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ABSTRACT
With hundreds of millions of participants, social media services
have become commonplace. Unlike a traditional social network
service, a microblogging network like Twitter is a hybrid net-
work, combining aspects of both social networks and information
networks. Understanding the structure of such hybrid networks
and predicting new links are important for many tasks such as
friend recommendation, community detection, and modeling net-
work growth. We note that the link prediction problem in a hybrid
network is different from previously studied networks. Unlike the
information networks and traditional online social networks, the
structures in a hybrid network are more complicated and informa-
tive. We compare most popular and recent methods and princi-
ples for link prediction and recommendation. Finally we propose a
novel structure-based personalized link prediction model and com-
pare its predictive performance against many fundamental and pop-
ular link prediction methods on real-world data from the Twitter
microblogging network. Our experiments on both static and dy-
namic data sets show that our methods noticeably outperform the
state-of-the-art.

Categories and Subject Descriptors: H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation,Performance

Keywords: link prediction, link analysis, Twitter

1. INTRODUCTION
The use of online social networks and social media in general

has surged in recent years. In this work, we focus on the under-
standing of the use of one particular type of social service—that of
the microblogging network. In microblog services such as Twit-
ter, Yammer and Google Buzz, participants form an explicit social
network by “following” (subscribing to) another user and thus auto-
matically receive the (short) messages generated by the target user.
Unlike some online social networks such as Facebook, LinkedIn or
Myspace, a followed user has the option but not the requirement to
similarly follow back. Thus, relationships in these social networks
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may be asymmetric, leading to three kinds of link relationships be-
tween users A and B. If A follows B, we say that A is a follower
of B, and that B is a friend of A. If A and B both follow each
other, we consider them mutual friends or reciprocal friends.

Thus, user B in a microblog service can generate messages,
which are generally public and searchable, and any followers of B,
such as A, will automatically receive those messages along with
messages generated by all other users that A follows. The combi-
nation of multiple message intentions and asymmetry of connec-
tions has led some to call microblogging services such as Twit-
ter “hybrid networks” [14, 22]. They are hybrid not just because
they can carry multiple types of messages, but also because par-
ticipants create links for multiple reasons—to be social (e.g., to
connect online to existing offline social contacts) or to link to in-
formation sources. With multiple types of users, it may be difficult
to understand how microblogging networks grow and evolve. In
a hybrid social-information network, there are two viewpoints to
consider. In an information network, the link prediction problem is
like the recommendation problem, which is to recommend an in-
formation source to an information consumer. In a social network,
the problem is to recommend friends to the users, as introduced
by Liben-Nowell and Kleinberg [16]. If we can predict the next
link that a user will likely create, we will 1) have a model of the
user’s interests that may be of value in recommending new links
(e.g., as in Twitter’s recently introduced “Who to follow” friend
suggestions, and many third-party suggestion services) and in de-
tecting communities; 2) be closer to modeling the network’s overall
growth processes; and, 3) be able to simplify the task of adding that
link when the user wishes to do so.

In this paper, we analyze link structures in Twitter to predict fu-
ture links. Our contributions are as follows. 1) We are the first
to experimentally compare many popular link prediction methods
in a microblogging network. Furthermore, we also compare with
matrix factorization—a popular method of recommender systems.
2) We propose a novel structure-based approach to link prediction.
Empirical results on ego-centric networks of Twitter users show
that our method can outperform state-of-the-art methods on this
task.

1.1 Related work
There are several fundamental kinds of link prediction methods,

such as structural methods, random walk methods and supervised
methods. Liben-Nowell et al. surveyed an array of methods for link
prediction in online social networks [16, 17].

One branch of structural methods is based on the local structure,
such as common neighbors, Jaccard coefficient and Adamic/Adar
[1] which refines the simple counting features by weighting rarer
features more heavily. The preferential attachment method sup-
poses that the likelihood that a new edge involves node v is propor-
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tional to Γ(v), the number of neighbors of v. Based on global struc-
ture information, Clauset et al. [4] present a general technique for
inferring hierarchical structure from network data and show that the
existence of the hierarchy can simultaneously explain and quantita-
tively reproduce many commonly observed topological properties
of networks.

