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ABSTRACT
The AncestorRank algorithm calculates an authority score by using
just one characteristic of the web graph—the number of ancestors
per node. For scalability, we estimate the number of ancestors by
using a probabilistic counting algorithm. We also considerthe case
in which ancestors which are closer to the node have more influence
than those farther from the node. Thus we further apply a decay
factor δ on the contributions from successively earlier ancestors.
The resulting authority score is used in combination with a content-
based ranking algorithm. Our experiments show that as long asδ is
in the range of [0.1, 0.9], AncestorRank can greatly improveBM25
performance, and in our experiments is often better than PageRank.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms
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1. INTRODUCTION
A web page’s authority score is usually computed by analyz-

ing the link structure of web graph. In this paper, we define
ancestors to be the set of unique nodes with one or more di-
rected paths to the target node. We analyzed the link structure based
on the following assumptions:

• Nodes with more ancestors are more important than those
with fewer ancestors.

• Nearby ancestors should have more influence than those fur-
ther away.

These give us the intuition to calculate the decayed number of
ancestors, that is, the decayed sum of all ancestors. For every node
in the graph, we combine this information with BM25 result and
our experiments show that AncestorRank can boost BM25 perfor-
mance greatly. The intuition of AncestorRank is not unlike PageR-
ank [2], yet is more straightforward and in our experiments has
performance comparable or better than that of PageRank.
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2. BACKGROUND
PageRank is a popular and well-studied link-based algorithm

used to estimate authority. The intuition behind AncestorRank is
similar to that of PageRank, except for two major differences. In
our algorithm, a node has the same influence on its children, re-
gardless of how many children the node has. In addition, the scores
produced by AncestorRank do not form a probability distribution
and thus are not intended to be representative of the actionsof any
kind of surfer.

A naive algorithm to count exactly the number of ancestors
would be expensive:O(n2). Simpler approaches that would be
faster might over count nodes because of multiple paths, or would
require significant storage resources. In order to retain scalabil-
ity for large graphs but not to over count the number of ancestors,
we turn to a probabilistic counting approach, originally proposed
by Flajolet and Martin [4]. A more recent refinement was offered
by Becchetti et al. [1]. It is simpler and more accurate when the
distance under consideration is small. It can also be viewedas
a generalization of the ANF algorithm [5]. Their definition of
supporter is same as our definition ofancestor. Becchetti
et al. also provide an adaptive estimation process to selectthe best
probabilistic representation. Their search process updates ǫ, the
probability of initializing a bit in a node’s bit vector to 1,by mul-
tiplying it by γ (called MULT in their work) after every iteration,
until the representation can accurately estimate the valuefor the
current node.

3. USING ANCESTOR INFORMATION
We estimate the number of ancestors from distance 1 toi, where

for any distance greater thani, there are no additional ancestors for
any node in the webgraph. After that, we apply the decay factor δ

to count the decayed number of ancestors for every node.

N(x) = δ
0
N1(x) + δ

1(N2(x) − N1(x)) + . . . +

δ
i−1(Ni(x) − Ni−1(x))

δ is the decay factor,0 ≤ δ ≤ 1. When δ is 0.0, we simply
count the number of inlinks (parents). Whenδ is 1.0, we count the
number of ancestors without decay.Ni(x) is the sum of ancestor
counts distance 1 toi. Ni(x) − Ni−1(x) is the number of new
ancestors appearing in distancei.

After computing the decayed number of ancestors, we order all
nodes by this value, and linearly combine each node’s rank with
the rank of the query-specific IR score based on content. The IR
score that we choose to combine is the OKAPI BM25 [8] weighting
function, and the parameters are set to be the same as Cai et al. [3].



Figure 1: Error rate of probabilistic counting on 8 test graphs.

4. EXPERIMENTAL SETUP
We use the TREC (http://trec.nist.gov/) GOV collection, which

contains a 1.25M web page crawl of the .gov domain from 2002. To
test ranking algorithms on the GOV corpus, we chose the topicdis-
tillation task in the web track of TREC 2003, which has 50 queries.

