twelve point ar e rep-
rese ntative of much book text and typewritten mater ial. Sixteen point is large r than most body-text in books and
magaz ines. As bef ore, 200 images wer e gener ated for eac h combination of typefac e, symbol, and type size: in
total, 6.4M images.

The improvement, aver aged over all 100 typefa ces, is shown in Figure 6 for eac h type size, as a function of
the number of iterations of the method.

Avera ge
err or

reduc tion
fac tor

No. of iterations of the self- corr ecting method

×1

×2

×3

×4

×5

×6

×7

1 2 3 4 5

6p • • • • • ×1.40
10p •

• • • • ×2.4812p •

•
• • • ×4.38

16p •

•

•
• • ×7.22

Figure 6: Reduction in error rate (multiplica tive facto r), avera ged over 100 typefa ces, for each type size 6, 10,
12, and 16 point, as a functio n of the number of iteratio ns of the self-c orrecti ng method. The error- reducti on
factors after five iteratio ns are printe d on the right. A facto r of ×1.0 means no improvemen t in accura cy. (On
an alphabe t of 80 ASCII chara cters, 200 pseudo -rando mly distorte d images for each symbol/ty pefac e/size. )

Some overa ll improvement occur s at all four type sizes. The improvement at six point of ×1.4 mea ns that nea rly
30% of the er ror s have bee n cor rec ted, which in many applications is significant. At ten point, ×2.5 mea ns that
60% of the er ror s have bee n cor rec ted. Gre ater improvements occ urre d at large r sizes. At all four sizes, the esti-
mated upper bound on improvement was about two to three times grea ter than what was ac hieved.

Iter ation clear ly helps the aver age improvement, with most of the advantage occur ring in the first three iter-
ations. However , iteration often has a subtle cost: gener ally, the more iterations, the large r the number of type-
fac es that do not improve, or even worse n. For example, at ten point, afte r one iteration all 100 of the typefac es
improve, but af ter 2 iterations only 99 improve; af ter 3 iterations, 97; and, afte r 5 iterations, 93. Ther efor e it may
be judicious to limit the number of itera tions, for example in applications wher e the cost of deter iorating on some
typefac e is higher than the re war d for improving on aver age.

Across all four type sizes, the best improvement is rema rka bly high, while the worst is not very bad (af ter
five iterations):



size best worst
16p ×141.5 ×0.8
12p ×33.8 ×0.9
10p ×10.9 ×0.8
6p ×3.7 ×1.0

Is it possible to predict which typefac es will improve, without ac tually running the algorithm? More specif-
ically, does the outcome of the method cor rela te well with any easily mea sured statistical proper ties of typefa ces?
We investigated four statistics deriva ble from the top-choice conf usion matrix re sulting fr om running the given
polyfont classifier on test images for ea ch typefac e, as follows.

1. Overall error, average d over all classes.

2. Maximum error among true classes.

3. Maximum error among top-choice classes.

4. Maximum ‘‘ worst/goo d ratio’’ among top-choice classes. The ‘‘ worst/good ratio’’ for class c i is computed
by examining images whose top-choice label is c i , and counting the images in the most fre quently misclas-
sified class (‘‘ worst’’ ); then divide this number by the number of images that ar e corr ectly classified
(‘‘ good’’) . A ra tio grea ter than 1.0 means that, for some top-choice class, corr ec tly labeled images ar e out-
numbered by mislabeled images for some class. In ca ses like this, wher e mislabeled images dominate cor-
rec tly labeled images, we might expec t retr aining to fa il.

For all 100 typefac es, using the 10 point data, we plotted the improvement fa ctor af ter one iteration as a function
of eac h statistic. These plots reve aled no clea r corr elations, and in particular no even approximately monotonic
functional rela tionshi ps. We conclude that these four statistics ar e not usef ul for predic ting the improvement pos-
sible under the method. The fea sibili ty of predicting a typefa ce’ s potential for improvement under this method
rema ins an open question.

The data fr om this large trial, on 6.4M images of 80 symbols in 100 typefac es, comprise the principal
results re ported in this paper . We believe they ar e promising, but we re cognize that the exper imental design is
unrea listi c in seve ral re spects. For example, we cannot expec t to have a minimum of 200 images for ever y class
befor e re training. In the next Section, we rela x this constra int.