Another approach utilizes random walk methods such as Rooted
PageRank [16, 17] which is a variation of PageRank [21] that mea-
sures the stationary probability of each node in a random walk that
returns to the root with some probability in each step. Weng et
al. [24] try to identify influential users of micro-blogging services
by using LDA to analyze user interests. Yin et al. propose a method
which augments the original graph with attribute nodes, and then
uses random walk to calculate link relevance [26, 27]. SimRank
[8] recursively defines the similarity of two nodes and can also be
interpreted in terms of a random walk. The most recent random
walk-like method is PropFlow [18] which calculates the probabil-
ity that a restricted random walk starting at node vi ends at vj in
l steps. Katz [10] proposes a path-based method, which defines a
measure that sums over the collection of all paths from vi to vj ,
and assigns more weight to shorter paths. Recently, Backstrom et
al. [2] proposed a supervised random walk method which combines
information from the network structure with node and edge level at-
tributes. Supervised learning then adjusts the weights on different
attributes to guide a random walk on the graph.

In supervised methods, the link prediction problem is usually
considered as a classification problem. Such methods extract fea-
tures from training data and can include both topological features
(as in [9]) and node features. Hasan et al. [7] use different kinds
of features, such as proximity features, aggregated features and
topological features, and also compare different kinds of classi-
fiers. More recently, Lichtenwalter et al. [18] examine important
factors in the link prediction problem and present a classification
framework which employs their PropFlow as a feature.

If you consider link prediction as a recommendation problem, a
popular method is matrix factorization [13, 12, 11, 19] where the
algorithms find hidden features for users and items by factorizing
the observation matrix. However, those methods are designed for
a user-item pair, and never before used for link prediction in social
network.

There is other related research about link prediction [20, 23] and
hybrid networks. Kwak et al. [14] find that the relationship of
following and being followed on Twitter is not reciprocal, unlike
most other social networking sites such as Myspace and Facebook.
Romero and Kleinberg [22] also introduce the hybrid network con-
cept and explore the directed closure process in Twitter. Recently,
Golder et al. [6] discuss prediction specifically in Twitter. They an-
alyze several principles for link prediction, such as shared interests,
shared followers, and mutuality. They also discuss their user study
results in [5].

2. LINK PREDICTION
Here we introduce our prediction framework based on link struc-

tures. In a hybrid social-information network, structures can reflect
many scenarios that may be useful for capturing users’ interests and
predicting potential links. In Figure 1, we can see some examples
of various structural meanings: a) User vu may be interested in
vc, because other similar users with vu are following vc. b) User
vu may want to follow vc, because they may be friends with each
other in real life and they are willing to use microblog as social net-
works. c) User vu may want to follow vc, because vu is following
other users which are following vi while vc is also following vi and
they may share the same interests. With these three examples, we

(a) (b) (c)

Figure 1: Examples of relationships between user vu and can-
didate vc.

have already seen some meanings of structures. We wish to design
a model to exhaust such structural information for predicting new
links.

Suppose that we want to recommend other users which user u
may know or be interested in following. The problem we consider
is that given a user u and the whole network G, what is the proba-
bility that user vu follows user vc: P (vu → vc|G). We will rank
candidate users according to this equation, and the top N users
will be recommended to user vu. To calculate P (vu → vc|G),
theoretically, each intermediate user/vertex vi can contribute some
structural information which represents two parts: the link struc-
ture between vi and vc and the link structure between vu and vi.
Now let us define the set of target users to which we will recom-
mend some friends Vu, the set of intermediate users which we will
exhaust the structural information Vi, and the set of candidate users
for recommendation Vc. Assuming that P (vu → vc|G) is the lin-
ear combination of all possible intermediate users/vertices’ contri-
bution, we have

P (vu → vc|G) =
∑

vi∈Vi
bvi,vc · avu,vi

Let bvi,vc represent the contribution of the structural information
between vi and vc, which can be considered as the strength of vi’s
recommendation for vc and avu,vi represent the contribution of the
structural information between vu and vi, which can be considered
as the score of vu liking a recommendation of vi. We will denote
with A the matrix with elements Avu,vi = avu,vi and with Avu

the column of A corresponding to vu. Similarly, B ∈ R|Vi|×|Vc|

with column vector Bvc . Let Rvu = [rvu,v1 , rvu,v2 , ...rvu,vn ]
represent the current friends snapshot of vu in which rvu,vi = 1
means vi is a current friend of vu and rvu,vi = 0 means vi is the
current follower-only of vu.

