Revision by HRJ in blue of GDB edits – 9/27/2000

ADTscript
Revision by HRJ – 11/2/2000; 11/3/2000; 12/05/2000; 01/02/2001

Object-Oriented Software Engineering (OOSE)

Lesson: Abstract Data Types (ADT)

Script and Production Plan by Harriet Jaffe and Glenn Blank

(started 7/15/00, updated 1/31/01)

Screen 10: ADT introduction
Graphics: Harriet Jaffe’s abstract graphic:

[image: image1.png]

Prof Blank cartoon (fade in transition) on lower right.

Direction

Picture open transition for abstract picture in middle, then pause 1 sec.

Fade in transition for graphic of Blank on lower left corner.

Voice-Over

This lesson is about “Abstract Data Types”. Abstract art may be hard to understand [pause], but computer scientists believe that abstraction helps people solve problems by pulling out the essentials of objects, deferring implementation details.

Graphics

Below the picture:

Abstraction pulls out the essentials
and defers implementation details.

Direction

Show forward button.

Screen 20: ADT prerequisites and topics
Graphics

Abstract Data Types (title)

An Abstract Data Type (ADT) is a set of objects

with observable properties and behavior.

Abstract Data Types define the form and meaning of a class,

using an explicit formal notation,

independent of code in a programming language.

Prerequisites: elementary set theory.

Topics:

· ADTs and information hiding

· Properties and behaviors

· ADT structure

· ADT name

· Sets (or types)

· Function signatures

· Variables for defining ADT semantics

· Function pre-conditions

· Function post-conditions

Exercises:

· Predict the result of a function from its signature.

· Predict the result of a function from its pre-conditions.

· Predict the result of functions from their post-conditions.

· Construct an ADT (not available yet).

· Research ADTs using hot topics detection engine (demo).

Voice-Over

An Abstract Data Type [ADT] is a set of objects that have observable properties and behavior.

Abstract Data Types define the form and meaning of a class.

We will describe ADTs with an explicit formal notation, independent of code in any particular programming language.

[pause]

The only prerequisite for this lesson is knowledge of set theory.

The following topics and exercises will introduce the purpose and parts of an ADT.

[pause]

You may click on any topic or exercise to go there or press the forward button to continue the lesson.

Directions

Show the title line in top middle of page, above the blocks, synchronized

with first line of voice-over.

Fade out blocks, then show the first block of graphics text, synchronized with beginning of second block of voice-over.

Synchronize text and voice-over of prerequisites.

Scroll down topics and exercises graphics quickly when this part of voice-over starts.

Put words in parentheses in another color (yellow?).

To do: link each bullet item to corresponding page in the lesson.

Highlight forward button, so user knows to go forward.

Screen 30: Purpose of ADTs

Inheritance Diagrams

voice-over:

In other lessons, you learn about Class-Responsibility-Collaborator cards and inheritance diagrams.

These techniques avoid dealing with implementation details. Instead, the goal is to discover the classes that describe a particular problem domain.

graphics:

[image: image22.png]

Inheritance Diagram

3 CRC Cards – see layout

Blue card on right with words: Abstract Data Type:, Data: and Operations:.

directions:

Show Inheritance Diagrams full-screen then shrink and move to upper left corner of lesson screen.

Insert user control or time delay to allow user time to study diagram.[image: image23.png]

Show CRC Cards full-screen then shrink and move to lower left corner of lesson screen.

[image: image24.png]

Make user control the default setting. Insert time delay for auto advance available to users under “Preferences” on navigation bar. Allow users time to study illustration.

Make each thumbnail a ‘hotspot’. When user clicks on ‘thumbnail hotspot an enlarged view of the illustration/diagram appears in a secondary window or browser window.

The secondary window should not completely hide the content on the parent screen.

User should be able to move the secondary window, minimize it, maximize it and
close it without these actions disrupting the lesson screen.

Option to thumbnail idea: insert image of small magnifying glass in lower right corner of each diagram, chart, graph, drawing, etc. To see the image more closely, users can click on magnifier to enlarge image.

Reveal blue ADT card on right.

[image: image25.png]

Inheritance diagram and CRC cards on left, with text below:

Text Display:

CRC cards and inheritance diagrams analyze class relationships.

directons:

Blue card on right with words: Abstract Data Type:, Data: and Operations:.

[image: image26.png]

As screen capture is illegible, explain illustration above in detail
voice-over:

Once an analyst discovers the classes of a system, a designer can determine the properties and behaviors of these classes, as abstract data types.

An abstract data type (ADT) is a set of objects that have observable properties and behaviors.

Abstract Data Types define the meaning of a class and its behaviors in an explicit formal notation, independent of code in a programming language.
directions:

During narration, show the text ‘ADTs define the meaning of classes.’

below blue ADT card on right:

Display text:

ADTs define the meaning of classes.

Screen 40: Public vs. Private

Graphics:

Use illustration to represent public space and private space.

Example below is place-holder. Think of better representational images.

[image: image27.png]

voice-over:

How an ADT actually works hides inside its private implementation.

Instead, an ADT makes it clear what the implementation must do, in an explicit, verifiable form.

Screen 41: Intro to ADT quiz

directons:

Using MultipleChoice clip from Flash Learning Extensions, change the clip parameters to:

Interaction ID: Intro_to_ADT_quiz4

1

Question: Which of the following are advantages of ADTs?

Answers

Correct?

A. Hides information about implementation details.

Yes

B. Translates directly into source code.

No

C. Provides explicit, verifiable notation.

Yes

D. Is independent of programming language code.

Yes

E. Represents abstractions visually.

No

Feedback: Yes, Show feedback, Tries: 3

Correct feedback: Right, ADTs use an explicit notation that is independent of code: the implementation should do what the ADT specifies.

Incorrect feedback: Try again. ADTs emphasize abstractions, not implementation or WYSIWYG.

Knowledge Tracking: off for now.

Navigation: Auto go to next frame

Screen 50: Properties and behaviors

Directions:

Use Screen1 graphics. Do not use Dark background. See Interface/Graphic Guidelines (G5.08).

[image: image28.png]

voice-over:

For example, the Abstract Data Type for a digit might consist of one data attribute – a number.

The behaviors might be mathematical operators or functions such as “Add” or “Subtract.”

