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ABSTRACT
Understanding query intent is essential to generating appropriate
rankings for users. Existing methods have provided customized
rankings to answer queries with different intent. While previous
methods have shown improvement over their non-discriminating
counterparts, the web authors’ intent when creating a hyperlink is
seldom taken into consideration. To mitigate this gap, we cate-
gorize hyperlinks into two types that are reasonably comparable
to query intent, i.e., links describing the target page’s identity and
links describing the target page’s content. We argue that emphasis
on one type of link when ranking documents can benefit the re-
trieval for that type of query. We start by presenting a link intent
classification approach based on the link context representations
that captures evidence from anchors, target pages, and their asso-
ciated links, and then introduce our enhanced retrieval model that
incorporates link intent into the estimation of anchor textimpor-
tance. Comparative experiments on two large scale web corpora
demonstrate the efficacy of our approaches.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Performance

Keywords
Link intent, Query intent, Kronecker product, Anchor text,Term
weighting

1. INTRODUCTION
Search engine users issue queries with a variety of information

needs, or intents. Some queries are targeted at finding particular
web sites, while others are used to find generic information about
certain topics. Some are issued to retrieve particular information
that users have seen before, while some aim to explore new knowl-
edge. Extensive work has been conducted to model, characterize,
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and understand such intents. One popular classification of query
intent was proposed by Broder [3] in which queries are classified
into three categories: informational, navigational, and transactional
and are defined as follows (in Broder’s original wording):

• Navigational. The immediate intent is to reach a particular
site.

• Informational. The intent is to acquire some information as-
sumed to be present on one or more web pages.

• Transactional. The intent is to perform some web-mediated
activity.

A branch of research followed this classification scheme to pre-
dict user intent behind a query, and then utilize ranking models that
can generate appropriate rankings for users. Such methods have
shown improvement over their counterparts which do not discrimi-
nate query intent. However, most existing approaches have at least
two limitations. First, they use hyperlinks and associatedanchor
text without differentiation. We argue that people create hyperlinks
with different intents; therefore, such intent should be taken into
consideration in these discriminative ranking approaches. Second,
they only predict query intent based on the query itself. However,
a query does not exist independently. It is connected with the re-
trieved documents, and with hyperlinks that are perhaps related to
the query and the documents. Therefore, it is natural to collectively
model the “intent” of different objects (queries, documents, and
links) by utilizing their interconnections.

Given a web page, each of the hyperlinks that point to it is
associated with an anchor text. As a preliminary step, we cate-
gorize hyperlinks into two types according to their intent:links
that are created to describe the target page’s identity (referred to
as “navigational links”), and links created to describe thetarget
page’s content (referred to as “informational links”). Forexam-
ple, a link pointing tohttp://www.pandora.com/ with the
anchor text “Pandora” is considered a navigational link since the
anchor text is the proper name of that particular internet music ser-
vice. A link with the same anchor text pointing to the Wikipedia
page aboutPandora, the woman in Greek mythology, should be
an informational link. Although the two classes of links seem to
be mutually exclusive, there can be links that are a mixture of
both. Still using the previous example where the target pageis
http://www.pandora.com/, if the anchor text is “Pandora,
the internet radio”, then it is partly a navigational link and partly an
informational link. In our work, we will consider every linkto be a
soft combination of both, with the probability of being navigational
and being informational sum to one.

Similarly to our classification of hyperlinks, we consider web
documents as having the properties of attracting each type of link.
Like hyperlinks, web pages can be a mixture of both. Note thatboth



the link types and web document types we propose correspond to
the two primary query intent types: navigational and informational.
Therefore, it is intuitive to emphasize different types of links and
documents when generating rankings for different types of queries.
In addition, such a correspondence makes it easier to model the
interactions among the query, links and web documents.

Our work is conducted in two steps: first classify links into the
two classes we proposed; then use the link intent classification re-
sults to generate better rankings. For link intent classification, we
use a customized approach based on the Kronecker product of fea-
ture spaces that is capable of capturing the hidden interconnections
between anchors and documents. We also include evidence from
the link itself. Specifically, our evidence comes from threesources:
(1) the anchor text string, from which popularity-based features are
derived from statistics among associated target pages; (2)the target
pages pointed to by the anchors; and (3) the hyperlinks connecting
the anchors and targets. Given link intent classification result, we
enhance retrieval models by incorporating it into the estimation of
anchor text importance, to demonstrate its impact on web search.
To the best of our knowledge, this is the first attempt to make an
analogy of link intent with query intent1, and incorporate this con-
cept into retrieval models in a principled way. Experimentson
two large scale web collections show our enhanced retrievalmodel
achieves significant improvement over existing approaches. The
contributions of this work include:

• We propose a classification scheme on link intent that bene-
fits ranking performance, and investigate its rationality.We
are not aware of any work by others on categorizing links by
web authors’ intent for retrieval improvements.

• We propose a feature-based model that exploits evidence
from anchors, target documents, and hyperlinks to represent
the context of a link. It effectively categorizes hyperlinks
into our proposed scheme.

• We enhance anchor-based retrieval models by incorporating
link intent classification results into the estimation of anchor
text importance, and show its efficacy on ranking through
thorough experiments.

The rest of this paper is organized as follows. We motivate this
work and define the link intent classification problem in Section 2;
introduce our problem approach for link intent classification in Sec-
tion 3; present how we incorporate link intent into retrieval methods
in Section 4; and report experimental results in Sections 5,6 and
7. We review previous work in Section 8 and conclude our work in
Section 9.

2. RATIONALITY OF LINK INTENT
In this section, we investigate the rationality of link intent on

two aspects: (1) whether it is rational to categorize link intent into
the classes of “navigational” and “informational”; and (2)why we
expect incorporating this concept can affect ranking performance.
We end by formalizing the link intent classification problem.