Elsewhere [25] we report that only 12% of follower-only users
of all follower-only users become new friends; thus it is perhaps
reasonable to use follower-only users as negative samples. Then,

R̂ = ATB

In probabilistic view, we define the conditional distribution over the
current friends.

p(R|A,B, σ2) =
∏

vu∈Vu

∏
vc∈Vc

[N (R|AT
vuBvc , σ

2)
]Ivu,vc

where N (R|AT
vuBvc , σ

2) is the probability function of the gaus-
sian distribution with mean AT

vuBvc and variance σ2. Ivu,vc is
the indicator function for selecting observed training data. For pair
(vu, vc), if we use it as our training data, then Ivu,vc = 1, oth-
erwise, Ivu,vc = 0. We also place zero-mean spherical Gaussian
priors on the two structural parts A and B

p(A|σ2
A) =

∏
vu∈Vu

N (Avu |0, σ2
AI)

p(B|σ2
B) =

∏
vc∈Vc

N (Bvc |0, σ2
BI)
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The log of the posterior distribution over R,A and B is given by

ln p(A,B|R, σ2, σ2
A, σ

2
b )

= − 1

2σ2

∑
vu∈Vu

∑
vc∈Vc

Ivu,vc(Rvu,vc −AT
vuBvc )

2

− 1

2σ2
A

∑
vu∈Vu

AT
vuAvu − 1

2σ2
B

∑
vc∈Vc

BT
vcBvc

−1

2

( ∑
vu∈Vu

∑
vc∈Vc

Ivu,vc

)
lnσ2 − 1

2
|Vu||Vi| lnσ2

A

−1

2
|Vc||Vi| ln σ2

B + C

where σA and σB control the smoothing factor of A and B. Let
σB = σA, and then maximizing the log of the posterior distribution
is equivalent to

min
A,B

∑
vu

∑
vc

Ivu,vc(Rvu,vc −AT
vuBvc )

2

+λ1(‖A‖2Fro + ‖B‖2Fro)

where λ1 = σ2/σ2
A, is actually the smoothing factor and ‖ · ‖2Fro

denotes the Frobenius norm. Next, we need to involve structural
regularization into the objective function.

2.1 Structural regularization
Elsewhere [25] we show that more than 90% of new links go

to people two hops away from user (the ego). Intuitively, if two
users vi and vj are far away on the graph, that is, the shortest path
between vi and vj is too long, their structural information can be
ignored. We can define the set of the effective structures Se. For
example, if we define that the structures with only one hop are ef-
fective, the set of effective structures will be Se = {⇐,⇒,⇔}
and if we define that all structures with up to two hops are ef-
fective, then the set of effective structures will be Se = {⇐,⇒
,⇔,⇒⇒,⇒⇐,⇒⇔,⇐⇐,⇐⇒,⇐⇔,⇔⇐,⇔⇒,⇔⇔}. Let
Svi,vj represent the set of all possible structures from vi to vj and
Se
vi,vj represent the set of all effective structures from vi to vj—

Se
vi,vj = Svi,vj ∩ Se. Thus, if Se

vu,vi = ∅ where vu ∈ Vu and
vi ∈ Vi, then let avu,vi = 0 and similarly, if Se

vi,vc
= ∅ where

vi ∈ Vi and vc ∈ Vc, then let bvi,vc = 0.
Beginning at some user vu ∈ Vu, intuitively, if the structures of

(vu � vi) and (vu � vj) are similar or same, the contribution
scores of avu,vi and avu,vj should be similar. Following this intu-
ition, we make constraints on structural scores matrix A, and define
a structural regularization function S(A) to constrain similar scores
on similar structures.