Each operator or function represents a way of manipulating the data.
Directions:
Add timed text to blue card. Reveal each line slowly. Do not use transitions that are distracting. Have each full line appear, pause (time delay) then reveal the next full line, pause, etc.:
Abstract Data Type: digit

Data: number

Operations:
add(digit,digit) [image: image2.png]

 digit

subtract(digit,digit) [image: image3.png]

digit

digit(number) [image: image4.png]

 digit

voice-over:

As you can see, an Abstract Data Type couples data with associated operations.
graphics:

[image: image29.png]

Hide text on blue card, show text on blue card below:

Screen 60: ADT section structure

Graphics:

(Digit ADT):

[image: image30.png]Name:
Sets:

Signatures:

Variables:
Preconditions:

Postconditions:

Digit

D the set of Digits

N the set of natural numbers
Digit{N) > D

add(D,D) > N

sub(D,D) >N

mult(D,D) > N

div(D,D) >N

xye D;neN

Digit{n) 0 <=n<=9
div(xy) >y =0
add(Digit(x),Digit(y)) = x + y
sub(Digit(x),Digit(y})
mult{Digit(x),Digit{y) = x* y
div(Digit(x),Digit{y)) = x Iy

Voice-over:

This is an ADT specification for the number type Digit, described in a mathematical notation.

Step through the ADT and see what each part of the ADT means..

directions:

Voice-over continues during the highlighting sequence described below.

Dim the graphic shown above and highlight each condition one at a time.

Highlight Name……..Digit > hold highlight for 2 seconds > dim Name..…..Digit

Highlight Sets…….…D the set of Digits

 N the set of natural numbers

>hold highlight 2 seconds > dim Sets etc.

Highlight Signatures …. Digit(N) [image: image5.png]

 D

 add(D,D) [image: image6.png]

 N

 sub(D,D) [image: image7.png]

 N

 mult(D,D) [image: image8.png]

 N

 div(D,D) [image: image9.png]

 N

> hold highlight 2 seconds > dim Signatures etc.

directions:

Upon completing sequence above overlay Name, Sets and Signatures with transparent rectangle. Simultaneously show bracket and the word “Syntax” (see illustration below)

Animation

Graphic (timed): the words Syntax toappear to the left of the Digit ADT.

 As Syntax moves, highlight the Name, Sets and Signatures area.

[image: image31.png]

directions:

Dim illustration of “Syntax” so that it is no longer “on focus”

directions:

Continue highlighting sequence below

Highlight Variables:
 x,y (D; m,n (N

>hold highlight 2 seconds > dim Variables: x,y (D; m,n (N

Highlight Preconditions:
Digit(x) [image: image10.png]

 0 <= x <= 9

>hold highlight 2 seconds > dim Preconditions:
Digit(x) [image: image11.png]

 0 <= x <= 9

Highlight Post-conditions:
add(Digit(m),Digit(n)) = m+n

sub(Digit(m),Digit(n)) = m-n

mult(Digit(m),Digit(n) = m*n

div(Digit(m),Digit(n)) = m/n

> hold highlight 2 seconds

directions:

Upon completing sequence above overlay Variables, Preconditions and Post-Conditions with transparent rectangle of a slightly different color. Simultaneously show bracket and the word “Semantics” (see illustration below). Dim each line of text and background color. Grey overlay represents “Dim”. Do not use rectangle.

Animation

Graphic (timed): the word Semantics appear to the left of the Digit ADT.

As Semantics moves, add another highlighted area of a different tint in include Variables, Preconditions and Post-conditions.
[image: image32.png]Name:
Sets:

Signatures idertify
the senices of an ADT
in function notation

Variables:
Preconditions:

Postconditions:

Digit
D the set of Digits
N the set of natural numbers

sub(D,D) > N
mult(D,D) > N
div(D,D) > N
xye DineN
Digit(n) > 0 <=n<=9
divixy) >y =0
add(Digit(x),Digit(y)
sub(Digit(x),Digit(y))
mult(Digit(x),Digitl(y)
div(Digit0a, D

>Remove Dim overlay from “Syntax”

>Highlight all
pause

directions:

Dialogue below continues during highlighting sequence above

voice-over:

There are six parts to an ADT.

The first three parts (Name, Sets, and Signatures) define the syntax or form of the data type.

Direction:

As voice-over speaks lines:

1. Show and highlight Name

2. Reveal Digit.

3. dim Name: Digit line

4. Show and highlight Sets.

5. Reveal each line of Sets slowly.

6. dim Sets and the formulas associated with Sets

7. Show and highlight Signatures.

8. Reveal each line of Signatures slowly

9. Pause

10. Dim Signatures and all of the formulas connected to Signatures.

11. Pause

12. Show and highlight Variables

13. Reveal Variables formula.

14. Pause

15. Show and highlight Preconditions

16. Reveal Preconditions formula

17. Pause

18. Show and highlight Post-conditions

19. Reveal Post-conditions formulas

Voice-over:
The last three parts define the semantics, the meaning of the syntax.

Look at each component.

directions

Symbols used (э [image: image12.png]

). Make background of [image: image13.png]

 transparent.

Screen 70: ADT Name section

Voiceover:
The Name of the ADT just tells you what the type is.

Graphic:

Move Digit ADT graphic to left, then highlight Name: Digit with blue overlay

Show … The Name identifies the data type.

To the right of Name:…Digit. Do not use yellow text on white or light backgrounds.

Do not use dark background with light text. Maximum readability with black text on white background. Do not use yellow text on white or light backgrounds.

Content in graphic must be visible. Do not cover content.

[image: image33.png]Name:
Sets:

Signatures idertify
the senices of an ADT
in function notation

Variables:
Preconditions:

Postconditions:

Digit
D the set of Digits
N the set of natural numbers

add(D,D) » N
sub(D,D) > N

mult(D,D) > N

div(D,D) > N

xye DineN

Digit(n) > 0 <=n<=9
divixy) >y =0
add(Digit(x),Digitly)) = x + y
sub(Digit(x),Digit(y)
mult(Digit(x),Digitl(y)
div(Digit(x).D

Screen 80: ADT Sets section
Graphic:

Digit ADT.

Highlight Sets section with blue box

Show:

The Sets section identifies types used to define this ADT.

voice-over

The Sets section identifies any other data types that this ADT might need.

This ADT relies on the entire set of Digits represented by the letter “D.” It also relies on the set of Natural Numbers, represented by “N.”

You will see how these sets come into play when you go over the Signatures section.

