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The evaluation of Web proxy performance can be complex. In this paper, we present the
lessons and results of our implementation of a novel simultaneous proxy evaluation technique.
In this architecture, we send the same requests to several proxies simultaneously and then
measure their performance (e.g., response times). With this approach, we can test proxies
using a live network with real content, and additionally be able to evaluate prefetching proxies.

1 Introduction

A caching web proxy is used to store cachable web
content in the expectation that it will be of use in the
future. If a request for a Web object arrives while the
cached copy is still valid, the object will be served from
the cache instead of from the origin server. Both re-
sponse time and bandwidth can be saved by applying
web proxies.

Proxy caches are useful and deployed across many
organizations. It is helpful both to developers and to
purchasers of web proxies to be able to accurately mea-
sure their performance. Typical evaluation methods,
such as benchmark performance, however, are limited
in applicability — often they are not representative of
the traffic characteristics of any customer facility.

In contrast, the Simultaneous Proxy Evaluation
(SPE) architecture [9] is designed specifically to use ac-
tual client requests and an existing network connection
to evaluate proxy performance. To enforce comparabil-
ity of proxy measurements, it evaluates proxies in par-
allel on the same workload.

Our implementation of SPE, called LEAP (Lehigh
Evaluation Architecture for Proxies), can be used to
measure the average response time, hit ratio, and con-
sistency of the data served by a proxy. Compared to
our earlier SPE implementation work [9, 12], LEAP is
more robust and accounts for more variables that affect
measurement accuracy.

Building a complex system to perform accurate eval-
uation has provided some challenges. In what follows,
we first provide some details about SPE and our imple-
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mentations. We then review a number of design chal-
lenges that we had to face, and our solutions to them
and lessons learned from them. We subsequently de-
scribe validation tests of our system, and demonstrate
the use of LEAP by measuring performance character-
istics of multiple open-source web proxies by replaying
requests from a real-world proxy log. We wrap up with
related work, discussion, and a summary.

2 The SPE Architecture

The Simultaneous Proxy Evaluation (SPE) architecture
[9] is designed to permit a live workload and the exist-
ing network connection to fairly evaluate multiple prox-
ies. LEAP is our implementation of this architecture.
It records timing measurements to calculate proxy re-
sponse times and can compute page and byte hit rates.
In summary, it forms a wrapper around the proxies be-
ing tested and produces logs that measure external net-
work usage as well as performance and consistency as
seen by a client. By simultaneously evaluating multiple
proxies, we can utilize a single, possibly live, source of
Web requests and a single network connection to pro-
vide objective measurements under a real load. Impor-
tantly, it also allows for the evaluation of content-based
prefetching proxies, and can test for cache consistency.
In this section, we introduce its architecture (illustrated
in Figure 1).

Accompanied by a few simple log analysis tools, the
Multiplier and Collector are the two major pieces of soft-
ware that make up any SPE implementation. In LEAP,
the Multiplier is a stand-alone multi-threaded program
which is compatible with HTTP/1.1 [14] and HTTP/1.0
[7] protocols and was developed from scratch. The pub-
licly available Squid proxy cache [29] version 2.5PRE7
was modified extensively to develop the Collector.

In the SPE architecture, clients are configured to con-



Figure 1: The SPE architecture for the simultaneous
online evaluation of multiple proxy caches.

nect to the Multiplier.1 Requests received by the Mul-
tiplier are sent to each of the tested proxies. Each
attempts to satisfy the request, either by returning a
cached copy of the requested object, or by forwarding
the request to a parent proxy cache, the Collector. The
Collector then sends a single copy of the request to the
origin server for fulfillment when necessary (or poten-
tially asks yet another upstream proxy cache for the
document). When the Multiplier gets responses from
the tested proxies, it will record the response time and
calculate an MD5 digest for each response from each
tested proxy. After the experiment, Perl scripts are used
to analyze the logs from the Multiplier and the perfor-
mance reports are generated for these tested proxies.

2.1 Architecture Details

The Multiplier does not perform any caching or content
transformation. It forwards copies of each request to
the Collector and the test proxies, receives responses,
performs validation and logs some of the characteristics
of the test proxies. The clients view the Multiplier as a
standard HTTP proxy.

Each of the proxy caches being evaluated can be
treated as a black-box — we do not need to know how
they work, as long as they function as a valid HTTP/1.0
or 1.1 proxy cache. This is helpful in particular for com-
mercial proxies, but in general eliminates the require-
ment for either detailed knowledge of the algorithms
used or source code which is needed for simulation and
specialized code additions for logging [21] respectively.
Typically the proxy caches would run on different ma-
chines, but for simple tests that may not be necessary.
Alternatively, the same software with different hardware
configurations (or vice versa) can be tested in this ar-
chitecture.

In order to prevent each proxy cache from issuing its
own request to the destination Web server, the Collec-
tor functions as a cache to eliminate extra traffic that
would otherwise be generated. It cannot be a stan-

1We assume an explicit client configuration, but SPE could also
work in a transparent proxy configuration.