S(A) =

∑
vu∈Vu

∑
vi∈Vi

∑
vj∈Vi

Wvu (vi,vj)(avu,vi
−avu,vj

)2

∑
vu∈Vu

∑
vi∈Vi

∑
vj∈Vi

Wvu (vi,vj)

where Wvu(vi, vj) is the measurement of similarity on structures
attached on vu: the more similar the structures of (vu � vi) and
(vu � vj) are, the higher value the Wvu(vi, vj) is. There are
many kinds of methods to measure the structural similarity. Here,
We list two:

Binary weighting if Se
vu,vi = Se

vu,vj , then Wvu(vi, vj) = 1,
otherwiseWvu(vi, vj) = 0.

Cosine weighting let NSe
vu,vi

represent the vector of quantified
effective structures of (vu � vi), that is, NSe

vu,vi
=

[nvu⇒vi , nvu⇐vi , nvu⇔vi , nvu⇒⇒vi ...], where nvu⇒⇒vi

is the number of ⇒⇒ path from vu to vi. Then,
the cosine similarity is calculated as Wvu(vi, vj) =

NSe
vu,vi

·NSe
vu,vj

‖NSe
vu,vi

‖·‖NSe
vu,vj

‖

We also notice that if we take Se = {⇐,⇒,⇔}, the two kinds
of weighting are equivalent, because nvu⇒vi , nvu⇐vi and nvu⇔vi

only can be 0 or 1. Similarly, we add the structural constraints to
B, and we have

S(B) =
∑

vi∈Vi

∑
vc∈Vc

∑
vk∈Vc

Wvi
(vc,vk)(bvi,vc−bvi,vk )2

∑
vi∈Vi

∑
vc∈Vc

∑
vk∈Vc

Wvi
(vc,vk)

The objective function O becomes

min
A,B
O =

∑
vu∈Vu

∑
vc∈Vc

Ivu,vc(Rvu,vc −AT
vuBvc )

2

+λ1‖Avu‖2Fro + λ1‖B‖2Fro

+λ2S(A) + λ2S(B) (1)

where λ2 is the structural factor tuning the weight of structural reg-
ularization. In the above model, we see the two parameters λ1

controls the weight of smoothing and λ2 controls the weight of reg-
ularization. The selected training links are represented by Ivu,vc .

2.2 Prediction in ego-centric networks
We call the above model the global model because the predic-

tion is from the global network and performs collaborative filtering
among all Vu. The global model will run on the whole graph to
make predictions for a specific user and it will take a relatively long
time to finish the computation; however, sometimes users perform
interactive behaviors—such as requesting an instant recommenda-
tion. In this case, the global model may not work because of such
long term computation. Secondly, the friendship network of some
users may be already stable [25] and they may not want to add new
friends.

It is necessary to make instant prediction for the users who are
eager to get new friends. Unfortunately, directly reducing the
model to fit the local structures of user vu will cause overfitting.
Thus, here we introduce a local model.

Considering the extreme case that only one user vu requests new
friends, the matrix R and A will reduce to only vectors Rvu and
Avu and a personalized method is necessary. We recall that the
meaning of A and B, avu,vi can be considered as the probability of
vu trusting the recommendation of vi and bvi,vc can be considered
as the probability of vi recommending vc. For bvi,vc , because we
know the current friendship network of vu and also the structural
information of vi, we can make B personalized for vu—Bvu , that
is, bvu,vi,vc means the probability of vi recommending vc for vu,
given the structure information of vi. For some specific user vu, we
assume that vu is interested in all his friends. Given the structure of
some path between vi and vc (vi � vc), we can use the following
equation to get the approximation value of bvu,vi,vc :

βvu,vc,vi =

∑
vk∈Vvu→ Wvi

(vc,vk)
∑

vk∈V Wvi
(vc,vk)

where vu ∈ Vu, vc ∈ Vc and vi ∈ Vi. The above actually calcu-
lates the fraction of the number of vu’s friends who share similar
structures with vc over the number of all users who share similar
structures with vc. If the value βvu,vc,vi is larger, then there will
be a larger probability that vu will follow vc. Then similarly as in
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section 2, for some specific targeting user vu we let

p(Avu |σ2
A) = N (Avu |0, σ2

AI)

p(B|βvu , σ
2
K) =

∏
vc∈Vc

N (Bvc |βvu,vc , σ
2
BI)

