Counting Ancestors to Estimate Authority
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ABSTRACT

The AncestorRank algorithm calculates an authority scgnesing
just one characteristic of the web graph—the number of doces
per node. For scalability, we estimate the number of ancestp
using a probabilistic counting algorithm. We also consitiercase

in which ancestors which are closer to the node have moreeiméie
than those farther from the node. Thus we further apply aydeca
factor § on the contributions from successively earlier ancestors.
The resulting authority score is used in combination witlvatent-
based ranking algorithm. Our experiments show that as leiigsa

in the range of [0.1, 0.9], AncestorRank can greatly impl¥25
performance, and in our experiments is often better thaeRagk.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms
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1. INTRODUCTION

A web page’s authority score is usually computed by analyz-
ing the link structure of web graph. In this paper, we define
ancest or s to be the set of unique nodes with one or more di-
rected paths to the target node. We analyzed the link sneibased
on the following assumptions:

e Nodes with more ancestors are more important than those
with fewer ancestors.

e Nearby ancestors should have more influence than those fur-
ther away.

These give us the intuition to calculate the decayed number o
ancestors, that is, the decayed sum of all ancestors. For ewde
in the graph, we combine this information with BM25 resultian
our experiments show that AncestorRank can boost BM25 perfo
mance greatly. The intuition of AncestorRank is not unlilegy@R-
ank [2], yet is more straightforward and in our experimenas h
performance comparable or better than that of PageRank.
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2. BACKGROUND

PageRank is a popular and well-studied link-based algurith
used to estimate authority. The intuition behind AncestonRis
similar to that of PageRank, except for two major differesicin
our algorithm, a node has the same influence on its childen, r
gardless of how many children the node has. In addition,¢bees
produced by AncestorRank do not form a probability disttidu
and thus are not intended to be representative of the aatfcasy
kind of surfer.

A naive algorithm to count exactly the number of ancestors
would be expensiveD(n?). Simpler approaches that would be
faster might over count nodes because of multiple paths,ontdv
require significant storage resources. In order to retaiiabi-
ity for large graphs but not to over count the number of ararest
we turn to a probabilistic counting approach, originallpposed
by Flajolet and Martin [4]. A more recent refinement was adfer
by Becchetti et al. [1]. It is simpler and more accurate when t
distance under consideration is small. It can also be vieasd
a generalization of the ANF algorithm [5]. Their definitiori o
support er is same as our definition @gncest or . Becchetti
et al. also provide an adaptive estimation process to selediest
probabilistic representation. Their search process @sdatthe
probability of initializing a bit in a node’s bit vector to by mul-
tiplying it by ~ (called MULT in their work) after every iteration,
until the representation can accurately estimate the Viu¢he
current node.

3. USING ANCESTOR INFORMATION

We estimate the number of ancestors from distancei lvere
for any distance greater thanthere are no additional ancestors for
any node in the webgraph. After that, we apply the decay facto
to count the decayed number of ancestors for every node.

N(x) 5?N1(:c)+51(N2(:c) —Ni(z))+...+
5L (Ni(2) — Nia ()

0 is the decay factor) < § < 1. When/ is 0.0, we simply
count the number of inlinks (parents). Wheis 1.0, we count the
number of ancestors without decay; (x) is the sum of ancestor
counts distance 1 to. N;(z) — N;—1(x) is the number of new
ancestors appearing in distance

After computing the decayed number of ancestors, we order al
nodes by this value, and linearly combine each node’s ramk wi
the rank of the query-specific IR score based on content. Rhe |
score that we choose to combine is the OKAPI BM25 [8] weightin
function, and the parameters are set to be the same as C4j3it al
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Figurel: Error rateof probabilistic counting on 8 test graphs.

4. EXPERIMENTAL SETUP

We use the TREC (http://trec.nist.gov/) GOV collection,ieth
contains a 1.25M web page crawl of the .gov domain from 2002. T
test ranking algorithms on the GOV corpus, we chose the wigic
tillation task in the web track of TREC 2003, which has 50 ipeer

Since we combine our ranked list with BM25, we use it as the
baseline. In addition, we chose some popular authority ingnk
algorithms with which we can compare, including PageRark an
Global HITS (denoted as GHITS) in which the hub and authority
calculation of HITS [7] is applied to the full web graph, nosj
a query-specific subgraph. All algorithms have been lieeom-
bined with BM25.