Sample HTTP/1.1 request:
GET http://news.bbc.co.uk/shared/img/logo04.gif HTTP/1.1
Host: news.bbc.co.uk
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.6) Gecko/20040510
Accept: image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Referer: http://news.bbc.co.uk/

Sample HTTP/1.0 response:
HTTP/1.0 200 OK
Date: Wed, 23 Jun 2004 20:52:01 GMT
Server: Apache
Cache-Control: max-age=63072000
Expires: Fri, 23 Jun 2006 20:52:01 GMT
Last-Modified: Tue, 27 Apr 2004 09:19:35 GMT
ETag: "fb-408e25a7"
Accept-Ranges: bytes
Content-Length: 251
Content-Type: image/gif
Age: 455
X-Cache: HIT from wume1.local.cse.lehigh.edu
Proxy-Connection: keep-alive

Figure 2: Sample HTTP request from Mozilla and re-
sponse via a Squid proxy.

dard cache, as it must eliminate duplicate requests that
are normally not cachable (such as those resulting from
POSTs, generated by cgi-bin scripts, designated as pri-
vate, etc.). By caching even uncachable requests, the
Collector will be able to prevent multiple requests from
being issued for requests that are likely to have side ef-
fects such as adding something to an electronic shop-
ping cart. However, the Collector must then be able
to distinguish between requests for the same URL with
differing arguments (i.e., differing fields from otherwise
identical POST or GET requests).

2.2 The Multiplier in LEAP

The Multiplier listens on a configurable port for TCP
connections from clients and assigns a thread from a
pre-generated pool for every client connection opened.
Connections to the tested proxies are handled by this
thread using select(2). When a complete request is
received, the process opens a TCP connection with the
Collector and test proxies, sends the request to them
(the HTTP version of this request is the same as the
one sent by the client) and waits for more requests (in
the case of persistent connections) from the client and
responses from the proxies.

Figure 2 shows the headers of a sample request and
response. The Multiplier parses the status line of the
request and response to record the request method,
response code and HTTP version. The only other
headers that are manipulated during interaction with
client and proxies are the connection header (“Connec-
tion” and the non-standard “Proxy-Connection”) to de-
termine when the connection is to be closed and the



Wed Apr 28 20:29:16 2004:(id=18972:2761927472):LEAPRESULT: Collector: 0:237527 0:725 2248 {DUMMY,} 192.168.0.101
non-validation HTTP/1.1 GET http://www.google.com/ HTTP/1.1

Wed Apr 28 20:29:16 2004:(id=18972:2761927472):LEAPRESULT: Proxy-1: 0:313149 0:372 2248 {200,200,OK,} 192.168.0.101
non-validation HTTP/1.1 GET http://www.google.com/ HTTP/1.1

Wed Apr 28 20:29:16 2004:(id=18972:2761927472):LEAPRESULT: Proxy-2: 0:432901 0:291 2248 {200,200,OK,} 192.168.0.101
non-validation HTTP/1.1 GET http://www.google.com/ HTTP/1.1

Wed Apr 28 20:29:16 2004:(id=18972:2761927472):LEAPRESULT: Proxy-3: 0:251789 0:453 2248 {200,200,OK,} 192.168.0.101
non-validation HTTP/1.1 GET http://www.google.com/ HTTP/1.1

Figure 3: Sample Multiplier log showing the timestamp, the initial latency and transfer time in seconds and microsec-
onds, the size of the object in bytes, the result of response validation, the client IP, the HTTP version, the method,
and the URL requested. The possible results are OK (if validation succeeded), STATUS CODE MISMATCH (if
status codes differ), HEADER MISMATCH (if headers differ)and BODY MISMATCH (if the response body differs).

content length header (“Content-Length”) to determine
when a request or a response is complete. The Mul-
tiplier adds a “Via” header to the requests it sends in
conformance with HTTP/1.1 standards.

The Multiplier measures various factors like the time
to establish a connection, the size of object retrieved,
the initial latency, the total time to transfer the entire ob-
ject and a signature (using MD5 checksums [25]) of the
object. A data structure with this information is main-
tained and once all the responses for this request have
been received, they are logged, along with the results
of validation of responses. Validation of responses are
performed by comparing the status codes, the header
fields and the signatures of the responses sent by col-
lector and each test proxy. Mismatches, if any, are
recorded. Figure 3 shows sample lines from a Multi-
plier log.

2.3 The Collector in LEAP

In this work, we have made changes only to the source
code of Squid to implement the Collector within LEAP.
We have not modified the underlying operating system.

Recall that the Collector is a proxy cache with addi-
tional functionality:

• It will replicate the time cost of a miss for each hit.
By doing so we make it look like each proxy has to
pay the same time cost of retrieving an object.

• It must cache normally uncachable responses.
This prevents multiple copies of uncachable re-
sponses from being generated when each tested
proxy makes the same request.

The basic approach used in our system is as follows:
if the object requested by a client is not present in the
cache, we fetch it from the origin server. We record the
DNS resolution time, connection setup time, response
time and transfer time from the server for this object.
For the subsequent requests from clients for the same
object in which the object is in the cache, we incorpo-
rate an artificial delay so that even though this request
is a cache hit, the total response time experienced is
the same as a cache miss.

The function clientSendMoreData() in
client side.c takes care of sending a chunk of
data to the client. We have modified it so that for
cached objects, the appropriate delays are introduced
by using Squid’s built-in event-driven scheduling ap-
paratus. Instead of sending the chunk right away, we
schedule the execution of a new function to send the
chunk at the desired time [13].

