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ABSTRACT

We describe a technique for modeling the character recognition accuracy of an OCR system — treated as a
“black box” — on a particular page of printed text based on an examination only of the output top-choice
character classifications and, for each, a “confidence score” such as is supplied by many commercial OCR
systems. Latent conditional independence (LCI) models perform better on this task, in our experience, than
naive uniform thresholding methods. Given a sufficiently large and representative dataset of OCR (errorful)
output and manually “proofed” (correct) text, we can automatically infer LCI models that exhibit a useful degree
of reliability. A collaboration between a PARC research group and a Xerox legacy conversion service bureau has
demonstrated that such models can significantly improve the productivity of human proofing staff by “triaging”
— that is, selecting to bypass manual inspection — pages whose estimated OCR accuracy exceeds a threshold
chosen to ensure that a customer-specified per-page accuracy target will be met with sufficient confidence. We
report experimental results on over 1400 pages. Our triage software tools are running in production and will
be applied to more than 5 million pages of multi-lingual text.

Keywords: Triage, Optical character recognition, OCR quality, scan conversion, service bureau, latent condi-
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1. INTRODUCTION

The cost of conversion of paper documents, through image acquisition (scanning) and recognition (OCR), into
machine-legible coded form (such as ASCII or Unicode) is often dominated by the expense of manual post-
OCR correction. This occurs because the present state of the art of OCR can only rarely yield uniformly
high accuracies across collections of dissimilar documents, for example, those containing a variety of typefaces,
languages, layout formats, and image qualities.

If it were possible automatically to decide which of the documents emerging from OCR possess acceptable
accuracy, then these documents could skip manual correction, lowering production costs. We call this a triage
decision, in analogy with the practice of emergency medical rescue staff who are trained to classify injured
individuals into those who need immediate medical attention and those who do not. Medical triage tries to
maximize the number of survivors given finite care facilities; OCR triage tries to maximize the number of pages
that skip correction given a fixed uniform accuracy target.

We describe a method for triage based on the availability of “confidence scores” attached to each character
interpretation reported by the OCR system: these scores are, typically, integers with a narrow range (in our case
[0,255]) of values which bear some relation to the accuracy of that interpretation. We treat the OCR system
as a “black box”: that is, we do not rely on any prior knowledge of the internal algorithms and heuristics that
it employs, nor upon any documented or rumored motivation for the scores. In particular we do not interpret
them as posterior probabilities of correctness. Experience has led us, in fact, to be so loathe to depend on
prior models of their behavior that we view them as categorical rather than numerical. In other words our
models do not assume any explicit functional relationship between the numerical value of confidence scores and
probabilities of error.

Our principal goal is to build triage tools which can be applied fully automatically and at high speed in a
high-throughput service bureau setting. The tools should be automatically trainable given sets of OCR results
and corresponding high-quality “ground truthed” files. The tools should also assist production supervisors in



the crucial choice of operating points that trade off cost versus quality: that is, the rate at which documents
are triaged versus the risk that a triaged page does not meet a given accuracy target. As far as we are aware
there have been no previously published studies of triage in our sense. We are aware that triage has been used
in a number of OCR service bureaus.!

Our technical approach is motivated by latent conditional independence models (LCI models) (see, for
example,?). A bivariate LCI model is described in detail in Section 2. The application of this model to triage
is described in Section 3.

We have applied experimental prototypes of our triage tools to over 1400 pages of patent literature documents
provided by the European Patent Office (in three languages: English, French, and German) to the Xerox
Business Services Document Imaging Services Center (DISC) in Mitcheldean, U.K. These experiments are
described in Section 4. A few possible extensions and conclusions are in Sections 5 and 6.

2. BIVARIATE LATENT CONDITIONAL INDEPENDENCE MODEL

A discrete bivariate distribution can be represented in general by a two-dimensional array P = [pm, ] whose
elements are non-negative and add up to one. If the two discrete random variables can assume M and N distinct
values respectively (i.e., 1 <m < M, and 1 < n < N), such a representation comprises of M x N parameters
bound by one linear constraint (Emn Pm,n = 1). It is often helpful to describe discrete bivariate distributions
(DBD) with a parsimonious model so that, in applications, fewer parameters need to be estimated. One way
to achieve this is a latent conditional independence (LCI) model where

K
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This model has K (M + N + 1) parameters bound by 2K + 1 linear constraints. If K is much smaller
than both M and N, then the number of parameters in an LCI model is much smaller than the general DBD
representation. As an example, in our experiments M and N were 156 and 162 respectively, while K was set
to 5.