[image: image34.png]Variables:
Preconditions:

Postconditions:

{N) > D

add(D,D) » N

sub(D,D) > N

mult(D,D) > N

div(D,D) > N

xye DineN

Digit(n) > 0 <=n<=9

divixy) >y =0

add(Digit(x),Digitly)) = x + y

sub(Digit()Digit(y)) =x -y
ult{Digit(x), i

The Sets section identifies types
used to define this ADT

Screen 90: ADT Signatures section

Graphic:

Digit ADT.

Highlight Signatures and the first line of the section with blue box

Show:

Signatures identify the services of an ADT in function notation.

[image: image35.png]m Properties:

Label
Shape

Enabled / Disabled
Selected / Not selected

Properties ® FPropeties W Properies:
Leads to
executable One choice Multiple cheices
Selected displays Selected displays dot Selected displays

pulldown menu in radio button check

Voice-over:

The Signatures section identifies the types of things that can be done to or provided by the ADT.

You describe the signatures using mathematical functions. Each function takes one or more inputs and produces a result.

The second signature means that if you add a digit such as “3,” to another digit such as “4,” the result may or may not be a digit.

Screen 100: ADT Signatures exercise

Graphic:

Highlight the second line of the Signatures section – sub(D,D) -> N

[image: image36.png]Class name

Respon: Collaborator

Graphic:

Digit ADT highlighted as at end of previous screen. To the right, four pairs of digits.

Interaction:

User clicks on pair of digits and gets either “Correct” or “Incorrect” feedback message.

Make “Digits,” “Sets” and “Signatures” hot spots

Make “Variables,” “Preconditions” and “Postconditions” hotspots

Prompt: Click on the pair of Digits that will not return a digit when added together.
[image: image14.png]Click on the pair of Digits that will not return a digit when added.

Name: Digit 12
Sets: D the set of Digits 53
N the set of natural numbers g;
Signatures: DigiN)>D ;
Signatures identify
the services of an ADT sub(D,D) > N
in function notation. mult(D,D) > N
div(D,D) > N
Variables: xye DineN
Preconditions: Digit(n) > 0 <=n<=9
divixy) >y =0
Postconditions: add(Digit(x),Digit(y)) = x + y
sub(Digit(x),Digit(y)) =

mult(Digit(x),Digitl(y)
div(Di

directions:

Teaching assistant (TA) appears here

voiceover:

 If you would like more information on Digits, Sets or Signatures, click on the term you would like to review, otherwise click “Forward.”

directions:

[image: image37.png]

If learner clicks on any term, open new window with different teaching approach
to explaining the component of the lesson.

Primary lesson screen remains visible

Secondary window may not completely cover primary lesson screen.

Learner must be able to move, resize and minimize Secondary lesson window.

If learner clicks “Forward,” continue with lesson.
Screen 110: ADT Variables section

Graphic:

 Digit ADT.

[image: image15.png]Digit
D the set of Digits

Nthe set of natural numbers
Signatures: Digit(N) > D

add(D,D) » N

sub(D,D) > N

mult(D,D) > N

div(D,D) > N

x and y are elements of the set, D
Preconditions: Digit(n) > 0 <=n <=9
divixy) >y =0
Postconditions: add(Digit(x),Digitly)) = x + y
sub(Digit(x),Digit(y)
mult(Digit(x),Digit(y)
div{Digit(x).Dics:

voice-over:

The Variables section identifies the specific elements that you use in the Preconditions and Post-conditions sections. “x” and “y” variables are like those in Algebra.
Graphic:

boxes highlight first line of Variables section in Digit ADT, plus:

 x and y are elements of the set, D.

voice-over:
In this example, the letters “x” and “y” represent any one of the ten available digits.

How can the ADT specification identify --or constrain--the actual numbers that qualify as a digit?

Screen 120: ADT Preconditions section

Graphic:

Digit ADT. Boxes highlight Preconditions section and

Text display:

 Preconditions specify constraints on partial functions.

 Can only create a digit from a natural number in the range 0...9.

[image: image16.png]N the set of natural numbers
Signatures: Digit(N) > D
add(D,D) » N
sub(D,D) > N
mult(D,D) > N
div(D,D) > N
Variables: xye D;neN
Preconditions specify constraints
on partial functions.

divixy) 2y =0 Can only create a digit fiom

Postconditions: add(DigitC),Digitly)) =X +Y - natural number in the range 0.9
sub(Digit(x),Digit(y}) = x -y
mult{Digit(x),Digit{y) = x* y

div(Digit(

voice-over:

The Preconditions section spells out any constraints to the functions in the Signatures section.

By definition, a digit consists of just a single numeral. In this example, the only constraint is that the digit has to be greater than or equal to zero, and less than or equal to nine.

If the user tries to plug in the number “2,” the ADT function won’t be valid.

Screen 130: ADT Postconditions section

Graphic: Digit ADT.

[image: image17.png]Name:
Sets:

Signatures:

Variables:
Preconditions:

Postconditions:

Digit

D the set of Digits

Nthe set of natural numbers

Digit(N) > D

add(D,D) » N

sub(D,D) > N

mult(D,D) > N

div(D,D) > N

xye DineN

Digit(n) > 0 <=n<=9

divixy) >y =0

add(Digit(x),Digitly)) = x + y

sub(Digit(x),Digity}) = x -y

mult(Digit(x),Digitly) = x* y

div(Digit(x),Digit(y)) = x 1y
L eeee—————

voice-over:

The Post-conditions section shows what happens

when the functions in the Signatures section are carried out.
Graphic:

highlight Post-conditions section of Digit ADT and add:

text dislay:

Post-conditions define the meaning of the functions in terms of other functions.

 “add” produces the sum of two Digits

[image: image18.png]Name:
Sets:

Signatures:

Variables:
Preconditions:

Postconditions:

Digit

D the set of Digits

Nthe set of natural numbers

Digit(N) > D

add(D,D) » N

sub(D,D) > N

mult(D,D) > N

div(D,D) > N

xye DineN

Digitin) 30<=n<=9 Fociconiiions define the mearing of
divixy) >y~ 0 the functions in terms of other functions
BAA(DIGHEBDIGIEYNERKFY 2 produces the surm of two Digits

mult(Digit(x),Digitl(y)
div(Digit(x), Digit(y))

voice-over:

Computers only do what you tell them to do. Your objective is to describe what the computer should do in a clear notation, independent of program code.

When two specific digits need to be added, the computer takes the first digit and adds the second digit to it.

directions:

Teaching assistant (TA) appears here

voiceover:

 If you would like more information on “Variables,” “Preconditions” and “Postconditions” click on the term you would like to review, otherwise click “Forward”.

directions:

[image: image38.png]

If learner clicks on any term, open new window with different approach to explaining the term.