2.1 User Study on Link Intent
To verify the rationality of the proposed link intent taxonomy,

we conducted a user survey on the motivation of a web user cre-
ating anchors that describe target pages. The survey investigated
three main questions: (Q1) the purpose of a web author creating
a link (with a short descriptive anchor text) to agiventarget page;
(Q2) what type of target pages that a link (with agivenanchor text)

1Some preliminary results of this work is reported in [7].

Table 1: Analysis of “Neither of above” answers.
Type #. of resp. Frac.
Informational links 74 56.1%
Navigational links 6 4.5%
Anchors not describing target pages 38 28.8%
Others 14 10.6%

would point to; and (Q3) treating agiven anchor text as a query
for commercial search engines, what type of search results are ex-
pected. Our subjects are composed of 160 workers from Amazon
Mechanical Turk2. Each subject is required to answer all three
questions within one survey, and if legitimate through our manual
check, she would get paid $0.3. Our objects are one anchor-URL
pair per survey. We prepared the objects by (1) first randomlyse-
lecting around 800 anchor-URL pairs from WebBase [4, 11] (see
Section 5.1 for details), and then (2) performing a manual check
that filters out the unavailable links, resulting in 543 useful links.
There are 502 valid survey answers returned finally.

For Question 1, a majority of users chose a clear “informational”
or “navigational” answer. However, it is interesting to seethat 132
(26% of all valid answers) chose “Neither of above”. We further in-
vestigated the text answers we collected for this question.We found
that some users clicked the “Neither of above” choice by mistake;
they knew the link should be informational or navigational,but
clicked “Neither of above” unintentionally. Or, they are probably
not aware that the link is informational or navigational; but from
the text answer, we can tell that their understanding of those links
fits our definition. Example answers of the above case include“a
brief description of the given list”, “yes it explains aboutthe web-
site”, “The name of the website is x” (where x matches the anchor
text). Considering the above factors, we found that more than 60%
of the 132 “Neither of above” actually belong to informational or
navigational links (56.1% and 4.5% respectively, as shown in Ta-
ble 1). In another 28.8%, “Neither of above” is chosen is because
the anchor text is irrelevant to the target page. For the remaining
10.6%, we could not get a clear reason why that choice is made.
The statistics are shown in Table 1.

In summary, the results of this user survey verify our intuition
that users can reasonably apply one of the two rationales we have
provided for link intent in most cases.

2.2 A Motivating Example on Ranking
The user study supports our intuition about link intent withreal

users’ opinion. To explore the necessity of incorporating link intent
into web search, we illustrate one example with two web pagesin
response to the querypandora music, as shown in Figure 1.

As mentioned in Section 1,pandora musicis a navigational
query, whose perfect answer is the home page ofpandora music
http://www.pandora.com/, i.e., pageA in Figure 1. Sup-
pose bothA andB associate with a series of anchor text respec-
tively, our hope is to rank pageA higher thanB. In the fictitious
example in Figure 1(a), pageA associates with 100 in-coming links
having the anchor text “pandora music”, whileB in Figure 1(b) is
pointed to by 100 inlinks with distinct anchor texts, all of which
contain the substring “pandora music”. Without considering page
content and anchor text length, the contributions of anchorterms
“pandora music” to pageA andB are indistinguishable. How-
ever, we claim that page A should be emphasized when answering
the navigational query “pandora music”, and so we argue thatdif-
ferentiating link intents can help generate more accurate document
representations for retrieval.
2http://www.mturk.com/



(a) PageA is the home
page ofpandora music.

(b) PageB is a blog dis-
cussing music on Sitepan-
dora music.

Figure 1: An example of two pages and their associated anchor
text for answering pandora music.

2.3 Problem Definition
We now formalize link intent classification problem. Four types

of objects may hold specific intent within their contexts, i.e.,
queries (Q), documents (D), anchors (A) and links (L). In this work,
an anchor refers to a unique string which may be used in multiple
hyperlinks. Link intent is associated with its link context(C(a,d)),
a function of the anchor and its pointed target page. Thus, wenote
that a link in our context is a unique anchor-document pair that
maps to multiple hyperlinks on the web. We define the intent ofthe
above objects as follows.

• A query isnavigationalif it aims to finda particular site; a
query isinformational if it aims to find information about a
certain topic.

• A link is navigationalif its anchor describes a target page’s
identity; a link is informationalif its anchor describes a target
page’scontent.

• An anchor isnavigationalif it mainly describes target pages’
identities; an anchor isinformational if it mainly describes
target pages’content;

• A web document isnavigationalif it mainly attracts incom-
ing links due to itsidentity; a web document isinformational
if it mainly attracts incoming links due to itscontent.

We formalize the link intent classification problem as follows.

Problem Statement: Given a linkl and its link contextC(a, d),
determine whether its link intent is navigational or informational.
The classification can be binary (hard) or probabilistic (soft).

3. LINK INTENT CLASSIFICATION
In this section, we present our problem approach for link intent

classification. It learns a feature based classification model based
on evidence from link context profiles, and outputs a binomial dis-
tribution over every link, indicating the probability of belonging to
a specific intent.3

3.1 Link Context Profiles
The observational data are naturally represented in a multi-

dimensional format for each link contextC(a, d). We use the
format of anchor×target page+link, in which the flatter form of
3We will present how we exploit such outputs to enhance retrieval
models in Section 4.