It may assist intuition to consider a generative interpretation of the LCI model. Let P = [py,,,] describe a
source that randomly picks a “factor” k (latent or unobserved) with probability ay , where the distribution is
over K possible factors. The source then independently generates two numbers (observed) —m (1 < m < M)
with probability ug,m, and n (1 < n < N) with probability vy, ,. Conditioned on any factor, k, the joint
distribution of (m,n) is an independent combination (outer product) of the marginals represented by wug m
and v ,,. However, the overall joint distribution of (m,n) given by P is not an independent combination of
the overall marginals represented by Eszl apUk,m and Ele axVk,n respectively. m and n are therefore not
independent, but generated according to a convex sum of distributions each of which is a simple independent
combination of marginals.

In probability notation, we can write uy ., as p(m|k), vk, as p(n|k), and a as p(k) and observe that the

LCI model specifies
K K

P = p(m,n) = Y p(k)p(m,nlk) = Y p(k)p(m|k)p(n|k)

k=1 k=1



Although latent conditional independence can be applied to model joint distributions of more than two ran-
dom variables, they have been most popularly applied to bivariate distributions in contingency table analysis,?
statistical exploration of grammatical relationships of words and semantic disambiguation,®* probabilistic la-
tent semantic indexing.® While LCI models have a probabilistic framework, similar factorizations have been
explored with linear algebra techniques in positive matrix factorization that has been applied to face recogni-
tion,® and environmental studies.” If we do not restrict model parameters to be positive, methods such as
singular value decomposition® 19 can be applied for dimension reduction. An advantage of LCI is the intuitive
appeal of the probability parameters as relative frequencies.

3. TRIAGING WITH LCI MODELS

Our OCR system generates, for each page in the input document, a string of pairs (m,n) where m is a character
label, and n is a confidence score. Each pair is either “correct” (label m matches the ground-truth) or “error”.
Given the observation we compute the a posteriori probability of error p(error|m,n).

p(m, njerror)p(error)
p(m,nlerror)p(error) + p(m, n|correct)p(correct)

(2)

p(error|m,n) =

Each of the two conditional joint distributions over (m,n) (conditioned on “correct” and “error” respectively)
are modeled as latent conditionally independent with K factors, where K is chosen experimentally to avoid
over-fitting. The LCI model, in principle, allows for different groups of character labels (lower case, numeric,
punctuation, etc.) to have different distributions of confidence score, where both the character groups and
confidence-score statistics can be learned automatically from training data.

The average a posteriori probability of error computed over all (m,n) pairs in page of OCR output is used
as a OCR quality score for the page. We choose a threshold score and triage all pages with lower average a
posteriori probability of error than the threshold, i.e., declare them as “good quality” pages. The true error
rate of a page can be computed by manual labeling of erroneous output or by comparison to ground-truth
using dynamic programming (see for example!!). The average a posteriori probability of error is an estimated
“quality score” which is correlated, albeit not perfectly, with the true error rate. By choosing a threshold on
this score, we can trade off the truly good quality pages (true error rate below specified threshold) that are not
triaged (false alarms) for the bad quality pages that are triaged (false hits).

Training: The LCI models that represent the class-conditional distributions p(m, n|correct) and p(m, n|error)
have to be trained from samples of (m, n) pairs labeled as “correct” or “error”. The labeling is done by aligning
OCR output to ground-truth at the character level using a string matching algorithm (see, for example,!!). For
each category, “correct” and “error”, we find an LCI-model that fits the data best in the maximum likelihood
sense. The training process is formulated in terms of the Expectation Maximization (EM) algorithm.®!? The
sufficient statistics for estimating the multinomial LCI model are the counts (number of occurrences) of each
(m, n) pair for each category (“correct” / “error”). In practice, we run 50 iterations of the EM algorithm without
directly measuring convergence criteria.

Validation: For a target true error rate, we can experiment on held out labeled data (a validation set) to
generate an operating characteristic that empirically quantifies the trade off between false hit and triage rates.
This facilitates the choice of a threshold to be used during triage that will maximize the number of pages triaged
consistent with a reasonably low risk that too many pages will exceed the error target. The error target is set
by the customer of the service bureau, and the acceptable risk level is chosen by the service bureau managers.

4. EXPERIMENTS AND RESULTS

1413 scanned pages provided to Xerox by the European Patent Office were processed with the TextBridge OCR
system at DISC. The text on the pages was manually keyed in by DISC staff to provide ground-truth data.
The OCR output (character labels and confidence scores) for each page was then aligned to ground-truth text
using dynamic programming (such as Unix diff) to obtain “error” or “correct” labels for each (character label,
confidence score) pair.



Table 1: Operating characteristics on validation data : LCI model based triaging method.