To cache uncachable objects in Squid, two modifica-
tions are required. The algorithm which determines the
cachability of responses has to be modified to cache
these special objects. In addition, when a subsequent
request is received for such an object, the cached ob-
ject should be used instead of retrieving it from the
origin server, since these objects would normally be
treated as uncachable. Squid’s httpMakePrivate()

function in http.c marks an object as uncachable and
the object is released as soon as it is transferred to the
client. Instead of marking it private, we modified the
code so that the object is valid in the cache for 180
seconds. This minimum freshness time was chosen to
be long enough that requests from all tested proxies
should be received within this time period. Thus, sub-
sequent requests for this (otherwise uncachable) object
are serviced from the cache if they are received before
the object expires from the cache.

If an object is validated with the origin server when
an If-Modified-Since (IMS) request is received and a
subsequent non-IMS request is received for the same
object, then to fake a miss, the cost for the entire re-
trieval of the object is used and not the cost for the
IMS response. While handling POST requests, an MD5
checksum of the body of the request is computed and
stored when it is received for the first time. Thus in sub-
sequent POSTs for the same URL, the entire request
has to be read before it could be determined whether
the cached response can be used to respond to the
request. Similarly, requests with different cookies are
sent to the origin server, even though the URLs are the
same. Figure 4 shows some lines from a sample Col-
lector log (identical to a standard Squid log).



1083714572.228 394 192.168.0.2 TCP MISS/200 3108 GET

http://www.pinkforfree.com/images/default/button members off.jpg - DIRECT/208.236.11.57 image/jpeg

1083714577.243 406 192.168.0.201 TCP MEM HIT/200 3112 GET

http://www.pinkforfree.com/images/default/button members off.jpg - NONE/- image/jpeg

1083714640.398 416 192.168.0.2 TCP MISS/200 11325 GET

http://media2.travelzoo.com/msn/ - DIRECT/64.56.194.107 text/html

1083714645.404 413 192.168.0.201 TCP HIT/200 11329 GET

http://media2.travelzoo.com/msn/ - NONE/- text/html

Figure 4: Sample Collector (Squid) log showing the timestamp, elapsed time in ms, client IP address, cache opera-
tion/status code, object size, request method, URL, user ident (always ‘-’), upstream source, and filetype.

3 Lessons from building LEAP

Carefully implementing the SPE architecture has pro-
vided us with a number of interesting design chal-
lenges. We describe them here, along with the solu-
tions that we applied.

3.1 Separate DNS cost

Issue: In order for a second instance of the same re-
quest to be delayed correctly, we need to record the ini-
tial response time, i.e., the time interval between when
the request is sent out to origin server and when the
first packet of response from origin server comes back.
At first, we recorded this time interval as a whole, but
this generated unsatisfactory timing results.

One potentially major time cost for getting response
is the DNS resolution time for getting the IP address of
origin server. This is especially true for cases of DNS
failures (no response from DNS server, etc.). In our
tests, less than .7% of requests had DNS failures, of
those that did, approximately 25% had DNS failures
in which responses timed out after more than 100
seconds. In general, we don’t want to force a proxy to
wait for the DNS costs of resolving a host name if it has
already done so, by previously requesting pages from
the same origin server. Therefore, we need to record
the DNS resolution time for each origin server by each
tested proxy separately.

Implementation: Our final solution is to record the
DNS resolution time separately and we also record
which tested proxy has paid this resolution time.

A standard Squid uses the ipcache entry structure
to implement the DNS callback mechanism. We added
several new member fields to this structure; the most
important fields are request time, firstcallbacktime
and address. The request time is used to record
when the DNS request is sent out for resolution, and the
firstcallbacktime is used to record the first time the
DNS answers comes back and this structure is used.
We use the time difference as the DNS time for this ob-
ject. The address field is used to record the IP address
of tested proxies which have performed this DNS reso-
lution (that is, they paid the cost of a lookup).

One problem is that sometimes several tested prox-
ies send same requests and they all wait for the DNS
resolution process. So the following proxies shouldn’t
wait the same as the first one which forces Squid
to do DNS resolution. We have a function named
dnssleep time(), that will send back the proper time
value for each different proxy’s DNS time. The basic
idea within the dnssleep time() function is that we
deduct the time that has passed since the proxy has
begun waiting for DNS resolution from the total DNS
time that is recorded in the ipcache entry structure,
which is the first DNS resolution result for this DNS
request.

Lesson: DNS delays are potentially significant, so they
cannot be ignored.

3.2 Who gets the response first?

Issue: Since we modified Squid proxy to get our Col-
lector, we have some restrictions from the basic Squid
mechanism.

We observed at first that some subsequent re-
sponses were served much faster than they should be
although we recorded the time interval correctly and
usually this happened if the response contains only
one packet. After careful debugging, the cause of this
problem is that sometimes it is possible that one certain
request comes from tested proxy 1 to the Collector and
later the same request comes from tested proxy 2, but
the response from origin server still hasn’t come yet,
so both these two requests are waiting for the same
response. We also found that either of these requests
can get the first packet of the response according to the
implementation of Squid proxy. So, if the request from
proxy 2 gets the response first and then gets served
earlier than the request from proxy 1, it is not surprising
that the proxy 2 will get the completed response faster
than proxy 1. Finally, if the response is only one packet,
surely proxy 2 will get the whole response earlier than
proxy 1 since proxy 2 is not penalized at all.

Implementation: It is quite complicated to change
the Squid mechanism, so our solution is to add a new
flag ifsentout in the clientHttpRequest structure.