Table 2: Feature summary of link context profiles.
Anchor Profiles (6)
KL(A) KL divergence from anchor-link distr. to background.
En(A) Entropy of anchor-link distr.
EnT(A) Entropy of anchor term-link distr.
Diff(A) Difference between top 2 popular items in anchor-link distr.
L(A) Anchor length.
POS(A) Fraction of noun., verb., etc.
Page Profiles (8)
KL(P) KL divergence from aggregated anchor-link distr. perpage

to background.
Diff(P) Difference between top 2 popular items in aggregated

anchor-link distr. per page.
En(P) Entropy of aggregated anchor-link distr. per page.
EnT(P) Entropy of aggregated anchor term-link distr. per page.
L(P) URL length.
D(P) URL depth.
Link Profiles (5)
JC(T) Jaccard coefficient between anchor and target page title.
JC(H) Jaccard coefficient between anchor and target host.
IsApp(*) Does anchor text appear in a specific field of target page,

such as body, title, heading?

Figure 2: The observational data have the relationship in which
anchors and target pages can be treated as a 2-dimensional ten-
sor, with its flat form appended to link dimension.

anchor×target page (Kronecker product) is a one-way form (Fig-
ure 2) appending to the link dimension. Each dimension forms
a space, in which features are extracted for profiling individually.
We extract anchor, page (document) and link features to construct
three types of profiles, represented as feature vectors−→xa, −→xd, and
−→xl . These features are summarized in Table 2.

Anchor profilescharacterize anchor text from two aspects: (1)
global anchor-link distribution, and (2) local anchor textual infor-
mation. Given an anchor text, its anchor-link distributiongives ev-
idence about its intent. For example, the links associated with a
navigational anchor text (e.g., organization names) are more likely
to point to pages in a navigational way. Lee et al. [16] proposed an
effective feature to classify query intent from anchor-link distribu-
tion (Figure 3). Navigational pages tend to attract many links with
the same anchor text that describes the page’s identity. Theanchor-
link distribution is calculated as follows: (1) given an anchor, cal-
culate how many times this anchor points to a given target page;
(2) sort target pages according to anchor occurrence. Basedon this
distribution, we can extract much information characterizing the
anchors, such as the distance of anchor occurrences betweenthe
target pages at rank one and rank two, its Kullback-Leibler Diver-
gence to the anchor-link background distribution aggregated from
all anchors, etc. Enlightened by Fujii [10], we calculate anentropy-
based measurei(a) to capture how skewed the distribution is. Let
Da be the collection of target pages pointed by anchora, the con-
ditional entropy ofDa is H(Da|a) is given by:

H(Da|a) = −
∑

d∈Da

P (d|a) log P (d|a)

To make H(Da|a) comparable among differenta, we divided
H(Da|a) by the logarithm of the size ofDa. Thus,i(a) is nor-
malized into the scale [0,1], defined asi(a) = H(Da|a)

log|Da|
.



Figure 3: An example of anchor link distribution: (left) nav i-
gational, (right) informational. From Figure 2 in [10].

Since these factors are only based analysis of anchors, we added
another group of factors similar to anchor-link distribution but
based on anchor terms (referred to as “Anchor term-link distribu-
tion”, see [10] for details). It combines the characteristics of other
anchors that only share a portion of repeated anchor terms ina prob-
abilistic way. Such features overcome the problem of anchorlink
distribution sparsity by generating a more confident distribution.

Textual features are also considered in profiling anchors. For
example, we use the statistics based on the Part-Of-Speech (POS4)
tags of anchor terms as features. Other features include anchor
length, term frequency, and so on.

Page profilescharacterize how likely a page is to attract links be-
cause of its identity. Given a target page, we aggregate the anchor-
link distributions of all its in-linked anchors to profile the page in-
tent. DefineA(d) as the collection of unique anchors pointing tod,
the aggregated anchor link distribution ond, denoted asDistr(d) ,
is written as:

Distr(d) =
∑

a∈A(d)

p(a|d) · Distr(a)

whereDistr(a) is the anchor link distribution of anchora. Based
on the distributionDistr(d) , the same group of features can be ex-
tracted to model page intent. Note that both anchor-level and term-
level anchor link distribution are utilized in modeling page intent.

In addition to global features fromDistr(d) , local features in-
cluding URL length and URL depth, are also used in profiling.
More features will refine the profile of target pages with respect
to their intent.

Link profilesdirectly characterize the relationship between an-
chors and target pages. They are composed of features extracted
from the direct comparison between anchors and target pages, such
as the Jaccard coefficient between anchors and target titles, between
anchor terms and target URL terms, etc.

3.2 Classification Model
Link context profiles are characterized on three different aspects,

i.e., anchors, pages and links themselves. The format of theKro-
necker product between anchor and page profiles enables modeling
their hidden interactions. In this section, we present how we learn
the link intent classification model based on such feature represen-
tation.

Model Representation.Let A be the set of anchors,D be the
set of target pages,L be the set of links connecting pairwise ele-
ments inA andD. The intent on links is given byS(L) ⊆ A×D,
which means the link intent label̂sij is given to the pair ofai and
dj that has a link associated with them (∀ai ∈ A,dj ∈ D). We

4http://nlp.stanford.edu/software/tagger.shtml

define our classification model as:

ŝij =

Ca∑

i′=1

Cd∑

j′=1

ŵi′j′ai,i′dj,j′ +

Cl∑

k′=1

ŵ′
k′ lij,k′ (1)

whereCa, Cd andCl are the anchor, target page and link feature
vectors respectively.ai,i′ is the feature value of anchorai at thei′th

dimension, anddj,j′ is the feature value of target pagedj at thej′th

dimension.wi′j′ is the coefficient which represents the correlation
between the anchor factor in dimensioni′ and the target page factor
in dimensionj′. Note that it is independent with the instances of
ai anddj . Since the correlation betweenai anddj is to fit the label
on link lij directly, the features onlij can be reasonably combined
with the anchor-page correlation linearly. We rewrite Equation 1 in
matrix format:

S = aWdT + w’l T or S = dWTaT + w’l T (2)

Considering the dynamics of the web graph, features from global
anchor-link distributions may not be stable all the time. For exam-
ple, when training and testing on web communities with many new
sites which have few in-links to be able to form a confident anchor
link distribution, the link profile is more important to determine link
intent, and vice versa. When we further splitaWdT or dWTaT , we
can also differentiate the importance of local features versus global
features, which is sensitive to the anchor link distribution.