Operating Triage False Good and Bad but Good but Bad and Total

threshold rate  hit rate  triaged triaged  manually manually tested
(% of  rate% (‘false  corrected  corrected
total) hits’) (‘false
alarms’)

0.002 0.00 0.00 0 0 469 238 707
0.004 3.25 0.00 23 0 446 238 707
0.006 11.60 0.00 82 0 387 238 707
0.008 22.21 0.00 157 0 312 238 707
0.010 35.08 0.85 242 6 227 232 707
0.011 40.88 1.27 280 9 189 229 707
0.012 47.38 2.55 317 18 152 220 707
0.014 55.73 4.95 359 35 110 203 707
0.016 67.33 8.35 417 59 52 179 707
0.018 74.26 12.16 439 86 30 152 707

The 1413 pages were then randomly permuted and partitioned into two samples of 706 and 707 pages
respectively. The first sample was used for training the LCI models for “error” and “correct” groups, each
model having 5 factors (K = 5).* The second sample was used for validation.

Table 1 shows the operating characteristics (false-hit rate vs. triage rate) on the validation set. The false
hit and triage rates were computed for different values of the threshold average a posteriori probability of error,
and a target quality of <1.5% OCR error.

Of the 707 pages in the validation set, OCR output on 469 pages (66%) met the target quality. With an
operating threshold of .011 on the average a posteriori probability of error, 289 pages (41%) were triaged and
bypass manual intervention. Of these, 280 were among the 469 “good quality” pages. Nine of the triaged pages
did not actually meet target quality, representing a false hit rate of 1.3%, as an example of customer-specified
tolerance.

Thus our triage method, applied to this set of page images, has been shown capable of bypassing manual
correction for 41% of the document stream fully automatically and without compromising the quality goals
established by the customer.

Table 2: Operating characteristics on validation data : simple “suspect” threshold based triaging method.

“Suspect” threshold = 64 “Suspect” threshold = 16
Operating Triage  False Operating Triage  False
threshold rate  hit rate threshold rate  hit rate

(% of  rate% (% of  rate%
total) total)

100.00 0.00 0.00 100.00 0.00 0.00

99.80 38.19 6.51 98.00 8.06 0.00

99.60 46.25 9.34 96.00 16.12 0.28

99.40 51.06 11.60 94.00 26.73 0.71

99.20 54.46 13.44 92.00 37.48 2.26

90.00 46.82 3.54

*It is not necessary, of course, that both distributions be modeled with the same number of factors.



Table 2 shows the results of triaging with a simpler estimate of OCR quality. Here we compare the confidence
score accompanying each character in the OCR output to a preset threshold, and assume that characters with
lower confidence are in error. The ratio of the number of such characters to the total number of characters
in the OCR output is used as the simple measure of OCR quality. If this measure is treated as an estimated
character error rate, very few pages (less than 8%) can be triaged. We can obtain better results by calibrating
this measure using ground-truth data. As with our LCI model based method, we can compute operating
characteristics (Table 2) on validation data (note that there is no training, per se, in this simpler method). On
the left is the result of using the “suspect” threshold on the confidence score recommended by the vendor of
the OCR system. On the right are the results of using the “suspect” threshold we found to best (qualitatively
and empirically). Triaging with LCI models yields still better results.

140 160

20 40 60 80 100 120 140 160 20 40 60 80 100 120

(a) Correctly classified characters (b) Misclassified characters

Figure 1. Empirical distributions of confidence score (column index) conditioned on each character class (row index).
Lighter cells indicate higher observed frequency.

Figure 1 illustrates the observation that motivated the use of LCI models for OCR quality estimation.
The two images represent the joint (character-class, confidence score) distribution conditioned on the OCR
proofing outcome (“correct” or “error”). The same “confidence score” (represented by a column in each figure)
is associated with different relative frequencies of “correct” and “error” for different character classes. Each
character class is represented by a row. We can consider a specific example with two character classes: lower
case “a” and “,” (comma). If we triage characters (rather than whole pages), on the basis of a chosen threshold
on the confidence score (32, for this example), the difference between the two character classes is shown in the
Table 3. Notice the stark difference in the numbers for the characters which are suspected to be erroneous.
While close to 90% of these are actually correct for class “a”, only about 50% are actually correct for class “,”.
This demonstrates the weakness of a using a fixed “suspect” threshold on the confidence score.