We set this flag to 1 if the request is really sent out
to origin server and 0 otherwise. For the above case,
the ifsentout will be set to 1 for the request from
proxy 1 and 0 for the request from proxy 2. Then we
can use this flag together with the newtotal variable
in StoreEntry to decide if the response should be
sent out. We will send out the response either the
ifsentout is 1 (meaning that this is the proxy that first
issued this request) or ifsentout is 0 but newtotal

has a valid time value (meaning that the result has
already been sent to the first proxy).

Lesson: Don’t assume that an event-driven server will
serve pending requests in any particular order.

3.3 HTTP If-Modified-Since request

Issue: Sometimes, If-Modified-Since requests will be
sent by proxies. Previously we have considered only
the case in which a client makes a request and either
the proxy has a valid copy of the requested object or
it does not. In reality, it can be more complicated. If
the client requests object R, and the cache has an old
version of R, it must check to see if a modified version
is available from the origin server. If a newer one exists,
then we have the same case as a standard cache miss.
If the cached version is still valid, then the proxy has
spent time communicating with the origin server that
must be accounted for in the delays seen by the client.
The old time interval for delaying subsequent requests
is not accurate in this situation and must be updated.

Implementation: The general principle we use is to
reproduce any communication delays that would have
occurred when communicating with the origin server.
Thus, if the proxy does communicate with the origin
server, then the connection establishment and initial
response time delay including the DNS resolution
needs to be updated. If the proxy is serving content
that was cached, then the transfer time delay (as
experienced when the content was received) is kept
unchanged. If new content is sent from origin server,
then the transfer time delay is also updated. Here the
flag ifsentout in the clientHttpRequest is used to
decide if these time intervals need to be updated.

Lesson: Be sure to consider all possible combinations
of inputs.

3.4 Persistent connections

Issue: Most Web clients, proxies and servers sup-
port persistent connections (which are a commonly im-
plemented extension to HTTP/1.0 and the default in
HTTP/1.1). Persistent connections allow subsequent
requests to the same server to re-use an existing con-
nection to that server, obviating the TCP connection es-

(a) Client re-uses persistent
connection.

(b) Second client finds
cached data.

Figure 5: Transaction timelines showing how persistent
connections complicate timing replication.

tablishment delay that would otherwise occur. Squid
supports persistent connections between client and
proxy and between proxy and server. This process
is sometimes called connection caching [8], and is a
source of difficulty for our task.

Consider the case in which client C1 requests re-
source R1 from origin server S via a proxy cache (see
the transaction timeline in Figure 5a). Assuming that
the proxy did not have a valid copy of R1 in cache,
it would establish a connection to S and request the
object. When the request is complete, the proxy and
server maintain the connection between them. A short
time later, C1 requests resource R2 from the same
server. Again assuming the proxy does not have the
resource, the connection would be re-used to deliver
the request to and response from S. This arrangement
has saved the time it would take to establish a new con-
nection between the proxy and server from the total re-
sponse time for R2.

Assume, however, a short time later, client C2 also
requests resource R2, which is now cached (Figure 5b).
Under our goals, we would want the proxy to delay serv-
ing R2 as if it were a miss. But a miss under what cir-
cumstances? If it were served as the miss had been
served to C1, then the total response time would be
the sum of the server’s initial response time and trans-
fer time when retrieving R2. But if C1 had never made
these requests, then a persistent connection would not
exist, and so the proxy would have indeed experienced
the connection establishment delay. Our most recent
measurement of that time was from R1, so it could be
re-used. On the other hand, if C2 had earlier made



a request to S, a persistent connection might be war-
ranted. Similarly, if C2 were then to request R1, we
would not want to replicate the delay that was experi-
enced the first time R1 was retrieved, as it included the
connection establishment time.

In general it will be impossible for the Collector to
determine whether a new request from a tested proxy
would have traveled on an existing, idle connection to
the origin server. The existence of a persistent connec-
tion is a function of the policies and resources on both
ends. The Collector does not know the idle timeouts
of either the tested proxy nor the origin server. It also
does not know what restrictions might be in place for
the number of idle or, more generally, simultaneous
connections permitted.

Implementation: While an ideal LEAP implementation
would record connection establishment time separately
from initial response times and transfer times, and ap-
ply connection establishment time when persistent con-
nections would be unavailable, such an approach is not
possible (as explained above). Two simplifications were
possible — to simulate some policies and resources on
the proxy and a fixed maximum idle connection time for
the server side, or to serve every response as if it were
a connection miss. For this implementation, we chose
the latter, as the former would require the maintenance
of new data structures on a per-proxy-and-origin-server
basis, as well as the design and simulation of policies
and resources.

The remaining decision is whether to use persistent
connections internally to the origin servers from the
Collector. While a Collector built on Squid (as ours is)
has the mechanisms to use persistent connections, idle
connections to the origin server consume resources (at
both ends), and persistent connections may skew the
transfer performance of subsequent responses as they
will benefit from an established transfer rate and re-
duced effects of TCP slow-start.

Therefore, in our implementation, we modified Squid
to never re-use a connection to an origin server. This
effectively allows us to serve every response as a
connection miss, since the timings we log correspond
to connection misses, and accurately represent data
transfer times as only one transfer occurs per connec-
tion.

Lesson: Sometimes it is better to control a variable
than to model it.