Learning Process.Our task is to learn the parametersθ =
(W, w’) by minimizing the prediction error

∑
ij(sij − ŝij)

2.
This can be done via maximizing log likelihood, denoted as
arg maxθ P (S|A,D, L; θ). Assuming labels on instances are in-
dependent, the likelihood is given by:

P (S|A,D, L; θ) =
∏

ij

p(sij|ai, dj , lij ; θ) =
∏

ij

p(sij |ŝij) (3)

We use a logistic regression model to estimate the likelihood
p(sij |ŝij) via p(sij |ŝij) = 1

1+exp(1−sij ŝij )
. Fitted in a mono-

tonic logarithm function, we maximize the logarithm likelihood
in Equation 3, defined asarg maxθ

∑
ij

log p(sij |ŝij). To avoid
over-fitting, we add regularization objectives and rewriteour ob-
jective as

y = arg max
θ

∑

ij

log p(sij |ŝij) − rw‖W‖2
F − rw′‖w’‖2

F (4)

where‖ · ‖2
F is the Frobenius norm, andrw andrw′ are regulariza-

tion parameters respectively.
Given the objective function, we calculate the differential of y

with respect to the model parametersθ as follows:

∂y

∂wi′j′
=

∑

ij

ŝij exp(1 − sij ŝij)ai,i′dj,j′

1 + exp(1 − sij ŝij)
− rwwi′j′

∂y

∂w′
k′

=
∑

ij

ŝij exp(1 − sij ŝij)lij,k′

1 + exp(1 − sij ŝij)
− rw′w

′
k′

We choose to use gradient descent to estimate model parameters θ

iteratively. Once we finish parameter learning, we predict the intent
of a new link instance by Equation 1.

4. USING LINK INTENT FOR SEARCH
Web links reflect the intent of information providers, while

queries represent the needs of information seekers. Therefore, con-
necting query intent with web link intent can help neutralize the
inconsistency in interpreting information from differentviews in



web search. In this section, we present our enhanced anchor-based
retrieval model by incorporating link intent. The general idea is
that given the predicted link intent, we incorporate it intoquantify-
ing the importance of anchor text for document representation, and
adapt it to query intent for retrieval. It actually adds another di-
mension of constraints on “intent” into the search process in which
documents typically match the given queries lexically based on the
evidence of term occurrence.

4.1 Modeling Anchor Text Importance
Exploiting anchor text to enrich document representationsfor

retrieval has been widely studied in prior work. The underlying as-
sumption is that anchor text is a short descriptive text thatcan pro-
vide complementary information for describing target pages. Ear-
lier work ignored the distinguished importance of anchor text [6]
or only utilized term frequency-based methods to quantify anchor
text importance [24]. Craswell et al. [6] used the collection of an-
chor text as a surrogate document without differentiating anchor
text importance. Westerveld et al. [24] modeled the importance
of anchor terms by usingp(t|d), whered is the surrogate docu-
ments only composed of in-linked anchor text. More recent works
mitigated this deficiency by incorporating the knowledge from link
structure. These works respectively are based on distinct assump-
tions. Fujii [10] extended anchor-based retrieval models by incor-
porating query intent inferred from anchor term link distribution,
under the assumption that navigational queries benefit morefrom
anchor-based models and informational queries benefit morefrom
document-based models. Dou et al. [8] exploited site-levelknowl-
edge to de-emphasize the importance of anchor text associated with
inlinks from the same site and cooperative sites. Metzler etal. [18]
pointed out the problem of anchor text sparsity and enhancedan-
chor text representation by external anchor text and explored the
effectiveness of diverse weighting strategies. Our work falls in a
similar path, but differs from theirs in the sense that we differenti-
ate links with different intent that are comparable with query intent
and incorporate this into retrieval models.

Given a target paged, the importance of an anchor texta can be
modeled via:

f(a, d) ∝ p(a, d) = p(a)p(d|a) = p(d)p(a|d) (5)

wherep(a, d) is the probability thata andd have a certain relation-
ship, such as having links associated with them. Note thatp(a, d)
can be estimated in multiple ways.p(a) andp(d) are priors which
reflect the probability that anchora and documentd appear on the
web individually. The relationship between anchors and documents
is estimated fromp(d|a) andp(a|d). Whilep(d|a) emphasizes the
importance distribution from anchors to the associated documents,
p(a|d) implicitly indicates how to balance the contributions among
different in-linked anchors to one target page.

By incorporating link intent, we add a new factori that represents
link intent associated with anchora and target paged in Equation
5, and sop(a, d, i) can be modeled as:

p(a, d, i) = p(a)p(d|a)p(s(a,d) = i) (6)

wherei ∈ {“info”, “navi” }. Thus, the original importance weight
on each link is divided into two parts, with one proportionalto
p(s(a, d) = “info” ) and the other proportional top(s(a, d) =
“navi” ). Such a weight distribution reflects the way that an anchor
views its target page.