6. Sensitivity to the Number of Samples

We will now examine the eff ect of var ying the number of image samples per class available for re training.
For this purpose, we re duced the scale of the exper iment, using only the 10 point data and exec uting only one
iteration. Also, we selecte d ten typefa ces‡, ea ch repr ese nting one of the 10%iles of improvement fr om the previ-
ous trial: the aver age improvement among these ten (×2.05) is close to the aver age among all 100 (×1.98). The
input data was the same as in the ea rlier trial. The algorithms wer e modified to enfor ce an upper bound U on the
number of images used when re training a class: that is, if in Stage 2 I i

n  > U, then we re move fr om I i
n all but

the first U member s befor e re training. Testing was car ried out on all the input data, as befor e.

Figure 7 shows the aver age improvement af ter one iteration of re training, as a function of U (‘‘ all’’ means
that all available data was used in re training: this is the defa ult behavior tested in the previous trial.) No aver age
improvement is seen until U ≥ 3, but fully half of the possible improvement is rea lized by U = 10. For
U ≥ 25, 100% of the typefac es improve. Little fur ther improvement occur s for U ≥ 50.

‡ Adobe Corona Roman, Adobe Corona-Ital ic, Adobe Excelsior Roman, Adobe Helvetica Italic, Adobe Times-BoldIt alic, ITC
Bookman Light Roman, Linotype Memphis Medium, Linotype Sabon Italic, and Linotype Trade Gothic.
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Figure 7: Reduction in error (left scale, solid plot), avera ged over 10 typefac es, for 10 point type, as a func-
tion of the maximum number of sample images per class used in retra ining. Also shown: the perce nt of type-
faces that are improve d (right scale , dotted plot). (On an alphabe t of 80 ASCII chara cters, 200 pseudo -
randomly distor ted images for each symbol/typ eface /size. )

Thus the self- corr ec ting method appea rs to per form re liably when the number of samples per class available for
retr aining is at least 20. This minimum fr equenc y re quirement may not be unrea listically high: within the text of
this article (e xcluding Figures and equations), among the 80 ASCII char ac ters used in the trial, 62 of them (77%)
occur red at least 20 times, and 22 (27%) at least 20 times per page, on aver age.

7. Discussion

We have descr ibed a way to improve classific ation by ener getically exploiting a wea k constraint on prob-
lems: in this case , the constraint is that the text is printed in a single typefac e. Since the system must be told this
fac t, the method does not opera te purely automatically. Howeve r, single-font text is a fr equently occur ring spe-
cial ca se, often in large batches, so users need not fea r having to intervene manually for ever y page. Also, the
user need not possess the ar cane skill of identifying typefa ces by name.

Err or re duction by fac tors of 2.5 or more can be significant in many applications, and so it is potentially
important to have shown that this is possible on text images as small as 10 point (at 300 ppi). The unusually
large sca le of the exper iments, involvi ng 80 ASCII char ac ters in 100 typefac es, should be rea ssuring.

This has been an exer cise in combining technologies, in which the acc ura cy of an existing OCR system is
amplified by a simple self- corr ecting scheme . It does not attempt the complex task of ‘‘ typefac e re cognition,’’
nor does it re quire ac cess to a library of pre- constructed typefac e-spe cific classifie rs. For a simple scheme of our
sort to succe ed, it see ms to us that the given classifier must alre ady per form re asonably well, above some mini-
mum threshold. Although we do not know how to quantify this threshold, we have at least shown that one such
classifier alre ady exists.

The simplicity of the scheme has sever al advantage s. It complements, and does not interfe re with, other
methods for improving OCR ac cura cy, such as linguist ic contextual ana lysis. Also, it is easy, in an engineer ing
sense, to add speed optimizations to the given classifier , such as prec lassifier s, without changing the self-
corr ec tion mec hanism. If designed conser vatively, the prec lassifier s can run unchanged in combination with the
retr ained classifier s.

The large improvements from 12 point to 16 point type sizes may be an indication that the method may
work not mer ely on good-quality images, but more gener ally on images whose degra dations may be sever e but
are consistent. Also, it may save CPU time to re strict retr aining to those symbols which are err or-pr one and
likely to improve.



The upper bound on possible improvement that we have estimated is typically two or three times better than
what has been achieve d. This suggests that there may be room for fur ther improvement. One idea is to prune the
retr aining sets in a better way, perha ps through clustering or ra nking by confidenc e score s (base d on P(c i x))
provided by the classifier . Another interesting idea is to enfor ce lower bounds on the size of the retr aining sets.