Primary lesson screen remains visible. Secondary window may not completely cover primary lesson screen. Learner must be able to move, resize and minimize Secondary lesson window.
Screen 140: ADT Postconditions exercise

Graphic:[image: image39.png]

Interaction:

User should enter 9. Provide feedback in designated area for feedback:[image: image40.png]CRC cards and inheritance diagrams ADTS define the meaning
analyze class relationships. of classes.

[image: image41.png]CRC cards and inheritance diagrams ADTSs define the meaning
analyse class relationships. of classes.

[image: image42.png]Abstract Data Type:

Data:

Operators:

CRC cards and inheritance diagrams ADTS define the meaning
analyze class relationship: of classes.

[image: image43.png]Sets:

Signatures:

Variables:
Preconditions:

Postconditions:

D the set of Digits
Nthe set of natural numbers
Digit(N) > D

add(D,D) » N

sub(D,D) > N

mult(D,D) > N

div(D,D) > N

xye DineN

Digit(n) > 0 <=n<=9
divixy) >y =0
add(Digit(x),Digitly)) = x + y
sub(Digit(x),Digity}) = x -y
mult(Digit(x),Digitly) = x* y
div(Digit(.Dis

The Name idertifies the data type.

Screen 150: ADT semantics as a contract

Graphic:

 Digit ADT.

[image: image19.png]e:r
Sets:

Signatures:

Variables:
Preconditions:

Postconditions:

g
D the set of Digits

Nthe set of natural numbers
Digit(N) > D
add(D,D) » N
sub(D,D) > N
mult(D,D) > N
div(D,D) > N
xye DineN
Digit(n) > 0 <=

divixy) >y =0
add(Digit(x),Digitly)) = x + y
sub(Digit(x),Digity}) = x -y
mult(Digit(x),Digitly) = x* y

voice-over:

The preconditions and post-conditions of the ADT serve as a contract between the data type and the client.

In this example, the client is the piece of code or action calling the data type.

As long as the client meets the preconditions, the data type responds as indicated in the post-conditions.

When developing an ADT, determine what will happen when a precondition is not met. For example, an error message could be displayed, explaining the violation.

Screen 160: ADT preconditions exercise (contract)

Graphic:

Digit ADT, plus (though not in these colors!):

11
11
Precondition error

7,8
15
Precondition error

7,2
 5
Precondition error

2,4
 8
Precondition error

 7,0

 0
Precondition error_
directions:

As the graphics will be on a white background, change yellow to orange and change green to dark blue.

[image: image20.png]Name:
Sets:

Signatures:

Variables:
Preconditions:

Postconditions:

Digit
D the set of Digits
Nthe set of natural numbers,

Digit(N) > D o
add(D,0) » N 78 15
sub(D,D) > N 72 5
mult(D,D) > N 24 8
div(D,D) > N 70 0
xye D;neN

Digit(n) > 0 <=n<=9
divixy) >y =0

add(Digit(x),Digitly)) = x + y
sub(Digit(x),Digit(y)) =
mult(Digit(x),Digitl(y)

Precondition error
Precondition error
Precondition error
Precondition error
Precondition error

voice-over:

Given the value(s) in orange what would each function produce?

If the output value in blue is valid, click on it.

Click on a result in red if there is a precondition error

Interactivity:

User clicks on correct or incorrect response and gets appropriate feedback message. See Dr. Blank for feedback messages.

Graphic:

Digit ADT plus

11 Precondition error: not a digit
7,8 15
5,2 5
2,4 8
7,0 Precondition error: what is it?

And three possible answers.

Direction:

As the graphics will be on a white background, change yellow to orange and change green to dark blue.

[image: image21.png]Signatures:

Variables:
Preconditions:

Postconditions:

D the set of Digits
N the set of natural numbers

Digit(N) > D 11 Precondition error: not a digit
add(D,D) » N 78 15
sub(D,D) > N 52 5
multiD DI >N 24 &
xye D;neN
Digitin) 5 0 <=n<=9 diviey) > x=0

divixy) >y =0
add(Digitpd,Digitty))=x+y divixy) > x-y+0
sub(Digit(x),Digity}) = x -y

mult(Digit(x),Digitly) = x* y

div(Digit(x),Digit(y)) = x 1y

voice-over:

The div(D,D) function can fail because a machine cannot divide by zero.

So far the ADT for Digit has no precondition to prevent this error.

Click on the precondition that will do the job.

Screen 170: Apple ADT explanation

Graphic:

Graduate student persona appears in lower left corner.

Then, text at top, center: “ADT for apples”

Apple graphic moves from lower right to center up to upper right.

Graduate student voice-over (starts as soon as persona appears):

Let’s construct an ADT for an everyday object, an Apple. [pause]

We’re going to want to be able to construct new instances.

Graphic: Another Apple appears (transition from point) in center.

[pause 1 second]

Top center:
“Apple ADT requirements:

“A constructor to create instances:”

Voice-over:

Each instance has a center point.

Graphic:

Draw a blue dot in the middle of the two apples

Then below each Apple: “Center: 240,320” (use appropriate X,Y coordinate values)

Then indented below previous line of text on right: “ -- each with a center point,”

Voice-over: also a diameter representing its size,

Graphic:

Draw a green line (transition lower left up to upper right) through each Apple.

Then below each Apple and Center text: “Diameter: 2.5 inches” (use appropriate value)

Then below text on right: “-- a diameter,”

Voice-over:

as well as a color, since apples can also be green or yellow.

Graphic:

Transform Apple in center to green.

Then below each Apple and Diameter text: “Color: green”

(use appropriate color name)

Then below text on right: “ -- and a color.”

Voice-over:

Once we have constructed an instance of Apple,

we want to be able to set its attributes.

Graphic:

Below text on right:

“Methods (functions) to set diameter and color”

 [pause about 1 sec]

Below text for apple in center: setDiameter(1.5)

Then: “Diameter: 2.5” changes to “Diameter: 1.5”

Then this apple shrinks to appropriate size.

[pause 1 sec]

Below text on right:

“Methods (functions) to set diameter and color:”

Below apple in upper right: setColor(“yellow”)

Then “Color: red” becomes “Color: yellow”

Then this apple turns yellow.

Voice-over:

Moving an apple happens when we change its center point.