After computing the importance score of each individual anchor,
we next combine all anchor text that points to the same page. For
each target page, we collect all anchor text with theirp(a, d, “info” )
scores. This collection indicates anchors’ interpretation about page

content combined with how likely they view the target page asin-
formational. Such collective interpretation forms a type of view
toward target pages. It is also applicable for the anchors with their
p(a, d, “navi” ) scores. Hence, it is reasonable to separate such two
collections into different fields of the target page. We callthis soft
splitting (denoted asSS). In contrast, we can divide anchor text
deterministically according tos(a, d). If one anchor is more nav-
igational, it will be put into the page field entirely composed of
navigational anchors. The same is applicable for informational an-
chors. Once determining which field an anchor should be in, its
p(a, d) score will be utilized as anchor importance with respect to
the target page. We call thishard splitting (denoted asHS).

4.2 Intent-enhanced Retrieval Model
Each document is composed of three fields: (1) document con-

tent; (2) navigational anchor field; and (3) informational anchor
field. We next combine multiple document fields into a unified re-
trieval model. We choose to use BM25F [21] since it can naturally
incorporate the representations of multiple document fields into a
single retrieval model. BM25F combines term frequencies indif-
ferent fields linearly for BM25 score calculation. Supposewf (i, j)
is the weight of termi for pagej in field f , it can be calculated by:

wf (i, j) =
∑

c∈f(j)

wt(c, j) × tf(i, c) (7)

wherewt(c, j) is the weight on componentc (unique anchor text in
anchor fields) for the pagej, andtf(i, c) is the term frequency of
i in the componentc. The aggregated term weights oni is a linear
combination of weightsi on all fields, which is given by:

w(i, j) =
∑

k

βkwfk
(i, j) (8)

wherefk is thekth field of pagej andβk is a combination parame-
ter, which controls the balance between term weights on eachfield
used in BM25F ranking function (

∑
k

βk = 1). The document
length is calculated by the same method.

The combination between two anchor fields and the document
body field is trained automatically. The preference betweentwo
types of anchor fields can be either set by using query intent dis-
tribution or trained. We denote them as adaptive combination (de-
noted asA) and fixed combination (denoted asF) respectively. To
achieve query intent distribution, we average the aggregated link in-
tent associated with the in-coming links of the topn search results
returned by a ranking reference model (BM25 [22] in this work),
wheren is 10 by default.

5. EXPERIMENTAL SETUP

5.1 Data Sets and Judgments
We conduct experiments on two large scale web corpora to avoid

any bias from testbed data sets.

ClueWeb.TREC5 provides standard relevance judgments on
ClueWeb (Category B) for the evaluation of ranking algorithms.
It contains 49.8M web pages and 940M hyperlinks approximately.
We use the 50 queries (topics) within Ad hoc task of TREC 2009
Web Track for ranking evaluation.

To generate the anchor-document pairs used in link intent clas-
sification, we split the 50 queries into five folds sequentially by
their IDs. We retrieve the top 2000 documents for each query by

5http://trec.nist.gov/



Okapi BM2500 [22] and randomly sample 200 inlinks pointing to
these documents for queries in each fold as our examples. Note
that there is no overlap between folds. In this way, we connect
the selection of link examples to ranking characteristics.Each link
example is labeled by at least one worker on Amazon Mechanical
Turk, in the selection among “navigational link”, “informational
link”, “both of them”, and “none of them”. To avoid links whose
intents are uncertain (which may disturb classification accuracy),
we only use the ones labeled as either “navigational link” or“infor-
mational link” (577 out of 1000 in total) as our examples for link
intent classification.

WebBase.Our second data set is one 2005 web crawl from the
Stanford WebBase [4, 11]. It contains approximately 58M web
pages and 900M links. For ranking evaluation, 47 queries arese-
lected from ODP category names, popular queries from commer-
cial engines and those frequently used by previous researchers. we
asked human editors (people in our lab) to assess the relevancy of a
document to a given query, in selection amongnot related, not rele-
vant, borderline, relevant, andhighly relevant, which are translated
into integer gains from 0 to 4.

To generate anchor-document pairs for link intent classifica-
tion, we randomly sampled a few thousand links and manually la-
beled them as “navigational” or “informational”. Like the case in
ClueWebwhere not all links have clear intents, we finally achieve
1281 anchor-documents pairs with definite intents and use them as
our examples for link intent classification. We randomly split this
data set into 10 folds.

5.2 Evaluation Metrics and Parameter Set-
tings

We measure link intent classification performance on the metrics
of F1-measure and accuracy. F1-measure is the harmonic mean of
precisionandrecall. Here,precisionis the percentage of truly pos-
itive examples in those classified as positive, whilerecall is the per-
centage of correctly classified positive examples out of allpositive
ones.6 Accuracy is the percentage of correctly classified examples.

For ClueWeb, we use NEU methods [2] to measure ranking per-
formance on statMAP and Precision at truncation levelk (P@k),
which is consistent with most prior work [5]. ForWebBase,
NDCG [13] is our metric. It penalizes irrelevant documents at top
positions greater.

The combination parameterβk in BM25F is learned via hill
climbing on metric statMAP (ClueWeb) and NDCG@10 (Web-
Base) respectively. ForClueWeb, ranking uses the same query
splitting as link intent classification. ForWebBase, ranking exper-
iments are conducted based on two-fold cross validation, which is
independent of the one used in the classification task.

5.3 Methods Compared
We compare a variety of baseline methods for both link intent

classification and ranking tasks.

Baseline methods for link intent classification.We com-
pare our link intent method with two groups of baselines, i.e.,
entity-based baselines and cluster-based baselines. The entity-
based baselines exploited the following information:

• Anchor (Entity-A).
• Destination page (Entity-D).
• Anchor and destination page (Entity-AD).

6We will present link intent classification performance in Section
6, while varying the definition of positive examples.