Future work must of course include exper iments on natura lly occur ring text images. In prepa ra tion for this,
the sensitivit y of the method to missegmented char acter images must be assesse d.
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Appendix A. The 100 Fonts Used in the Trials

The ra tionale for selecting these fonts is given in [BF91]. They ar e all trade marks of Linotype AG, unless shown
otherwise in square brac kets.

A s t er R o m a n A s t er I t a li c



Avant Garde Book Roman [ITC]
Avant Garde Book Obl iqu e [ITC]
B emb o R om a n
B e m b o It a l i c
Bod on i R oma n
Bod on i I t a lic
B o o k m a n Li g h t R o m a n [ IT C ]
B o o k m a n Li g h t It a l i c [IT C ]
Br e u g h e l Ro m a n
Br eu gh el It a lic
C ale d on ia Rom an
C a led on ia I t a lic
Ca s lo n O ld F a c e # 2 Ro ma n
Cas lo n Old F ac e # 2 I talic
Ch e lt e n h a m Ro m a n
C h e lte n h a m I ta lic
C lear f ace R egu lar R om an [IT C ]
C lea r f a ce R egu la r It a lic [IT C ]
C lo ist er R o m an
C lois t er I t a lic
C o r o n a R o m a n [A d o b e ]
C o r o n a I t a l i c [ A d o b e ]
C o u r i e r 1 0 R o m a n [ B i t s t r e a m ]
C o u r i e r Tw e l v e [ M o n o t y p e ]
E u r o s t i l e R o m a n
E u r o s t i l e I t a l i c
E x c e l s i o r R o m a n [A d o b e ]
E x c e l s i o r I t a l i c [A d o b e ]
F r u t ig e r # 5 5 R o m a n
F r u t ig e r # 5 6 I t a lic
F utura B o o k R o ma n
F utura B o o k I t a l i c
G a l l iar d R om a n [I T C ]
Ga lli a r d I t a li c [ I T C ]
G ar am o n d # 3 R o m an
G a r a m on d # 3 I t a lic
Gi l l S a n s R o ma n
G i l l S a n s I ta l i c
G oudy O ld St y le Roman
G o ud y O l d S ty l e Ital i c
Helvetica Roman
Helvetica Italic
I o n i c R o m a n [ M o n o t y p e ]
I o n i c I t a l i c [M o n o t y p e ]
Jan so n T e x t R o m an [A d o b e ]
J a n s o n T e x t I t a lic [ A d o b e ]
Lea m in gton Rom a n
L ea m in gt on I t a lic

Le t t e r G o t h i c R o m a n [ A d o b e ]
Le t t e r G o t h i c S l a n t e d [ A d o b e ]
L u c i d a Ro m a n [Ad o b e ]
L u c i d a It a l i c [A d o b e ]
M e l i o r Ro m a n
Me l i o r It a l i c
Me m p h i s Me d i u m Ro m a n
Me m p h i s Me d i u m It a l i c
M e r id ie n Ro m a n
M e r idie n Ita lic
N ew B a s k er v i l l e R om a n [ I T C ]
N e w B as k e r v i l l e I t al i c [I T C ]
New Cent ury Schoolbook Roman
New Cent ury Schoolboo k Italic
O p tim a R o m a n
O p tim a I ta lic
Palatin o Roman
Palatino Italic
P la n t in L igh t R om a n
P la nti n L ig ht I ta lic
Pres tige Elit e Roma n
P r e s t i g e El i t e I t a l i c
P r i n t O u t R o m a n
R o c k w e ll L ig h t R o m a n
R o c k we ll L ig h t I ta lic
S a b o n R o m a n
S a b o n I t a lic
Se r ifa Ro m a n
Se r ifa It a lic
S o u v e n i r M e dium Ro m a n [ I T C ]
S o u ve n ir Me d iu m I t a lic [ I T C ]
S p a rta n B ook R om a n
S pa rta n B ook I ta l i c
T e x t y p e R o m a n
T e x t y p e I t a l i c
Times Roman
Times Italic
T ra d e G ot h ic Rom a n
T r u m p M e d i a e v a l R o m a n
T r u m p M e d i a e v a l I t a l i c
Ty p e w r i t e r El i t e [ M o n o t y p e ]
Ty p e w r i t e r P i c a [ B i t s t r e a m ]
U n iv e r s # 5 5 Ro m a n
U n iv e r s # 5 6 I t a lic
W a l b a u m Ro m a n
Wa l b a u m I t a l i c
W eis s R oman
We i s s I t al i c
Za p f B o o k L igh t R o m a n [ I TC ]
Za p f B o o k L igh t It a lic [ ITC ]