Graphic:

Indent below previous line on right: “
and move its center point.”

[pause about 1 sec]

Below text for apple in center: move(450,600)

Then: “Center:240,320” changes to “Center: 450,600”

Then this apple moves to corresponding coordinates,

Then erase all the text that was below the apples.

Voice-over:

We also want to be able get the values of these attributes.

Graphic:

Below text on right:

“Methods (functions) to get attribute values.”

[pause about 1 sec]

Below text for apple in center (transition right):
getDiameter() (1.5

 [pause 1 sec]

Below apple in upper right (transition right):
getColor() (“yellow”

[pause 1 sec]

Below apple in center (transition right):

getCenter() ((450,600)

Voice-over:

Finally, we’d like a method to print all the attributes of an Apple.

Graphic:

Add another text line below those on right: “A method to print the attributes.”

Then, below one apple at a time, “print” [pause]

and below each “print,” transitioning top to bottom, with appropriate values:

Apple 1:

 Center: 450,600

 Diameter: 1.5 inches

 Color: yellow

Voice-over:

Now that we have an informal description in English,

let’s formalize it as an ADT specification, to make it precise.

Precise specifications will help avoid programming errors later!

Press the forward button to start the exercise.

Directions: Highlight forward button

Screen 171: Apple ADT constructive exercise: ADT sections

Graphic:

Graduate student persona appears in lower left corner.

Boxes highlight target areas in boxes for each of six sections of an ADT.

Drag-able text in a pile in lower right corner, in a jumble:

Name, Sets, Signatures, Variables, Preconditions, Postconditions,

Syntax, Semantics, Apple [these won’t go anywhere, see directions below]

Instruction text [dark green?] above pile:

“Drag ADT section labels from the pile to their places on the left.”

Button (centered below instruction text): “Done—no more sections.”

Voice-over:

Drag the sections of an ADT to their respective positions on the left.

Directions:

The six sections labels on the left should each drop in their respective boxes,

When they do, play a “tada” sound denoting success.

If a section label drops in the wrong place, move it back to the pile, as persona says:

Voice-over: This ADT section goes in another place.

If user drags a non-section label, play a boo horn sound, then:

Voice-over: This is not one of the section labels of an ADT.

If user presses Done button before dragging all six sections:

Voice-over: There are more ADT sections. Shall I show you where the other sections go?

:
Button appears just above: “Show the sections.”

If the user presses this button, move the remaining labels to their destinations.

After a couple of seconds, auto-advance to next screen.

If user presses Done button after dragging all six sections: advance to next screen.

Screen 172: Apple ADT constructive exercise: Name, Signatures and Sets

Graphic:

Graduate student persona in lower left corner.

Six sections of ADT in their places (as in previous screen)

Clickable text in a pile in lower right corner, in a jumble:

Apple, Center, Color, Diameter,

Integer, RealNumber, String Point

setColor, setDiameter, move, print, getDiameter, getCenter, getColor

Syntax, Size, red, green, setCenter, draw (these are wrong answers)

Non-clickable name “Apple” also in pile.

Text on right, above pile: “The name of our ADT is Apple.” [dark green]

Voice-over:

“The name of our ADT is obviously Apple.”

Directions:

Animate top name “Apple” from pile to its place under Name section.

Erase “The name of our ADT is Apple.”

Graphic:

“Click on Apple’s functions below, one at a time.” [dark green]

Button (centered below above line): “Done—no more functions.”

Directions:

IF user clicks “Apple” THEN

Move “Apple” to top position of Signatures,

leaving another “Apple” button in pile

Add parenthesis then arrow to right of “Apple” signature

Further to the right, add the comment: “—default constructor”

Temporarily hide dark green instruction and Done button [restored below]

In place of instruction:

“Click on the type of object that Apple’s constructor returns.”

Voice-over:
“Right, this is our default constructor, which takes no arguments.

What type of object does the constructor return?

Click on this type in the pile.”

IF user clicks on “Apple” THEN:

Move “Apple” to right of constructor’s arrow.

Voice-over:

“That’s right, the Apple constructor returns an instance of Apple.

Apple is also one of the sets or types required to specify our ADT.”

Move another “Apple” label under Sets section. [sync with 2nd line]

Erase current instruction.

Restore previous instruction & Done button

ELSE IF user clicks on any other label in pile THEN

Highlight the Apple label (flashing?)

Voice-over:

“Hint: a constructor returns an instance of the ADT’s own type.”

ELSE IF user clicks “setDiameter” THEN

Move “setDiameter” to second position in Signatures.

Add to right of setDiameter: “(
)” --change diameter of Apple

Temporarily hide dark green instruction and Done button [restored below]

In place of instruction: “Click on the type of setDiameter’s argument.”

Voice-over:
“Yes, setDiameter inserts a new diameter in an Apple, returning nothing.”

What type does this function take as its argument? Click on this type.”

IF user clicks on “RealNumber” THEN:

Move “RealNumber” between the parens (after moving right paren)

 Then add to right (transition right): (RealNumber

Move another “RealNumber” label under Sets section

Erase current instruction. Restore previous instruction and “Done”.

ELSE IF user clicks on any other label in pile THEN

Highlight the RealNumber label (flashing?)

Voice-over:

“Hint: a diameter could allow fractional measurements.”

ELSE IF user clicks “setColor” THEN

Move “setColor” to third position in Signatures.

Add to right of setColor: “(

)”
--change color of Apple

Temporarily hide dark green instruction and Done button [restored below]

In place of instruction: “Click on the type of setColor’s argument.”

Voice-over:
“OK, setColor alters the color in an Apple, returning nothing.”

What type does this function take as its argument? Click on this type.”

IF user clicks on “String” THEN:

Move “String” between the parentheses.

 Then add to right (transition right): (String

Move another “String” label under Sets section

Erase current instruction. Restore previous instruction and “Done”

ELSE IF user clicks on any other label in pile THEN

Highlight the String label (flashing?)

Voice-over:

“Hint: the words ‘red’ and ‘green’ are colors.”

ELSE IF user clicks “move” THEN

Move “move” to fourth position in Signatures.

Add to right of move: “(
)”

--change center of Apple

Temporarily hide dark green instruction and Done button [restored below]

In place of instruction: “Click on the type of move’s argument.”

Voice-over:
“Good… Now, what type does move take as its argument?”

IF user clicks on “Point” THEN:

Move “Point” between the parentheses.

Move another “Point” label under Sets section.