Then we have the objective function Ovu for vu:

min
A,B
Ovu =

∑
vc∈Vc

Ivu,vc(Rvu,vc −AT
vuBvc)

2 + λ1‖Avu‖2

+λ1‖B − βu‖2Fro + λ2S(Avu) + λ2S(B) (2)

2.3 Solving the model
Solutions for Equations 1 and 2 are quite similar. One simple

method is gradient descent. Intuitively, the structure rarely con-
tributes negative effects and usually a user vu likes some kinds of
users or does not care about some other kinds of users. In the quan-
tified observed matrix R, we also use 1 for current vu’s friends and
0 to represent links that vu does not care about. From the Section
2.2, we also involve a guidance value—β. All these reasons lead
us to constrain A and B to be nonnegative. Nonnegative matrix
factorization has been researched for many years [15, 3].

The objective function O and Ovu in Eq. 1 and Eq. 2 are not
convex in both A and B together and it is realistic to expect an
algorithm to find the global minima. The process we use for solving
O and Ovu in Equations 1 and 2 is to use an iterative algorithm
following the methods in in [15, 3] to derive multiplicative update
rules. The proof by Lee and Seung [15] suggests that the objective
function will be nonincreasing under such update rules.

3. EXPERIMENTS
In this section, we describe our prediction experiments. Our

method is only based on structural information of the social graph;
thus for comparison methods, we also mainly focus on structure-
based methods which do not involve user properties or content.

3.1 Data set and evaluation
In link prediction experiments, we use the same 979 Twitter

users as in [25] and their immediate neighbors (979 ego users and
their neighbors) that were collected to build a network for the link
prediction task. In total, there are 211,559 unique users. For our
experiments, we employed two kinds of evaluation methods.

Static Evaluation. Based on the 979 users’ ego network snap-
shot on April 5th 2010, for each target user whose number of
friends is larger than ten, we remove five links to friends. The pre-
diction task is then to use the pruned networks to find the missing
links. This evaluation method is widely used in the link prediction
literature [4, 26, 27]. We use this process both for parameter tuning
and for model analysis.

Dynamic Evaluation. We also monitored the changes in the 979
users’ friendships and recorded the new links established between
April 5th and May 12th [25]. Here, the prediction task is based
on the April 5th network snapshot to predict new friends in the
following months.

For validation purposes, we also run our experiments on a second
static Twitter data set (described below in Section 3.6). Precision,
recall and F-measure are calculated in the standard manner, and our
main measurement is the F-measure based in the break even point.

3.2 Baselines
In this section, we analyze and discuss simple predictors and

principles to show the difficulty of this problem. Daily monitored
data shows that more than 90% of new users are within two hops

Method Static Dynamic
Shared followers 0.078 0.119
Shared friends 0.061 0.083
Shared mutual 0.074 0.086
Common neighbors 0.071 0.116
Katz (l=2) 0.094 0.086

Table 1: Simple predictor analysis (F-measure).

and also their relationship [25]. Golder et al. [6, 5] discuss link pre-
diction in Twitter, analyzing several principles for link prediction,
such as shared interests, shared followers, and mutuality. Romero
and Kleinberg [22] also introduce the directed closure process in
Twitter tie formation. Here, we re-implement and compare the sim-
ple predictors which are from the principles described in [22, 6, 5].

To represent the principle Shared Interests, we use the predictor:
the number of shared friends. A shared interest is best represented
by the relationship chain vu → X ← vc. Similarly, Shared Au-
dience (vu ← X → vc) is measured by the number of shared
followers. For Transitivity [6, 5] or the Directed Closure Process
[22], we use Katz’s methods with degree length l = 2, which is
equivalent to the number of paths vu → X → vc. We also test
Shared Mutual Friends. Shared Neighbors is just the count of the
total number of neighbors (both friends and followers) without con-
sidering direction. The results are shown in Table 1.