3.5 Inner Collector Re-forwarding

Issue: Below, in the Validation section, we discuss
testing LEAP within LEAP. Normally we would use the
same code for both the inner Collector and the outer
Collector. Since there should be some delay for the
path through the inner LEAP, the average response

HTTP FORBIDDEN: (403)
HTTP INTERNAL SERVER ERROR: (500)
HTTP NOT IMPLEMENTED: (501)
HTTP BAD GATEWAY: (502)
HTTP SERVICE UNAVAILABLE: (503)
HTTP GATEWAY TIMEOUT: (504)

Table 1: HTTP error codes for which Squid will attempt
a direct connection instead of passing the error on to
the client.

time for the inner LEAP is bigger than the direct
path. But sometimes we found the difference between
these two average response time is abnormally high,
especially in a workload which generates many errors.
After careful debugging, we found that for certain
requests, the outer Collector will attempt to contact
the origin servers, fail, and send back one of a set
of problematic response codes to the tested proxies.
For a particular set of error codes (shown in Table 1),
Squid developers apparently chose to attempt a direct
connection (even when the configuration specifies the
use of an upstream proxy only) rather than send back
the errors generated by an upstream proxy. As a result,
when Squid receives such an error code as a result
of a failure, it will make the same attempt again. As a
result, our version of Squid that is running in the inner
LEAP will end up paying expensive delays twice.

Implementation: We decide to use different code for
the inner Collector and the outer Collector for the LEAP
within LEAP test. For the outer Collector, we still use its
original mechanism for deciding whether to re-forward
requests. But for the inner Collector, we change the
fwdReforwardableStatus(http status s) function in
forward.c file to let it always return 0 no matter what
the status s is. Then for the inner Collector, it won’t
re-forward requests to origin server or other peers after
receiving problematic response codes from the outer
Collector.

Lesson: The good intentions of developers (to make
their server robust) can sometimes get in the way.

3.6 Thread Pool

Issue: The Multiplier uses a distinct thread to handle
each request from the client. Originally we did not
create a new thread until we got a new request from a
client. Since the creation of a thread takes some time,
this time interval will add to the client’s perceived delay.

Implementation: We use a thread pool instead in
the Multiplier. The thread pool is built during the
initialization process of the Multiplier. Each thread
has a thread ID and there is an array busy with one
element for each thread to show whether this thread is
currently busy or not. When a request comes from a



client, we will check which thread in the pool is free by
checking the busy array. If we find one, we will pass
the HTTP request and the file descriptor as arguments
to the thread routine.

Lesson: For best performance, pre-allocate and/or
pre-execute code so that it is performed in advance of
a user request.

3.7 Incremental signatures

Issue: One of the functionals of the Multiplier is to
calculate a signature for each response from the
Collector and tested proxies. Then it will compare the
signature from the Collector and those from the tested
proxies to see whether the responses are different. We
used an open-source implementation of MD5 (md5.c
from RSA Data Security, Inc.) in LEAP. Initially we held
the response in memory until we received the whole
response and then we calculated the MD5 digest and
freed the memory. Since we don’t need to hold the
response for future use in the Multiplier, holding the
entire response, even temporarily, wastes a lot of
memory, particularly during intensive tests with many
active threads.

Implementation: We changed the code of md5.c so
that the calculation can be performed incrementally,
i.e., for each arriving part of the response, we calculate
the partial digest and store the partial digest MD5 CTX

*context in a resInfoPtr structure which is used
for recording information for one request. After each
calculation, only the partial MD5 digest is stored and
the partial response is freed. One trick here is that MD5
digest uses 64 bytes as a basic block and it will pad the
last block if the length is less than 64. For each partial
response, the length may not be a multiple of 64, so
we need to record the last part of this partial response
if the length of it is less than 64 and add to the head of
next partial response before we divide the next partial
response into 64 bytes blocks. To achieve this goal, we
modified original md5.c file, and we also have a special
argument type passed to MD5Update()function to tell
whether this is the last chunk of the response, if so and
the last block has less than 64 bytes, MD5Update() will
pad the last block, otherwise it will return the last block
for future calculation.

Lesson: Incremental processing is often more effi-
cient.

3.8 Event Driven Multiplier

Issue: In prior versions, no event-driven mechanism
was used in the Multiplier. Once the response from the
Collector through the direct connections comes back,
all copies of the request to the different tested proxies

were sent out sequentially. In addition, since the
handling of a single request was single-threaded, we
used non-blocking connections to the tested proxies.
As a result, it was quite possible that the connection
hasn’t been established when we attempt to send the
requests. If this happened, we would try a second time,
and then give up. As a result, we would have more
error cases, especially with higher workloads.

Implementation: Motivated by the event-driven sched-
uler in Squid, we find it effective to address the above
issue by using a similar approach in the Multiplier.

A new structure, ev entry, is defined to record the
event information. Each object of this structure corre-
sponds to sending a request to a proxy. Since there
may be several tested proxies in the whole testing en-
vironment, an event list is formed by linking each event
object. During the each run of the main loop, the event
list is checked to see if there are any event ready. If
so, the event is executed. After sending the request to
the tested proxy, if the running is successful, the event
is moved from the eventlist, otherwise the event will be
kept in the event list for the next loop. In order to prevent
endless event, we set a timeout so that the event has
to be moved from the event list if it still can not make a
success after that timeout.