The cluster-based baselines exploited the information of:

• Anchor (Cluster-A).
• Destination page (Cluster-D).

Entity-A uses the intent of anchors to predict the link intent. If
an anchor has the entropy of anchor term link distribution less than
0.5, it is considered as a navigational query; we rank its target pages
according to thep(d|a), and generate a ranking list. The link to the
top one page is considered as the only navigational link. Links to
other target pages are informational.

Entity-D uses the intent of target pages to predict the link intent.
If a target page has the entropy from aggregated anchor link dis-
tribution less than 0.5, it is considered as a navigational page, and
we rank its associated anchors. The link associated with theanchor
that has the highestp(a|d) is considered to be navigational. All
other links are considered to be informational.

Entity-AD averages the anchor term link distribution entropy of
the anchor and the aggregated anchor term link distributionentropy
of the target page to predict the link intent. If the average entropy is
less than 0.5, the link is predicted as a navigational link; otherwise
it is informational.

In Cluster-A, we cluster the links according to the anchor term
link distribution entropy for anchors. For each anchor, we rank their
target pages according top(d|a). The average of the anchor term
link distribution entropies associated with target pages at a certain
rank within the cluster is used to predict the link intent forall links
at this rank.

In Cluster-D, we cluster the links according to the aggregated
anchor term link distribution entropy of target pages. For each tar-
get page, we rank their anchors according top(a|d). The average
anchor term link distribution entropy associated with anchors at a
certain rank within the cluster is used to predict the link intent for
all links at this rank.

Baseline methods for ranking.We compare our methods
with three baselines:

• CDR: Ranking by Okapi BM2500 [22] based on the docu-
ment body field.

• CQR: Ranking by [10] in which anchor and document-based
models are combined by query intent.

• LinkProb: Dou et al. [8] utilizes link probability to weight
anchor text (referred to as “LinkProb”), and then combines
the weights into the BM25F model. Given a target page, the
contribution of one unique anchor text line is proportionalto
the number of its associated incoming links.

6. EXPERIMENTAL RESULTS
We start by studying the performance of our link intent classifica-

tion approach across different anchor-document feature representa-
tions. The performance onClueWebandWebBaseare respectively
reported based on 5-fold and 10-fold cross-validation. By pick-
ing up the best-performing classification model, we generate link
intent labels on all anchor-document pairs onClueWebandWeb-
Baserespectively. We follow by performing comparative analysis
on ranking evaluation.

Performance on link intent classification.We compare
our link intent classification approach (denoted asIntentC ) with
baseline methods in Table 3. The ratio of navigational and informa-
tional links are 0.25 (ClueWeb) and 0.84 (WebBase). Preliminary
results show the model renders the best performance whenrw and



Table 3: Link intent classification performance comparisonon ClueWeb and WebBase data sets.A, D and L are feature vectors of
anchor, document, and link respectively (F1-meas.(navi) is the F1-measure when navigational links are positive examples.).

ClueWeb WebBase
Methods F1-meas.(navi) F1-meas.(info) Accu. F1-meas.(navi) F1-meas.(info) Accu.
Entity-A 0.162 0.827 0.714 0.662 0.782 0.723
Entity-D 0.186 0.814 0.698 0.669 0.776 0.722
Entity-AD 0.226 0.834 0.727 0.709 0.803 0.754
Cluster-A 0.148 0.834 0.722 0.742 0.728 0.734
Cluster-D 0.218 0.825 0.714 0.739 0.732 0.735
IntentC(A+D+L) 0.756 0.936 0.899 0.799 0.852 0.829
IntentC(A×D×L) 0.793 0.946 0.915 0.790 0.836 0.816
IntentC(A×D+L) 0.796 0.946 0.915 0.822 0.867 0.847

rw′ are 0.1 and 0.01. We fix them and leave sensitivity analysis to
future work.

Comparisons among baseline methods show that cluster-based
methods do not provide an advantage under skewed class distri-
bution. One possible reason is that the link instances with simi-
lar background have weaker capability of predicting the labels of
target ones based on skewed class distribution. It especially influ-
ences the prediction of instances in the minority class, i.e., navi-
gational links. Comparison within entity-based methods demon-
strate that Entity-A and Entity-D perform the worst on accuracy.
It is not surprising given both of them only utilize partial infor-
mation of a link (anchor or document). By considering full infor-
mation of a link, Entity-AD performs 2%-5% better than Entity-A
and Entity-D on accuracy. ForWebBase, cluster-based methods
Cluster-A and Cluster-D incorporate the predictions on links with
similar background, which outperform Entity-A and Entity-D by
1.5% and 1.8% respectively in terms of accuracy. Entity-AD out-
performs Cluster-A and Cluster-D by around 1%-3%, indicating
the combination of anchor term link distributions based on alink’s
two ends (anchor and document) contains stronger signals than the
implicit influence among the links sharing similar background.

IntentC significantly outperforms baseline methods on all met-
rics for two data sets. Comparison on different feature rep-
resentations shows the superiority of Intent(A×D+L) over both
IntentC(A×D×L) and IntentC(A+D+L). One interpretation is that
while Kronecker product of anchor and document feature spaces
can capture the hidden interactions between anchors and docu-
ments when profiling link context, it also results in sparse feature
vectors for many link instances, and so further exploiting aten-
sor product (three dimensions) that includes link feature space can
make feature representations sparser and therefore removesome
effective signals contained in link profiles.

In summary, IntentC(A×D+L) stably exceeds all baseline meth-
ods and its competitive variants, achieving reasonable performance
on the link intent classification problem for both data sets.We next
apply the model of IntentC(A×D+L) to generate link intent labels
automatically, and investigate its impact on ranking in therest of
this section.