 Then add to right (transition right): (Point

Erase current instruction. Restore previous instruction and “Done”

ELSE IF user clicks on any other label in pile THEN

Highlight the Point label (flashing?)

Voice-over:

“Hint: what is the type of an Apple’s center?”

ELSE IF user clicks “getDiameter” THEN

Move “getDiameter” to fifth position in Signatures.

Add to right of getDiameter: “()” (

Temporarily hide dark green instruction and Done button [restored below]

In place of instruction: “Click on the type that getDiameter() returns.”

Voice-over:
“So, what does getDiameter return?”

IF user clicks on “RealNumber” THEN:

Move “RealNumber” to right of (.

Then add, to right of “RealNumber”:
 --returns diameter value

Erase current instruction. Restore previous instruction and “Done”

ELSE IF user clicks on any other label in pile THEN

Highlight the RealNumber label (flashing?)

Voice-over:

“Hint: what type of object is a diameter?”

ELSE IF user clicks “getColor” THEN

Move “getColor” to sixth position in Signatures.

Add to right of getColor: “()” (

Temporarily hide dark green instruction and Done button [restored below]

In place of instruction: “Click on the type that getColor() returns.”

Voice-over:
“So, what does getColor return?”

IF user clicks on “String” THEN:

Move “String” to right of (.

Then add, to right of “String”:

--returns color value

Erase current instruction. Restore previous instruction and “Done”

ELSE IF user clicks on any other label in pile THEN

Highlight the String label (flashing?)

Voice-over:

“Hint: remember, ‘red’ and ‘yellow’ are colors.”

ELSE IF user clicks “getCenter” THEN

Move “getCenter” to seventh position in Signatures.

Add to right of getCenter: “()” (

Temporarily hide dark green instruction and Done button [restored below]

In place of instruction: “Click on the type that getCenter() returns.”

Voice-over:
“OK, what does getCenter return?”

IF user clicks on “Point” THEN:

Move “Point” to right of (.

Then add, to right of “Point”:

--returns a Point(x,y)

Erase current instruction. Restore previous instruction and “Done”

ELSE IF user clicks on any other label in pile THEN

Highlight the Point label (flashing?)

Voice-over:

“Hint: the center is a location in a two-dimensional plane.”

ELSE IF user clicks “print” THEN

Move “print” to seventh position in Signatures.

Add to right of print: “()” (
NIL
--displays attributes on console

Voice-over:
“Print just displays an Apple’s attributes as a side effect”

ELSE IF user clicks any other label THEN

Add to right of instruction: “Try again.”

Voice-over:
“That’s not the name of one of Apple’s function signatures.”

ELSE IF user clicks on DONE button THEN

IF user hasn’t clicked on all the necessary signature names (above) THEN

Add to right of instruction: “There’s more…”

Voice-over:
“Let’s get all of them, OK?”

ELSE go to next screen.

ELSE IF user presses Done button before clicking all function names THEN

Erase all the spurious labels from the pile, leaving just valid ones.

Display, below the Done button: “Not quite done yet. Try again.”

Voice-over: You’re not quite done yet. Click on the each function to learn more about it.

ELSE IF user presses Done button after clicking all seven function names THEN

Advance to next screen

Screen 173: Apple ADT constructive exercise: preconditions

Graphic:

Graduate student persona in lower left corner.

Six sections of ADT, sets, and signatures, in places as at end of previous screen

Each function signature is a click-able button.

To right of signatures, in dark green:

“Do any of Apple’s functions have preconditions?

Click on any that do.”

Button below above instruction: “Done—no more preconditions.”

Directions:

IF user selects Apple() constructor THEN

Display below Done button: “Default constructor has no preconditions.”

ELSE IF user selects “getCenter” or “getDiameter” or “getColor” THEN

Display below Done button: “Access function always succeeds--no preconditions.”

ELSE IF user selects “print” THEN

Display below Done button: “Print has no preconditions.”

ELSE IF user selects “setDiameter” THEN

Display as first item under Preconditions section of ADT (transition right):

setDiameter(d) =

Display below Done button: “Click on the correct precondition.”

Display the following click-able items:

(d < 0)

(d > 0)

(d < 10)

(0 < d < 10)

(0 > d < 10)

IF user selects (d < 0) THEN display to right of this answer:

“Cannot have a negative diameter. Try again.”

Voice-over:
“Can an apple have a negative diameter?”

ELSE IF user selects (d > 0) THEN display to right of this answer:

“There is a more complete answer. Try again”

Voice-over:
“True, an apple cannot have a negative diameter. But can it be arbitrarily large?”

ELSE IF user selects (d > 10) THEN display to right of this answer:

“There is a more complete answer. Try again”

Voice-over:
“Right, an apple cannot be arbitrarily large. But can it have a negative diameter?”

ELSE IF user selects (0 > d < 10) THEN display to right of this answer:

“Cannot have a negative diameter. Try again.”

Voice-over:
“This expression implies that diameter can be greater than zero.

Can it be negative?”

ELSE IF user selects (0 < d < 10) THEN display to right of this answer:

Move this answer to right of setDiameter(d) =

Voice-over:
“Very good! An apple’s diameter shouldn’t not be negative nor too large.

We’ll also add ‘d’ to the variables section.”

Move copy of “d” from “setDiameter(d) =” to “d:RealNumber” under “Sets”

ELSE IF user selects “setColor” THEN

Voice-over:
“True, an apple are usually red or green or yellow.”

Display as second item under Preconditions of ADT (transition right):

setColor(c) = (c = “red” or c = “green” or c = “yellow”)

Move a copy of “c” from setColor(c) = to “c:String” under “Sets” section

ELSE IF user selects “move” THEN

Voice-over:
“True, the center must appear somewhere in the X Y coordinate space of

a display. Assuming 800 by 600 resolution, which precondition is right?”

Display as third item under Preconditions of ADT (transition right):

move(x,y) =

Display below Done button: “Click on the correct precondition.”

Display the following click-able items:

(x < 0 AND y < 0)

(x > 0 AND y > 0)

(x < 800 AND y < 600)

(0 < x < 800)

(0 < x < 800 AND 0 < y < 600)

IF user selects first answer THEN display to right of this answer:

“X and Y cannot be negative. Try again.”

Voice-over:
“Should X and Y coordinates be negative?”

ELSE IF user selects second answer THEN display to right of this answer:

“There is a more complete answer. Try again”

Voice-over:
“True, coordinates cannot be negative. Aren’t there also upper bounds?”