By using this event driven mechanism, we can
also do some scheduling more flexibly. For example,
instead of sending the same requests to all the tested
proxies at the exactly same time (which can cause
small but real delays from processor and network de-
vice contention), we set a small time interval between
the sending of the request to each subsequent proxy.
This partially solves the “Who gets the response first”
problem described earlier because a response is likely
to have at least started being received by the time the
second proxy sends its request.

Lesson: In timing-sensitive applications, don’t try to do
everything all at once.

3.9 Chunked Coding Handling

Issue: Some tested proxies may send back chunked
coding responses. Since we don’t need to pass back
the response from the tested proxies to the client,
initially we did nothing to these responses. But one
major function of the Multiplier is to calculate the
signatures of the responses from the Collector and
the tested proxies. If the signatures don’t match, the
Multiplier will record that one of the tested proxies
sent back a different response. Initially we found that
proxies like Apache [5] and Delegate [28] always have
lots more mismatches than other proxies. In fact, most
of the responses were identical except they were sent
back in chunked-encoded format.



Implementation: We implemented the code to handle
chunked coding response in the Multiplier. The func-
tion process chunked code is called when the header
of the response has “Transfer-Encoding: chunked”.
Similar to the “Incremental signature” problem, the
tricky part for chunked coding is that we need to
store the partial result for the next packet of the
response. For example, we may only get a portion of
the length of the chunk this time, e.g., the length is
“706” for the following chunk, but only “70” is trans-
fered with this packet, and “6” is at the beginning of
the next, so we need to store “70” until we get the
next packet. In addition, the chunked coding function
should be called first before the MD5 digest calculation.

Lesson: Beware of syntactically different formats of se-
mantically equivalent data.

4 Experimental Validation

Since we have an implementation of LEAP, the natural
question is whether the results from our system are ac-
curate and reliable and what is the impact of our system
to the tested proxies. In this section, we will show some
experiments to evaluate our system.

4.1 Data set

We started with the NLANR IRCache request log from
uc.us.ircache.net (located in Urbana-Champaign, Illi-
nois) for 9 September 2004. We selected only those
requests that were served from the cache with a 200
response code. In this way we attempted to ensure that
the contents retrieved by our traces would be cachable
and safe (free from unwanted side-effects [11]). Out
of those 97,462 requests, 57,685 were unique, allow-
ing tested proxy caches to potentially be able to serve
approximately 40% from cache. We replayed these re-
quests in the experimental measurements (Section 5),
and a set with similar characteristics from 25 April 2004
for the validation tests.

4.2 Experimental Method

Unless described otherwise, for all experiments we
used the same architecture as showed in Figure 1. The
only difference is that we only use one client — httperf
[23] — to send a sequence of requests at a given rate
(typically 10 requests per second), using a separate
connection per request, as we replay the proxy trace
described above once. We run httperf on a one ma-
chine, from which it sends all requests to the Multi-
plier on another machine. Then the Multiplier will send
requests to the tested proxies: one or more of Oops
1.5.23 [17], Squid 2.5.Stable4 [29], Apache 2.0.50 [5]

Connection type mean median
PT Proxy direct 550ms 54ms

PT Proxy tested 551ms 58ms

Table 2: Comparison of response times between direct
and tested proxy connections.

Connection type mean median
direct 455ms 55ms

inner LEAP 470ms 52ms

Table 3: Evaluation of LEAP implementation overhead.

and a pass-through proxy implemented by our Multi-
plier. Each of these proxies runs on an identical ma-
chine and is configured to use the Collector (on an in-
dependent machine) as a parent proxy. So to test four
proxies, altogether we would use seven machines. The
caching proxies Squid, Apache and Oops are config-
ured to use up to 8MB of in-memory cache, and 64MB
of cache on disk (other settings are left at defaults).

4.3 Proxy penalty

We are first concerned with the internal architecture of
our LEAP implementation. We want to know whether
the implementation imposes extra costs for the prox-
ies being tested, as compared to the direct connection
between Multiplier and Collector. The experiment we
chose is to force both the direct connection and tested
proxy to go through identical processes. Since both
proxies are running identical software on essentially
identical machines, we can determine the difference in
how the architecture handles the first (normally direct)
connection and tested connections.

In this experiment with a portion of the IRCache
workload we found that the direct connection and the
connection through the Multiplier have similar response
time on average. They are 550ms and 551ms respec-
tively (shown in Table 2). From this we can tell our
Multiplier adds a minimal delay to tested proxy mea-
surements. That is, the overhead of the code for direct
connections is quite similar to the overhead of handling
the proxies.

4.4 Implementation overhead

Here we are concerned with the general overhead
that a LEAP implementation introduces to the re-
quest/response data stream. We want to know how
much worse performance will be for the users behind
the implementation, given that each request will have to
go through at least two additional processes (the Multi-
plier and the Collector).

The idea is to test a LEAP implementation using an-
other LEAP implementation, which will be called LEAP



Figure 6: Configuration to test one LEAP implementa-
tion within another.

within LEAP in the rest of this paper, as shown in Figure
6. We again used the same IRCache artificial workload
driven by httperf as input to the external LEAP. The in-
ner LEAP (being measured) had just one PT Proxy to
drive. The outer one measured just the inner one.

The results of our test are presented in Table 3. We
found that the inner LEAP implementation generated
a mean response time of 470ms, as compared to the
direct connection response time of 455ms. Medians
were smaller, at 55ms and 52ms, respectively. Thus,
we estimate the overhead (for this configuration) to be
approximately 15ms.