Comparative performance on ranking.Based on
LinkProb, we incorporate link intent distributions while we
vary how we separate anchor fields and how we determine the
preference between two anchor fields. We denote our system
variants as HS+F, HS+A, SS+F, and SS+A7, and compare with
baseline methods in Table 4. We conducted a single-tailed pairwise

7See Section 4 for the detailed explanation of each variant.

Table 5: The top 5 search results generated byLinkProb and
SS+F on query “fox news” (WebBase).

Query: fox news
LinkProb:
1. www.presidencia.gob.mx/vicentefox/
2. www.presidencia.gob.mx/foxcontigo/
3. www.presidencia.gob.mx/martadefox/
4. www.aboriginalaustralia.com/catalog/product_info.php/

products_id=227?oscsid=dc4f3b1303e8c41c000ff6a5fcdcfa3d
5. www.bridgeman.co.uk/about/collections.asp?type=&topic=956
SS+F:
1. www.foxnews.com/
2. www.presidencia.gob.mx/vicentefox/
3. www.counterpunch.com/jacobs03202004.html
4. www.acsh.org/news/newid.316/news_detail.asp
5. www.counterpunch.com/leupp11292003.html

student t-test on ranking improvements. Significant differences
over LinkProb are marked with†.

As expected, the baseline methods that exploit anchor text
greatly outperforms those without. LinkProb and CQR have com-
parable ranking performance on both data sets. Our enhancedre-
trieval models (with four variants) outperform LinkProb and CQR
on most metrics consistently, suggesting the effectiveness of link
intent on improving anchor-based retrieval models. A closer look
at our four variations exposes the following trends. First,soft split-
ting shows better overall ranking performance than hard splitting.
One possible reason is that soft splitting smoothly enriches web
pages by allowing links to play both roles with certain probabilities.
Second, automatically adapting weights on navigational and infor-
mational anchor fields with query intent benefits the hard splitting
approach, but hurts soft splitting. Our interpretation is that SS+A
over-smooths the weights on anchor text in different fields of a tar-
get page, while HS+F fails to represent anchor text with respect to
target pages naturally.

7. DISCUSSION
We showed that incorporating link intent improves anchor-based

retrieval models. In this section, we will present a deeper analysis
on the ranking improvements on different query types, e.g.,query
intent and query length. We also consider the effect of noiseon link
intent analysis by analyzing how ranking performance varies with
the fraction of incorrectly classified link instances. We will also
analyze feature effectiveness in link intent classification.

Ranking improvement vs. query intent.As discussed pre-
viously, link intent is similar to, and connected with, query in-
tent in many ways. Therefore, we conjecture that the improve-
ments made by incorporating link intent will be affected by the



Table 4: Ranking performance onClueWeb (left) and WebBase (right) query sets. All methods are compared based on the parameter
settings that achieve the best statMAP (ClueWeb) and NDCG@10 (WebBase) respectively. Performance with significant improvement
(p-value<0.05) over LinkProb is marked as†.

ClueWeb WebBase
Methods statMAP P@1 P@3 P@10 NDCG@1 NDCG@3 NDCG@5 NDCG@10
CDR 0.175 0.204 0.224 0.304 0.148 0.161 0.167 0.171
CQR 0.176 0.286 0.306 0.375 0.398 0.355 0.349 0.369
LinkProb 0.175 0.285 0.306 0.377 0.407 0.351 0.356 0.371
HS+F 0.178 0.285 0.340† 0.386 0.406 0.355 0.358 0.373
HS+A 0.176 0.285 0.340† 0.390† 0.408 0.358 0.359 0.373
SS+F 0.183† 0.346† 0.353† 0.372 0.421† 0.361 0.370† 0.380
SS+A 0.179 0.326† 0.306 0.387 0.410 0.376† 0.354 0.377
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Figure 4: The relative improvements over LinkProb on metric P@1, P@3 and P@10 for navigational queries, informational queries,
and all queries onClueWeb.

intent of the query. Figure 4 shows the relative improvements on
queries with different intents forClueWeb8. Incorporating link in-
tent brings greater improvements at top positions for informational
queries than for navigational queries. This observation indicates
that the link intent-enhanced retrieval model can make target page
content representations more discriminative, and therefore help di-
versify search results. It is especially valuable for rankings of in-
formational queries that are typically overwhelmed by a large num-
ber of relevant pages. For navigational queries, the enhanced re-
trieval models hurt ranking performance at very top positions but
gradually improve ranking with the increase of truncation level
(ranking position). This can be explained by the reason thatan
over-discriminative description about target pages makessearch re-
sults at very top positions unstable. It especially hurts navigational
queries which have only one best answer. We qualitatively verify
our analysis through the example of the query “fox news” onWeb-
Basein Table 5. Besides, it is worthwhile to point out that many
techniques [6, 8, 10] have been proposed to improve rankingsof
navigational queries, which can mitigate this deficiency ofour ap-
proach.

Ranking improvement vs. query length.Query length
roughly reflects how narrow or clear users’ information needs are.
Table 6 shows the ranking improvement on queries with different
lengths on both data sets. Intent-enhanced retrieval models bring
more improvement for short queries, less improvement or even neg-
ative impact on long queries. This is not surprising given that short
queries are more likely to be broad and ambiguous. Thereforethey

8Topic 5, 15, 21, 23, 27, 31, 40, 41, 46 have navigational intent as
revealed by manual inspection.
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Figure 5: Performance on metric P@10 onClueWeb under dif-
ferent noise levels.

can benefit more from a more discriminative anchor representation.
We consider this a useful property since most search engine queries
are short [12].