Since we combine our ranked list with BM25, we use it as the
baseline. In addition, we chose some popular authority ranking
algorithms with which we can compare, including PageRank and
Global HITS (denoted as GHITS) in which the hub and authority
calculation of HITS [7] is applied to the full web graph, not just
a query-specific subgraph. All algorithms have been linearly com-
bined with BM25.

In order to compare our results with existing work, we evaluated
the ranking algorithms using Precision@10, MAP (Mean Average
Precision), RPrec, and NDCG@10 [6]. For every approach, we
tune the combining parameter to get the best P@10 and output this
result as the final performance.

In order to estimate the number of ancestors, we utilized Bec-
chetti et al.’s adaptive probabilistic counting approach.We set the
bit vector representation to be 64 bits and tuned theγ factor in
the adaptive probabilistic counting algorithm. In every iteration,
the currentǫ = last_ǫ × γ. In our experiments, we find that the
γ factor can have a huge effect on the error rate, compared to the
real number of ancestors. Figure 1 shows the average relative error
rates for eight sample test graphs with different sizes, based onγ

increasing by 0.1 from 0.1 to 2.0.
Generally speaking, the error rate is much smaller (3-17%) when

γ is less than 1. In each test graph, the error rate is minimized
when γ is 0.9 since it covers more possible values forǫ. Yet it
also requires more time to complete the whole process since more
values are tested. Cognizant of this trade-off, we selectedγ to be
0.5 in our experiments on the TREC 2003 web graph.

5. EXPERIMENTAL RESULTS
Table 1 shows the final performance for some sampleδ increas-

ing from 0.0 to 1.0. As long as theδ is in the range of [0.1,
0.9], most metrics show better performance of AncestorRankover
BM25, PageRank and GHITS. A student’s t-test confirms that the
improvements shown over BM25 and PageRank for MAP, Rprec
and NDCG are statistically significant (p = .05 for BM25 and
p = .10 for PageRank).

For AncestorRank, we implemented the probabilistic counting
algorithm to count from distance = 1 to distance =i when there are
no additional ancestors in distance greater thani. Ideally we can
increase the decayed sum withδj−1(Nj(x) − Nj−1(x)) after we
count the ancestors for distancesj andj − 1. The estimation for

Table 1: AncestorRank and baselines performance
algorithm P@10 MAP RPrec NDCG@10

AR(δ=0.0) 0.128 0.155 0.161 0.211
AR(δ=0.5) 0.134 0.177 0.171 0.243
AR(δ=0.7) 0.134 0.178 0.169 0.245
AR(δ=0.8) 0.134 0.171 0.176 0.240
AR(δ=1.0) 0.124 0.150 0.146 0.201

BM25 0.120 0.149 0.140 0.199
PageRank 0.138 0.153 0.153 0.218
GHITS 0.136 0.143 0.154 0.204

current nodex stops whenNj(x) = Nj−1(x). It costsO(kN)
memory in total, wherek is the length of the bit vector representa-
tion andN is the number of nodes in the graph. In the adaptive al-
gorithm withγ < 1, for every node, the appropriateǫ in the current
distance should be smaller or equal to theǫ that is appropriate for
the previous distance. Thus, for distancej, ǫ would decrease from
approximating 1

Nmax(j−1)
to approximating 1

Nmax(j)
by applying

γ as needed.Nmax(j) is the maximum of number of ancestors for
any node at distancej, which is generally much smaller thanN .
Nmax(0) corresponds to the startingǫ which we set to be 0.5. In
addition, every time we want to use a newǫ to count the number of
ancestors for distancej, we need to go through the graphj times
during that iteration. To sum up, for distancej, the number of times
to read the whole graph is⌈jlog 1

γ

Nmax(j)
Nmax(j−1)

⌉ whenγ < 1. Thus

AncestorRank is tractable, unlike a naive counting algorithm with
O(N2) time complexity.

6. CONCLUSION
AncestorRank estimates authority by summing for each page its

decayed number of unique ancestors. While this algorithm iscon-
ceptually simple, it appears to have comparable or better perfor-
mance than PageRank. Since counting exactly the decayed num-
ber of ancestors is expensive, we leverage a probabilistic counting
algorithm which provides fairly good estimates and is scalable in
practice.
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