In order to compare our results with existing work, we evidda
the ranking algorithms using Precision@10, MAP (Mean Agera
Precision), RPrec, and NDCG@10 [6]. For every approach, we
tune the combining parameter to get the best P@10 and otiiput t
result as the final performance.

In order to estimate the number of ancestors, we utilized Bec
chetti et al.’s adaptive probabilistic counting approa@e set the
bit vector representation to be 64 bits and tuned thfactor in
the adaptive probabilistic counting algorithm. In evergrétion,
the currente = last_ce x ~. In our experiments, we find that the
~ factor can have a huge effect on the error rate, comparedeto th
real number of ancestors. Figure 1 shows the average elkatior
rates for eight sample test graphs with different sizesethasy
increasing by 0.1 from 0.1 to 2.0.

Generally speaking, the error rate is much smaller (3-17%gw
~ is less than 1. In each test graph, the error rate is minimized
when~ is 0.9 since it covers more possible values forYet it
also requires more time to complete the whole process simze m
values are tested. Cognizant of this trade-off, we selegtexlbe
0.5 in our experiments on the TREC 2003 web graph.

5. EXPERIMENTAL RESULTS

Table 1 shows the final performance for some samiplereas-
ing from 0.0 to 1.0. As long as thé is in the range of [0.1,
0.9], most metrics show better performance of AncestorRaek
BM25, PageRank and GHITS. A student’s t-test confirms that th
improvements shown over BM25 and PageRank for MAP, Rprec
and NDCG are statistically significanp (= .05 for BM25 and
p = .10 for PageRank).

For AncestorRank, we implemented the probabilistic cowgti
algorithm to count from distance = 1 to distancéwhen there are
no additional ancestors in distance greater thatdeally we can
increase the decayed sum with ! (N, (z) — N,_1(z)) after we
count the ancestors for distanceandj — 1. The estimation for

Table 1. Ancestor Rank and baselines performance
| algorithm | P@10] MAP | RPrec| NDCG@10|

AR(6=0.0) | 0.128 | 0.155| 0.161 0.211
AR(6=005) | 0.134 | 0.177| 0.171 0.243
AR(6=0.7) | 0.134 | 0.178 | 0.169 0.245
AR(6=0.8) | 0.134 | 0.171| 0.176 0.240
AR(6=1.0) | 0.124 | 0.150| 0.146 0.201
BM25 0.120 | 0.149| 0.140 0.199
PageRank| 0.138 | 0.153| 0.153 0.218
GHITS 0.136 | 0.143| 0.154 0.204

current noder stops whenN;(z) = N;_i(x). It costsO(kN)
memory in total, wheré is the length of the bit vector representa-
tion andN is the number of nodes in the graph. In the adaptive al-
gorithm with~y < 1, for every node, the appropriat¢én the current
distance should be smaller or equal to ththat is appropriate for
the previous distance. Thus, for distance would decrease from
approximatingm to approximatingm by applying

~ as neededN .. () is the maximum of number of ancestors for
any node at distancg which is generally much smaller thas.
Nmaz(0) corresponds to the startingwhich we set to be 0.5. In
addition, every time we want to use a newo count the number of
ancestors for distancg we need to go through the graphimes
during that iteration. To sum up, for distant;ghe number of times

to read the whole graph igilog 1 NNL@@M wheny < 1. Thus
~ max

AncestorRank is tractable, unlike a naive counting algamitvith
O(N?) time complexity.

6. CONCLUSION

AncestorRank estimates authority by summing for each page i
decayed number of unique ancestors. While this algorithcois
ceptually simple, it appears to have comparable or bettdoipe
mance than PageRank. Since counting exactly the decayed num
ber of ancestors is expensive, we leverage a probabilistiating
algorithm which provides fairly good estimates and is dolglan
practice.
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