Convergence of lterated Classification
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Strengths of Iterated Classification
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- *Reduces per-pixel error rates significantly
*Enforces local uniformity (“purity”) of regions
*Tends to converge region boundaries to the
Classify ground-truth (they don't drift)
*Avoids arbitrary restrictions: e.g. zones need

not to be rectangles

" *Requires no manual intervention

lterated-classification runs a sequence of classifiers. The same ground-

truth Is passed to every training phase. Classification results are passed

Novelty

Made possible by pixel-
accurate classification

*Not the same as Cascading
Classifiers

*Not Mathematical Morphology

i_‘-Not Markov Random Fields

Proof: Iterated Classifiers Converge to GT

from one classifier to its successor for training and classification. Each

classifier Is, In general, different from the others.
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Task: Pixel-Accurate Segmentation
of Document Images

Output of 15t stage
With looser GT Wlth tlghter GT

Original image

* “Tighter”: more careful,
detailed and accurate

* Tighter GT reduces the
per-pixel errors by 45%

Color Codes for Content

Blue: Machine Print

Purple: Handwriting

* In each stage, a
classifier is guided by
the GT to correct the
errors made by Its
predecessor

 Note that whether GT
IS loose or tight,
iterated classifiers
reduce per-pixel
errors and preserve
boundaries

* Tight GT allows
iterated classifiers to
converge more
rapidly
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Future Work

« “Bootstrap” ground-truth: surprisingly, these
. |
classifiers often perform_ l:_)ett_er than loose G_T. on real data.
Maybe we can use classification results as tight GT.
* Investigate under what conditions iterated
classifiers will converge to GT in real problems

* Apply iterated classifiers to image processing
problems

W ell on real data.

tr

tq tr

tq tr

*We have often observed convergence

‘Proof for a special case: two-class
problem, straight-line boundary (details
of proof in paper).

‘Using one feature that has also worked

Use Classification to Extract
Content Layers

Experiments: 24% Drop In Error
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Total per-pixel error rate as a function
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