ELSE IF user selects third answer THEN display to right of this answer:

“There is a more complete answer. Try again”

Voice-over:
“Right, these are the upper bounds. But aren’t there also lower bounds?”

ELSE IF user selects fourth answer THEN display to right of this answer:

“What about the y coodinate?”

Voice-over:
“You got the preconditions for x right--what about y?”

ELSE IF user selects last answer THEN

Move this answer to right of move(x,y) =

Voice-over:
“Good! This precondition specifies lower and upper bounds

for coordinates x and y.”

We’ll also add ‘x’ and ‘y’ to the variables section.”

Move copy of x from “move(x,y) =” to “x:INTEGER” under Sets

Move copy of “y” from “move(x,y) =” to “x,y:INTEGER” under “Sets”

ELSE IF user presses Done button before clicking all three valid functions THEN

Highlight the unselected functions, perhaps by changing their color(s).

Display, below the Done button: “Not quite done yet. Try again.”

Voice-over: “You’re not quite done yet. Click on a function under Signatures

to see if it has a precondition.”

ELSE IF user presses Done button after clicking all three valid functions THEN

Advance to next screen

Screen 174: Apple ADT constructive exercise: Postconditions for constructor

Graphic:

Graduate student persona in lower left corner.

Six sections of ADT, sets, signatures, variables and preconditions in their places

(as at end of previous screen)

Display, below Postconditions (transition to right): “Apple() =”

“Click on default values for Apple’s members.” [dark green]

Button (centered below above line): “Done—no more default values.”

Display below done button, the following click-able labels:

getColor = “red”

color = “red”

color = “”

color = “red or green or yellow”

Directions:

IF user selects first answer THEN

 “Need to initialize a data member, not a function.”

ELSE IF user selects second answer THEN display to right of this answer:

Move it to the right of “Apple() = ”

Voice-over:
“Right! The constructor initializes a private data member, color,

to a default value, red.”

Then: “Apple() = (color = “red” AND diameter = 2 AND center = Point(400,300))”

Voice-over:
“While we’re at it, let’s also initialize Apple’s other data members

to default values: its diameter to two inches and its center as a point

in the middle of the screen.”

ELSE IF user selects third answer THEN display to right of this answer:

“An empty string is not the name of a color.”

ELSE IF user selects fourth answer THEN display to right of this answer:

“Choose one color as the default.”

ELSE IF user selects DONE button before selecting the right answer THEN

Display next to DONE button: “Keep trying…”

Voice-over: “You could just click on the answers, to see which one is right.”

ELSE IF user presses Done button after clicking right answer THEN

Advance to next screen

Screen 175: Apple ADT constructive exercise: Postconditions for functions

Graphic:

Graduate student persona in lower left corner.

Six sections of ADT, sets, signatures, variables, preconditions and 1st postcondition

in their places (as at end of previous screen)

 “Drag all the axioms to places as post-conditions .” [dark green]

Button (centered below above line): “Done—no more postconditions.”

Display below done button, the following drag-able labels:

move(x,y) = center

move(x,y) = center = setCenter(x,y)

setDiameter(d) = getDiameter(d)

getDiameter(d) = diameter = setDiameter(d)

getDiameter(d) = setDiameter(d)

getColor(c) = setColor(c)

getColor(c) = color = setColor(c)

setColor(c) = getColor(c)

Directions:

IF user drags first answer THEN erase it with wrong answer sound effect.

Voice-over: “There is also a relationship between functions move and center.”

IF user drags second answer THEN

Move it to fourth line of post-conditions (first is constructor’s)

Voice-over: “Got it! Note that this axiom shows the relationship between functions setCenter,

move (which returns the center set by setCenter) and the data member center.”

IF user drags 3rd answer THEN erase it with wrong answer sound effect.

Voice-over: “The get functions don’t return a value, they returns NIL.”

IF user drags 4th answer THEN

Move it to second line of post-conditions (below constructor’s)

Voice-over: “Good! getDiameter retrieves the apple’s diameter, which setDiameter sets.”

IF user drags 5th answer THEN erase it with wrong answer sound effect.

Voice-over: “There is also a relationship between these functions and a data member.”

IF user drags 6th answer THEN erase it with wrong answer sound effect.

Voice-over: same as response to third answer.

IF user drags 7th answer THEN erase it with wrong answer sound effect.

Move it to fourth line of post-conditions (first is constructor’s)

Voice-over: “Right! getColor retrieves the apple’s color, which setColor sets.”

IF user drags 8th answer THEN erase it with wrong answer sound effect.

Voice-over: same as response to fifth answer.

IF user selects DONE button before selecting the right answer THEN

Display next to DONE button: “There are more axioms Keep trying…”

Voice-over: “You could just click on the answers, to see which one is right.” (See above.)

ELSE IF user presses Done button after clicking right answer THEN

Advance to next screen

Screen 176: Apple ADT constructive exercise: simulation

Graphic:

Graduate student persona in lower left corner.

Six sections of ADT, sets, signatures, variables, preconditions

and all postconditions in their places (as at end of previous screen)

Button to right of postconditions: “Click here to simulate our ADT.”

Voice-over:

“Once an ADT is correct, we can hand-simulate it

to make sure it’s functions are complete. Click the button to run the simulation.”

Directions:

IF user clicks on the button THEN

Highlight (by changing its color?) Apple() constructor under Signatures

Pause half a second

Highlight all of Apple() constructor in post-conditions (transition right)

Pause half a second.

Display a red Apple about 2 inches wide in the middle of the screen.

Pause a second

Highlight setDiameter(RealNumber) in Signatures.

Pause half a second.

Erase “RealNumber” and insert “0.5” between parentheses

Pause half a second

Highlight setDiameter(d) = (0 < d < 10) under Preconditions

Pause quarter of a second

Display check mark next to precondition

Pause quarter of a second

Highlight center = setDiameter(c) in postconditions

Pause half a second

Reduce Apple to diameter about half inch wide.

Highlight setColor(String) in Signatures.

Pause half a second.

Erase “String” and insert “purple” between parentheses

Pause half a second

Highlight setColor(c) = (c = “red” or c = “green” or c = yellow”)

Pause quarter of a second

Display fails! next to precondition

Erase “String” and insert “green” between parentheses

Pause quarter of a second

Highlight color = setColor(c) in postconditions

Pause half a second

Erase red apple and display green Apple same size (half inch wide)

Highlight print() in Signatures

Pause quarter of a second.