Analysis of noisy link intents.To further analyze the impact
of link intent on ranking improvements, we intentionally introduce
noise into link intent by randomly sampling a fraction of links and
reversing their link intent distribution. We run 30 times ateach
noise level. Figure 5 shows the average and standard deviation
of ranking performance on P@10 under different noise levelson
ClueWeb. The ranking performance of intent-enhanced retrieval



Table 6: Ranking comparison on P@3 forClueWeb (left) and NDCG@3 for WebBase (right). All methods are compared based on the
parameter setting that achieves the best statMAP (ClueWeb) and NDCG@10 (WebBase). Performance with significant improvement
(p-value<0.05) over LinkProb is marked as†.

ClueWeb WebBase
Methods Length=1 Length=2 Length≥3 Length=1 Length=2 Length≥3
LinkProb 0.156 0.313 0.458 0.384 0.340 0.321
HS+F 0.196(+25.0%)† 0.392(+25.0%)† 0.417(-9.09%) 0.391(+1.78%) 0.349(+2.50%) 0.316(-1.67%)
HS+A 0.196(+25.0%)† 0.392(+25.0%)† 0.416(-9.09%) 0.398(+3.60%) 0.346(+1.68%) 0.316(-1.67%)
SS+F 0.215(+37.5%)† 0.352(+12.5%) 0.479(+4.55%) 0.413(+7.62%) 0.405(+19.0%)† 0.301(-6.36%)
SS+A 0.156(+0.0%) 0.274(-12.5%) 0.479(+4.55%) 0.402(+4.67%) 0.351(+3.09%) 0.333(+3.62%)

models (with four variants) decrease with the increase of noisy link
intent. Note that the trends are approximately symmetric with re-
spect to noise level at 50% since retrieval models equally treat the
two types of intent. Retrieval models are more robust and toler-
ant to noisy link intent when we (1) enhance anchor representation
by softly splitting the contributions from navigational and infor-
mational anchor fields; and (2) adapt weights on navigational and
informational anchor fields with query intent automatically.

Feature analysis.Link intent classification relies on features
extracted from anchor, document and link profiles. We study fea-
ture effectiveness by examining the classification model generated
by IntentC(A×D+L). For anchor and document profiles, features
based on anchor/anchor term-link distribution (i.e., En(A), EnT(A)
and Diff(A)) and the aggregated anchor/anchor term-link distribu-
tion per page (i.e., En(P) and Diff(P)) are the most effective. For
the link profile, features based on comparison between anchor text
and the target page title (i.e., JC(T) and IsApp(T)) are the most
effective.

8. RELATED WORK
Connecting the properties of queries and anchor text has been

well studied in previous work. Eiron and McCurley [9] investi-
gated multiple properties of anchor text within a large intranet and
showed its resemblance to real user queries in terms of term dis-
tribution and length. The work that exploited such resemblance
developed into two directions. One direction utilizes anchor text
properties to better answer a specific type of query. It is typically
implemented through enriching document representations by an-
chor text. Craswell et al.’s work [6] on effectiveness of anchor text
in site-finding tasks falls into this category. The other direction
utilizes the properties of anchor text to better understandqueries.
Representative applications include query intent classification [16],
query refinement [15] and query translation [17]. Our work differs
from previous work by directly mapping query characteristics to
anchor text (its associated links) and then considering effects on
rankings through document representations. To achieve this, we
draw from the techniques of query (intent) and link classification.

Query intent classificationis one type of functional classifica-
tion in which classifiers learn to determine the role of queries. As
we mentioned earlier, there can be multiple classification schemes
of query intent. Broder [3] suggested the three fundamentaltypes
of information need expressed in user queries. This classification
scheme became popular in the query classification community. Fol-
lowing this path, Kang and Kim [14] proposed an approach to clas-
sify query intent into “topic-relevance” and “home-page finding”
classes (i.e., “informational queries” and “navigationalqueries”, re-
spectively). Lee et al. [16] conducted a user study to demonstrate
the viability of automatic query intent classification and proposed

to identify query intent using “user-click behavior” and “anchor-
link distribution”.

Link classification and link predictionhave been widely stud-
ied. Acar et al. [1] utilized a CANDECOMP/PARAFAC tensor
decomposition to show the effectiveness of exploiting the natural
3-dimensional structure of temporal link data. Yu and Chu [25] uti-
lized Gaussian process models for link prediction based on bipar-
tite, direct and undirect graphs. Taskar et al. cast links asrelational
data and applied relational Markov network to model the joint dis-
tribution over the entire graph [23]. Qi et al. [20] analyzedthe in-
fluence of link quality on web link-based algorithms, and proposed
to classify links into two categories: those that confer authority and
those that do not.

9. CONCLUSION AND FUTURE WORK
Query intent and link intent are implicitly connected. Revealing

and exploiting such connections can benefit retrieval, and possibly
many other tasks. In this paper, we proposed a method for auto-
matic link intent classification based on evidence from anchors, tar-
get pages and the links themselves, and incorporated it intoanchor-
based retrieval models. We showed significant improvement upon
the approaches that do not consider link intent.

This work can be extended in a variety of directions. Hyperlink
classification could likely be improved by considering the source
page and especially the hyperlink position within the source page.
In terms of link classification taxonomy, we can also consider other
taxonomies that connect queries with links, such as topics.While
topical link analysis [19] has been well studied, it is stillunclear
the sensitivity of query and link taxonomy with respect to ranking
quality. More generally, we search in a complex social network,
in which people may create links for distinct purposes. How to
associate users’ information needs with the links connecting to ap-
propriate resources is still an open issue. As a preliminarystep, we
connected query intent to link intent and showed such a connec-
tion is useful on web search. In the future, we plan to generalize
the concept of link intent onto other entities and incorporate this to
support social search.
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