The cumulative fraction of responses distribution for
the LEAP within LEAP testing is shown in Figure 7. The
solid line is used to represent the direct connection and
the dashed line is used for the inner LEAP. As we can
see from this figure, these two lines are quite close to
each other. This suggests that our LEAP architecture
has relatively little impact on the real world from the
client’s view.

4.5 Fairness to tested proxies

Since we are measuring the performance of multiple
proxies simultaneously, we wish to verify that we can do
so fairly. That is, that each proxy is treated identically,
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sponse times for LEAP within LEAP.

Figure 8: Experimental network configuration.

no matter what order they are in within the system. We
verified this aspect of our system by testing four identi-
cal proxies — all running the same Squid configuration
on machines with identical hardware. We found that
measurements of mean and median response times
would indeed vary between proxies by only a few mil-
liseconds. Thus we conclude that we are able to fairly
test the proxies.

5 Experimental Results

5.1 Network configuration

For each test we run a Multiplier and a Collector as de-
scribed above. As shown in Figure 8, each proxy runs
on a separate system, as do each of the monitoring and
load-generating processes. Each machine running a
proxy under test includes a 1Ghz Pentium III with 2GB
RAM and a single 40GB IDE drive. All machines are
connected via full-duplex 100Mbit Ethernet to a gigabit
switch using private IP space. A standard version of
Linux (kernel 2.4) was installed on each machine. The
Multiplier and Collector ran on somewhat more power-
ful systems but were dual-homed on the private net-
work and on the departmental LAN for external access.

5.2 Results

Four different proxies are used in the LEAP architec-
ture: Oops, Apache, Squid, and a simple pass-through
proxy (PT Proxy) which is implemented using our Mul-
tiplier, since with only one directed connection, it can
be used as a proxy without cache. In this experiment,
Oops required only 21.5% of the bandwidth of the pass-
through proxy and Squid used 21.0%. In comparison,
Apache was more agressive and cached more, using
only 17.0% of the non-caching bandwidth.

From the results showed in Table 4, we can see Squid
has the best mean and median response time. Apache
has similar median response time and a slightly larger
mean response time. Oops has larger mean and me-
dian than Squid and Apache, but smaller than PT Proxy.
PT Proxy has similar mean and median response time
as the Direct connection.



Proxy Mean time Median time
name for response for response
Direct 491ms 42ms
Squid 410ms 35ms
Oops 459ms 41ms

PT Proxy 487ms 43ms
Apache 424ms 35ms

Table 4: Artificial workload results.

The cumulative fraction of responses is shown in Fig-
ure 9. From the figure, we can see that Apache and
Squid, which are the first and second curve from the
top, have similar distribution. Oops is worse than them,
but better than PT Proxy, so it’s curve is in the middle.
The Collector and PT Proxy have similar response-time
distributions.

Since Apache and Squid have caches, and there
are repeated requests in our test data set, these two
proxies can take advantage of serving responses from
cache. Thus, their response-time distribution is similar.
The beginning part of Oops’s curve is much lower than
Apache and Squid which may indicate that Apache and
Squid use more aggressive caching policies than Oops.

PT Proxy in fact is running the same code as our
Multiplier and has no cache, thus generating a larger
mean and median response time than Squid and Oops.
The Collector will serve the responses with the same
amount of delay as it collects the response from origin
servers, and each time the pass-through proxy asks for
an object from the Collector, it has to pay the same time
as the Collector spends from the origin server, so, the
PT Proxy and the Collector have similar distributions in
the figure.

6 Related Work

There are several methods to evaluate Web proxies
[10]. A number of researchers have proposed proxy
cache (or more generally just Web) benchmark archi-
tectures [4, 3, 1, 2, 22, 6]. Some use artificial traces;
some base their workloads on data from real-world
traces. They are not, however, principally designed to
use a live workload or live network connection, and are
generally incapable of correctly evaluating prefetching
proxies.

Web Polygraph [26] is an open-source benchmarking
tool for performance measurement of caching proxies
and other content networking equipment. It includes
high-performance HTTP clients and servers to gener-
ate artificial Web workloads with realistic characteris-
tics. Web Polygraph has been used to benchmark
proxy cache performances in multiple Web cache-offs
(e.g., [27]).

Koletsou and Voelker [18] built the Medusa Proxy,
which is designed to measure user-perceived Web per-
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Figure 9: The cumulative distribution of response times
for the tested proxies.

formance. It operates similarly to our Multiplier in that
it duplicates requests to different Web delivery systems
and compares results. It also can transform requests,
e.g., from Akamaized URLs to URLs to the customer’s
origin server. The primary use of this system was to
capture the usage of a single user and to evaluate (sep-
arately) the impact of using either: 1) the NLANR proxy
cache hierarchy, or 2) the Akamai content delivery net-
work.

While acknowledging the limitations of a small single-
user study, their paper also uses a static, sequential or-
dering of requests – first to the origin server, and then
to the NLANR cache. The effects of such an order-
ing (such as warming the origin server) are not mea-
sured. Other limitations of the study include support
only for non-persistent HTTP/1.0 requests and fixed re-
quest inter-arrival time of 500ms when replaying logs.

Liston and Zegura [19] also report on a personal
proxy to measure client-perceived performance. Based
on the Internet Junkbuster Proxy [16], it measures re-
sponse times and groups most requests for embedded
resources with the outside page. Limitations include
support for only non-persistent HTTP/1.0 requests, and
a random request load.