Table 3: Detecting errors with a fixed threshold on confidence score: differences between character classes

Character class
True OCR result Suspected OCR result “a” “«

Correct Correct 94.8% 89.2%
Correct Error 4.5%  3.8%
Error Correct 03%  3.0%
Error Error 04%  4.0%

4.1. Triage performance in production

At the time of this article going to press, our triage method is being applied, in full production, in an EPO
contract covering six million pages of pre-scanned text documents. The circumstances under which the triage



tools are being used in production are somewhat different in detail from the earlier discussion. For example,
they are affected by an evolution in the customer’s quality formula, and DISC’s implementation of it. Also the
models were retrained progressively on more available data.

In the production batches of Patent Literature text recovery, approximately 800,000 pages have been pro-
cessed through the triage tools. Of these, approximately 400,000 were processed using a “safe” threshold on
the triage operating curve and achieved approximately 75% triage rate; where “safe” is < 1% false hit rate as
measured on a 700 page sample.

A further 400,000 pages were processed using a “risky” threshold on the triage operating curve and achieved
approximately 90% triage rate; where “risky” might be 8% false hit rate (based on the validation data for the
model). The business reason for operating triage in this “risky” way is to concentrate a limited proofing resource
on the most probable poorest quality OCR results.

Of the 800,000 pages processed in this way, some 1000 randomly selected pages were subjected to the
customer’s own quality checks and passed with acceptable text quality.

As we better understand (and can codify) some of the subjective leniency being applied during the customer’s
quality checks, we anticipate that we will be able to move our “safe” threshold on the triage operating curve to
achieve greater triage rates (and our “risky” threshold will yield a lower false hit rate).

As we obtain more and more ground truth pages, we anticipate that the triage model will become an even
better predictor, and also envisage that we will be able to generate language-specific triage models which we
hope will be an even more reliable predictor (where the source language is known and has been modeled).

5. FUTURE EXTENSIONS

So far we have explored only a two-dimensional model, where the dimensions are character class and ‘confidence’
score. Our LCI model training and classification algorithms, however, can cope with higher dimensions. Thus
they could exploit knowledge of any other characteristic of documents including typeface, language, content
topic, and image quality. This will require either metadata or specialized automatic classification, which in
some cases is immediately feasible.

Our triage training depends on minimum-cost string matching with simple per-character costs and no lan-
guage model richer than character unigrams, and as a result it has some potential vulnerabilities. It cannot
detect, and so cannot model, deletion errors, which could be significant in practice. Perhaps n-gram character
language models can mitigate this. In our experiments so far, we seem not to suffer much from this obliviousness
to deletions: perhaps we are protected by frequent co-occurrence of deletion errors with segmentation errors,
and therefore substitution errors, which we can detect.

In this study we have triaged documents one full page at a time. Our existing method, with few or no
refinements, may be sensitive enough for “on-line” triage in which, as the manual correction operator works
down a page, overall page quality is continually re-estimated, so that the operator can be instructed to stop
when the per-page accuracy target has, with sufficiently high statistical confidence, been reached. In addition,
it is conceivable that a similar (but perhaps more refined) method could triage shorter passages, even individual
words, well enough to direct manual correction to the most urgent corrections first. These two strategies are
complementary and may be mutually enhancing.

6. CONCLUSION

We have shown that the per-character ‘confidence’ scores often provided by commercial OCR systems can
be exploited fully automatically to ‘triage’ documents on which OCR has performed well, and so to reduce
post-OCR manual correction costs significantly without sacrificing uniformly near-perfect accuracy across the
document stream. Our approach, using latent conditional independence models, assumes that ‘confidence’
scores may behave differently for different character classes: in practice, we can identify subsets of character
classes for which the scores behave similarly, allowing us to combine their statistics and so smooth otherwise
uselessly sparse training data. Given a sufficiently large supply of accurate “ground-truth” text corresponding



to OCR results (which is commonly available in document conversion service bureaus such as Xerox’s DISC),
elementary string matching can label all the data needed to train the triage models.

The steady (but slow) improvement in overall accuracy of OCR, systems offers some hope to users who are
poorly served today. But no OCR system is able today, or, we believe, will be able in the foreseeable future,
to provide uniformly near-perfect accuracy across a wide range of dissimilar documents. Thus, anyone who
desires to scan and convert a large legacy document collection with uniformly high accuracy must expect to pay
for post-OCR manual correction. This can be carried out successfully only by technically sophisticated service
bureaus with trained staff. Service bureaus do not develop their own OCR systems; in fact, today they all use
more or less comparable recognition technologies. Our triage method is one way for a particular conversion
service bureau to achieve a significant efficiency advantage over its competitors without sacrificing high quality
levels. Thus our triage method represents an important, and as we have argued, a possibly expanding, family of
document image analysis methods able to relieve one of the most stubborn technical and commercial obstacles
to high-quality large-scale legacy document-collection conversion.
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