From Table 1 we can see that all simple predictors provide simi-
lar performance—around .10 F-measure. We notice that the shared
friends predictor performs worse than others, and that implies that
two users sharing the same interests may not be particularly in-
terested in following each other. Overall, simply using any single
predictor cannot generate good results. Better methods are neces-
sary.

3.3 Parameter analysis
In this section, we analyze our two models, and tune parameters

on static data. In the experiments, we use the snapshots of the target
user’s friendship network to construct the observation matrix R: if
user vc is a friend of vu, we will set the entry rvu,vc = 1 and if
user vc is a follower-only of vu, we will set the entry rvu,vc = 0.
Because we already know that more that 90% of new links are from
second level neighbors, our effective structures are defined in one-
hop; that is, each edge will have two parameters a and b respec-
tively in A and B, and in the global model, it will generate predic-
tion in two hops. In the local model, full structural information is
captured in vu’s two-hop ego network. Initial values of A and B
are all set to the same value. We finally find that when smoothing
parameter λ1 = 100 and regularization parameter λ2 = 100 in the
local model and λ1 = 1000, λ2 = 100 in the global model, the best
performance is achieved. The model usually can converge within
10 iterations, and Figure 2(b) shows the performance changes as
a function of iteration number. Because the current network is an
ego-centric network which can provide full structural information,
but the set of target users—Vu—is relatively small and may not
provide good collaborative filtering, the performance of the local
model is .197, which is better than the global model—.15. In the
following, we use the local model for comparison.

Based on the local model and static data, we also analyze the
effects of λ1 and λ2. Figure 2(a) shows the results. For the curve
for λ1, we set λ2 = 0, and then tune λ1 from 0 to infinity. We
can see that it achieves the best performance when it is set to 100.
We also note that when λ2 is infinite, the model is reduced to the
simple methods where links of the same type will share the same
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Figure 2: Experimental analysis

value. The performance of this model is still competitive, although
its F-measure is lower than the best performance. Similarly, the
performance of tuning λ2 is shown in the same figure.

3.4 Comparing to link prediction methods
In this section, we compare recent and popular methods which

have been already used widely in link prediction problem. Six
methods are implemented for comparison. The Common neigh-
bors method simply counts the number of common neighbors. The
Jaccard coefficient is calculated through dividing the number of
common neighbors by the total number of neighbors. Adamic/Adar
[1] refines the simple counting features by weighting rarer features
more heavily. Preferential attachment scores are the product of vc
in-degree and vu out-degree. We also compare the latest method—
PropFlow [18]. In both Katz’s method [10] and PropFlow, we tune
the parameters l from 1 to 5 in static data.1 Finally, we compare
them on real dynamic data. The results are shown in the Static and
Dynamic columns of Table 2.

In static evaluation, the results of PropFlow, Common Neigh-
bors, Jaccard Coefficient and Adamic/Adar are similar and
PropFlow which is a relatively newer method, gets better results
than the other five competitors. Jaccard Coefficient shows compet-
itive results which is similar with PropFlow. Preferential Attach-
ment fails to predict missing links. For Preferential Attachment, be-
cause it only depends on the in-degree of the candidates, in the case
of the information producers (with higher in-degrees), it may work.
However, in real world, we know that individual users are more
prevalent than information producers. Thus, we can imagine the
failure of Preferential Attachment. In dynamic evaluation, a point
which we have to note is that unlike in static evaluation, the Jaccard
coefficient works very well and even better than PropFlow. Within
ego-networks, the Jaccard coefficient is a competitive method and
also simple to calculate. We also find the failure of Preferential At-
tachment. Our method outperforms all other methods in both static
evaluation and dynamic evaluation.