Liu et al. [20] describe experiments measuring con-
nect time and elapsed time for a number of workloads
by replaying traces using Webjamma [15]. The Web-
jamma tool plays back HTTP accesses read from a log
file using the GET method. It maintains a configurable
number of parallel requests, and keeps them busy con-
tinuously. While Webjamma is capable of sending the
same request to multiple servers so that the server be-
haviors can be compared, it is designed to push the
servers as hard as possible. It does not compare re-
sults for differences in content.

Patarin and Makpangou’s Pandora platform [24] can
measure the efficiency of proxy caches. A stack is lo-
cated in front of the tested cache to catch the traffic
between the clients and the cache; another one is lo-
cated after the tested cache to get the traffic between



the cache and origin servers. The measurements are
based on the analysis of these two traffic traces. Com-
pared to the SPE architecture, it can also test within
a real environment with real requests. In addition, it
can also test the performance of cooperating caches
by analyzing the ICP traffic among these caches. How-
ever, their system does not monitor DNS resolution time
which may be a problem when the Pandora system
sends standard requests to the same origin servers re-
peatedly. More importantly, their system is unable to
test multiple proxies simultaneously – instead, several
separate tests are required (with likely different request
loads and network conditions).

While all of the work cited above is concerned with
performance, and may indeed be focused on user per-
ceived latencies (as we are), there are some signif-
icant differences. For example, our approach is de-
signed carefully to minimize the possibility of unpleas-
ant side effects — we explicitly attempt to prevent mul-
tiple copies of a request instance to be issued to the
general Internet (unlike Koletsou and Voelker). Simi-
larly, our approach minimizes any additional bandwidth
resource usage (since only one response is needed).
Finally, while the LEAP Multiplier can certainly be used
for measuring client-side response times if placed adja-
cent to clients, it has had a slightly different target: the
comparative performance evaluation of proxy caches.

LEAP is not the first implementation of the SPE archi-
tecture. An incomplete version was described with the
SPE architecture design [9], and a more complete pro-
totype called ROPE was described and tested in 2001
[12]. Compared to these attempts, LEAP has better
performance and accuracy. For example, the archi-
tecture overhead is reported to be about 35ms in the
ROPE implementation, while LEAP has an overhead
around 15ms. We use a thread pool in our version of
the Multiplier which can save time for creating threads
while this time is unavoidable to the user of ROPE.
LEAP can handle chunked-encoded responses from
tested proxies, while ROPE cannot. LEAP will consider
the DNS resolution time separately when calculating
the response time, which will generate a more accurate
timing than in ROPE. The “cache everything” function is
more robust in the LEAP due to caching several com-
plex responses from origin server, e.g., 404 responses.
In addition to the thread pool, we implemented an event
scheduling mechanism in LEAP’s Multiplier, while no
such mechanisms existed in ROPE.

7 Discussion

In Section 2.1, we described our multi-threaded Mul-
tiplier, and later in Section 3.6 we explained why we
used a thread pool. However, even with a pool of wait-
ing threads, it is possible to have a workload that keeps
many threads busy simultaneously, and so activate all

threads in the pool. If this were to happen, subsequent
requests would have to wait until an active thread com-
pleted its work. We pre-allocate 200 threads, with the
expectation that our test workloads would not reach that
level of usage. In practice, at 10 requests per second,
httperf does find some connections refused by the cur-
rent Multiplier. Additional experiments at lower request
rates allow more connections to succeed, with similar
experimental results to those presented.

The SPE architecture has the drawback of not be-
ing able to measure high workloads. This is because,
by design, the Multiplier and Collector have to manage
n+1 times the connections and bandwidth of the offered
workload. Thus, the Multiplier and the Collector limit the
request rate/bandwidth demand that can be used to test
the proxies. Other mechanisms have been designed to
find the failure point of web systems; LEAP measures
performance when the systems are functional and not
at their limits.

We have found that some of our measurement statis-
tics are affected by error cases. That is, when timeouts
occur, e.g., for DNS lookups, or connection attempts, or
requests to an overloaded web server, such response
times are much higher than the norm of a successful
response. We include the high costs of error cases like
these, although we recognize that they can sway mea-
surements like the mean if the workload is too short.
For that reason, we also tend to examine at least the
median, and ideally plot the distribution of response
times when making performance comparisons.

8 Summary

We have presented LEAP, an implementation of the
SPE architecture. By design, LEAP is capable of test-
ing multiple proxies simultaneously on the same work-
load using a live network connection. We have demon-
strated the use of LEAP, finding that the Oops and
Squid proxy caches have comparable performance. We
have also described many of the challenges of develop-
ing a complex system and the methods used to resolve
them in LEAP.

Along the way, we (re-)discovered a number of useful
lessons, including:

• DNS delays are potentially significant, so they can-
not be ignored.

• Don’t assume that an event-driven server will
serve pending requests in any particular order.

• Be sure to consider all possible combinations of
inputs.

• Sometimes it is better to control a variable than to
model it.

• The good intentions of developers (to make their
server robust) can sometimes get in the way.



• For best performance, pre-allocate and/or pre-
execute code so that it is performed in advance
of a user request.

• Incremental processing is often more efficient.

• In timing-sensitive applications, don’t try to do ev-
erything all at once.

• Beware of syntactically different formats of seman-
tically equivalent data.

While many of these are obvious, it is our hope that they
will serve as useful reminders for future projects.
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