Flash “?” on and off a couple times next to print()

Voice-over:
“Our hand-simulation reveals that there’s something missing!

We don’t have any post-condition for print()!”

Display an empty box at bottom of post-conditions.

Voice-over:
“Why not specify exactly what print should display now, and get it right?”

Display at bottom of post-conditions:

print() =
print(“center at ”) AND print(center) AND

print(“with diameter=”) AND print(diameter)

print(“with color=”) AND print(color)

Voice-over:
“We’ll assume that the semantics for points, real numbers and integers

already specifies how to print these values.”

Highlight forward button.

Screen 180: ADT research exercise using hot topics detection engine
Graphic:

Digit ADT.

 [image: image44.png]

voice-over:

Abstract Data Types help predict how a single item will behave under certain conditions.

directions:

Note from Dr. Blank:

“Set up different pages in the script for researching the hot topics engine and letting the students explore using library research materials.”

[image: image45.png]

[image: image46.png]

The professor asks the student to use the "hot topics" “data mining server” to research emerging trends in software engineering that relate abstract data types.

[image: image47.png]

voice-over: professor

Abstract data types are a topic of research in computer science.

I would like you to research ADTs to see how they relate to emerging trends in software engineering.

Here is your assignment:

Find a few relevant research papers (3 or more), summarize them into one document and include a bibliography.

directions: assignment text boxes

Follow the directions below for ALL Assignment text boxes,

When the voice-over finishes introducing the assignment, reveal the assignment on the screen so that users can read and copy it.

Do not hide or obscure on-screen content.

Keep the proportions and the font of the text box below. Use a pale yellow background color and outline the box in black.

[image: image48.png]

[image: image49.png][€]

voice-over: male prof

Your bibliography should follow a specific reference style guide.

For help in researching topics and creating your bibliography ask the Reference Librarian.

Click on the “Experts” button below, select Reference Librarian then click on Hot Topic Articles.

The Demo shows how the “Hot Topic” interface works.

When the software is functional, you will use it to research the material.

directions:

Show image of Reference Librarian.

Image may not cover on-screen lesson material.

[image: image50.png]

[image: image51.png]

[image: image52.png]

[image: image53.png]

Synchronize image with voice-over dialogue below.

voice-over: refernce librarian

Lehigh University supports the APA Reference/Citation Style in the Publication Manual of the American Psychological Association, 4th ed.

You can find help in creating APA style references and in text citations online at:

http://www.wisc.edu/writing/Handbook/DocAPA.html#review

directions:

Create an active link for the URL above.

directions:

If the user clicks the active link to the Hot Topics Articles open the Hot Topics demo with voice-overs .

Insert the Hot Topics script here to explain the data mining software interface.

voice-over: reference librarian

If you would like to learn how to define ADTs for collections of items, click “Forward.”

Begin new lesson on “ADTs for Collections of Items.”

Name:	Digit

Sets:	D the set of Digits

	N the set of natural numbers

Signatures:	Digit(N) � D

	add(D,D) � N

	sub(D,D) � N

	mult(D,D) � N

	div(D,D) � N_

Variables:	x,y (D; m,n (N

Preconditions: 	Digit(x) � 0 <= x <= 9

Post-conditions: 	add(Digit(m),Digit(n)) = m+n

	sub(Digit(m),Digit(n)) = m-n	

	mult(Digit(m),Digit(n) = m*n

			 div(Digit(m),Digit(n)) = m/n

ADT Assignment 1:

Create a summary of several hot topic research papers. Include a bibliography.

Find a few relevant research papers (3 or more), summarize them into one document and include a bibliography.

�

�

Show image of Professor.

Image may not cover lesson material.

�

�

See Dr. Blank for alternate approach to lesson.

See Dr. Blank for alternate approach to lesson.

�

�

�

�

9 is correct.

By adding ……….. and ……………… you arrive at the sum of the variables.

8 is incorrect.

By adding ……….. and ……………… you arrive at 9, the sum of the variables.

Add(D,D) -> D

What is the value of the post-condition of

Add(Digit(x),Digity))?

X = 3

Y = 6

Type your response in the box and press the Enter key:

�

�

�

Abstract Data Type:

Data:

Operations:

�

�

�

�

�

Correct Answer

Incorrect Response

Name:	Digit

Sets:	D the set of Digits

	N the set of natural numbers

Signatures:	Digit(N) � D

	add(D,D) � N

	sub(D,D) � N

	mult(D,D) � N

	div(D,D) � N_

�

Syntax

Name:	Digit

Sets:	D the set of Digits

	N the set of natural numbers

Signatures:	Digit(N) -> D

	add(D,D) -> N

	sub(D,D) -> N

	mult(D,D) -> N

	div(D,D) -> N_

Variables:	x,y (D; m,n (N

Preconditions: 	Digit(x) � 0 <= x <= 9

Post-conditions: 	add(Digit(m),Digit(n)) = m+n

	sub(Digit(m),Digit(n)) = m-n	

	mult(Digit(m),Digit(n) = m*n

			 div(Digit(m),Digit(n)) = m/n

Variables:	x,y (D; m,n (N

Preconditions: 	Digit(x) � 0 <= x <= 9

Post-conditions: 	add(Digit(m),Digit(n)) = m+n

	sub(Digit(m),Digit(n)) = m-n	

	mult(Digit(m),Digit(n) = m*n

			 div(Digit(m),Digit(n)) = m/n

Name:	Digit

Sets:	D the set of Digits

	N the set of natural numbers

Signatures:	Digit(N) � D

	add(D,D) � N

	sub(D,D) � N

	mult(D,D) � N

	div(D,D) � N_

Semantics

(The meaning of Syntax)

Syntax

Alternate background example for Assignment Text Box.

Select yellow or tan and consistently use it for all on-screen Assignment boxes.

�

�

�PAGE \# "'Page: '#'�'" �Page: 11���	Make background of symbol transparent.

�PAGE \# "'Page: '#'�'" �Page: 16���	See Dr. Blank for appropriate messages. Messages should be short, start with Correct or Incorrect and not imply emotion (do not say “sorry,” “oops,” “too bad” etc.)

�PAGE \# "'Page: '#'�'" �Page: 16���	See Dr. Blank for lesson

�PAGE \# "'Page: '#'�'" �Page: 20���	See Dr. Blank for lesson

ADT Script

 Page 36 of 39

[image: image54.png]

[image: image55.png]

[image: image56.png]

[image: image57.png]

[image: image58.png]