3.5 Comparing to matrix factorization
As mentioned earlier, another direction to solve the link predic-

tion problem in a hybrid network is to use the techniques of the
traditional recommender systems. Matrix Factorization is a popu-

1In their paper, they also proposed a supervised method. Here, we select
PropFlow for two reasons: First, for Lichtenwalter et al.’s supervised meth-
ods, there are many parameters to tune and selecting features is also a prob-
lem. Second, in their paper, PropFlow is used as a feature, and for most
supervised methods, our method can also be used as a feature.

lar method which is widely used in recommender systems [12, 13].
Here we employ the standard matrix factorization methods with
smoothing. The observation matrix R is the same as the one in our
model and the objective function is as follows.

minA,B

∑
vu∈Vu

∑
vc∈Vc

Ivu,vc(Rvu,vc −AT
vuBvc)

2 +

λ(‖A‖2Fro + ‖B‖2Fro)

To solve this optimization, we used stochastic gradient descent.
Based on the static data, we tune the number of hidden features
from 20 to 300, find the optimal parameter for comparison and set
λ = 0.05. The results are shown in the last row of Table 2. On
the static data, matrix factorization only achieves around .09 F-
measure but the performance of matrix factorization on real data
is also competitive at .163. Our model can outperform the standard
matrix factorization in both static data and dynamic data because
our method essentially incorporates matrix factorization techniques
with structural information.

3.6 Validating results
To test for sensitivity to our data set and sampling methods, we

also ran our experiments on a subset of the large Twitter follow
graph collected by Kwak et al. at KAIST [14]. We randomly sam-
ple 2,000 test users and extract their ego networks as in Section
3.3. There are, in total, 81,580 users and almost 10 million edges
within this second test network. We again compared our methods
with the other seven methods using the static dataset methodology.
The results are shown in the rightmost column of Table 2 and are
consistent with our earlier experiments. PropFlow is also better
than other comparison methods. Our approach consistently outper-
forms all other tested methods.

Method Static Dynamic KAIST
Our model 0.197 0.190 0.127
PropFlow 0.124 0.099 0.081
Katz 0.094 0.086 0.077
Jaccard coefficient 0.098 0.169 0.079
Adamic/Adar 0.090 0.128 0.069
Common neighbors 0.071 0.116 0.051
Pref. Attachment 0.012 0.012 0.023
Matrix factorization 0.082 0.163 0.074

Table 2: Comparing link prediction methods (F-measure).
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3.7 Discussion
We have demonstrated many of the challenges of link prediction

in a hybrid network and also noticed that the overall performance
is relatively low, compared to results presented in some link pre-
diction papers on other datasets. However, even when consider-
ing “social networks”, most existing work does not directly exam-
ine online social networks, but rather networks of co-authorship or
similarly constructed networks reflecting some social relationship
or record of activity.

On the other hand, the links in an online social network may re-
flect relationships (friends, family) that are not visible in a record
of activity, and in a microblogging network with hybrid character-
istics is even more complex.

As a result, previous methods which may work well on tradi-
tional social networks or co-authorship networks may not work as
well on hybrid networks. Our results shows that the F-measure of
many popular methods on our real-world data is only around 0.10.

Another cause for low performance of link prediction is that the
microblogging network continues to grow. Each day, there may be
many new links created [25]. In our experiments, we only evaluate
new links within the following one month, so performance may be
underestimated. It is possible that users are actually interested in
those predicted links but they may not create those links within the
following one month due to the fact that users may not discover
those potential friends in a short period of time. In other words,
users may create those links later, after our initial evaluation pe-
riod. We conduct a simple experiment to test this: we make predic-
tions based on the same training data—the 04/05/2010 snapshot,
but we evaluate on different snapshots from different times. Fig-
ure 2(c) shows the results, and we find that after 05/12/2010, target
users continue to create links which we had predicted, so measured
performance grows higher and higher.

Another thing we can notice is that performance on the three test
sets are different. For example, matrix factorization works well on
the dynamic data but not well on the static data. We can imagine
that static evaluation and dynamic evaluation have different prop-
erties such that some methods are better suited for one or the other.
For the prediction task, dynamic evaluation is a more accurate es-
timate of future performance than static evaluation. However, if
recommendation is the true end goal, it is difficult to tell which (if
any) is better without involving a user study.

4. SUMMARY
In this paper, we examined the link structure and link predic-

tion task within the Twitter microblogging network. We proposed a
novel personalized structure-based link prediction model and com-
pared its predictive performance against many fundamental and
popular link prediction methods on real-world data from the Twit-
ter microblogging network. Our experiments on both static and dy-
namic data sets show that our methods noticeably outperform the
state-of-the-art.
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