Templates

Lookout library includes several different array classes: IntArray, FloatArray, StringArray...

Cobiously these have a lot in common; the only difference between them is element type CWouldn=t it be simpler if there were just one generic array class?

CEnter C++ templates, a language mechanism which can generate many different functions

and classes from a generic framework + particular parameters such as element types

CInspired by generic packages of Ada, generic classes of Eiffel and generic ADTs

C++ has two kinds of templates: function (and operator) generators and class generators

What about Java? Alas, Java has no templates or generic classes.

The Java Foundation Library of JDK 1.2 provides a set of general collections classes;

and ObjectSpace provides JGL (see my web page), patterned after the STL of C++

but these rely on inheritance from a root Object class, which loses type-safety and efficiency

A function template can generate a whole family of functions. For example:

template <class T> T max(const T &a, const T &b)

{ if (a > b) return a;

 else return b;

}
From this single definition a C++ compiler can generate functions called max()

for any types that already support the > operator, as needed.

CThe keyword template introduces a generic definition.

CNext comes the formal parameters of the template, between angle brackets:

 <class T> declares a type parameter named T.

Wherever T appears, the template will use the instantiated actual parameter

Cin this example, T appears as the return type and two parameters types of the function Cfor example, suppose the following code fragment appears in the same program as max():

int x,y;
//user-supplied values

cin >> x >> y;

cout << "max value is " << max(x,y) << endl;
The compiler will automatically generate the code for a function max()that would look like this:

int max(const int &a, const int &b)

{ if (a > b) return a;

 else return b;

}
Simirlarly, if x and y were strings (from Standard Library). Then the compiler would generate:

string max(const string &a, const string &b)

{ if (a > b) return a;

 else return b;

}
Pretty handy!

Likewise, class templates generate a family of classes, at compile-time:

template <class T, int SIZE> class Array {

//array contains SIZE elements of type T

public:

 Array(); //default constructor

 Array(const T& init); //initialize elements with init

 Array(const Array<T,SIZE> &other); //copy constructor

 int size() const; //current size or capacity

 int length() const; //synonym of size()

 ~Array(); //destructor cleans up memory

 T& operator[](int); //operator returns float element

private:

 T element[SIZE]; //a block of SIZE elements of type T

 int sz; //size or capacity

};

Template class Array has two parameters:

- the first is a class type parameter, specifying a type for the elements of the array;

- the second a function style parameter, specifying an int value for the size of the array.

Note that both type and constant value information are known at compile time

Given this generic specification, we can instantiate a variety of different arrays:

Array<int,10> A;
 //Array of int with 10 elements

Array<char*,100> B;
 //Array of char* with 100 elements

Array<string,20> C;
 //Array of string with 20 elements

Array<float,7> D(0.0); //Array of float, 7 initialized elements

Array<float,7> E(B); //Array of float copied from D
Consider the first declaration. A C++ compiler will generate a class from the template class,

by substituting int for T and 10 for SIZE, e.g.CT element[SIZE];
==>int element[10];
Each of the above declarations are each actually doing two things:

(1) generating a particular class from a template and

(2) invoking a constructor for the particular class.

The first three declarations all invoke the default constructor

The fourth declaration invokes a constructor which, according to the comment,

initializes all the elements to a particular value, in this case, 0.0.

The fifth declaration invokes the copy constructor, which copies the contents of another Array, B, into the newly constructed one, D.

Here=s a definition for the initializing constructor:

template <class T,int SIZE> Array<T,SIZE>::Array(const T& init)

{

 assert(SIZE > 0);

 sz = SIZE;

 for (int i=0; i < sz; i++)

 element[i] = init;
//initialize elements with init

}

As you can see, the syntax for declaring template class member functions is a bit cumbersome.

(1) template prefix with generic parameters: template <class T,int SIZE>

(2) template class name: Array<T,SIZE> (parameters are part of the name)

(3) signature of constructor itself: Array(const T& init) (with one parameter)

Here=s the definition for the overloaded subscript operator:

template <class T, int SIZE>

T& Array<T,SIZE>::operator[](int i)

{ //returns element value for inspection or modification

 assert(i >= 0 && i < SIZE); //better to use exception?

 return element[i];

}
This signature is so complicated that we had to break it up over two lines!

· First line is the same as for constructor, declaring this function a member of a template class

· Second line: (1) the operator has a return type T& (constructors don=t have return types), d

· (2) the operator overloads the subscript operator [], which takes an int parameter

Standard Templates Library
Ever since Bjarne Stroustrup first designed AC with classes@ in early 1980's,

his brainchild has gone through many incarnations,

adding such features as operator overloading, templates & exception handling along the way Until recently however, other than the iostream library, the language has lacked a standard library.

· Vendors have attempted to fill in the gap by developing their own class libraries (esp. GUI)

· Problems: lack of portability, efficiency; code bloat, too deep inheritance hierarchies

.

Standard Template Library implements many container classes, which are collections of objects

· These collect and provide access to generic objects

· STL also has general iterators (to avoid bugs associated with loops) and

· General well-known, efficient algorithms; iterators and algoithms apply to whole containers

Here is a partial list of some of the classes in the library (it defines over 100 classes and structs)

· vector
random, array-like access to elements; grows via fast insertion at end

· list

sequential access to elements; fast insertion of elements anywhere

· deque
random access; grows via fast insertion at either end (pronounced Adeck@)

· stack
access via top; insertion by push(), deletion by pop() (restriction of deque)

· queue
access via front; insertion at back (also restricted version of deque)

· set

access member elements by association with their values

· multiset
a set that allows duplicates of the same values (also known as Abag@)

· map
access values by looking up associated keys (similar to a dictionary)

· multimap
a map that allows duplicates of the same keys (also known as Ahash table@)

· string, bitset, etc.

You can find more information about the STL on the World Wide Web

CBorland C++ & djgpp both include header files implementing the STL

CBTW, note that template classes must be delivered as header files, not object code: why?
Template class vector<T> is an abstraction of arrays, providing array-like access to elements

also generalizes element types, supports a suite of generally useful and efficient algorithms, standardizing memory management, sorting, iteration, etc.

The first example reads integers from standard input, sorts them, and prints them out.

#include <string>

#include <algorith>

#include <vector>

#include <stdlib.h>

#include <iostream.h>

void main()

{

 vector<int> v; //create an empty vector of integers

 //prompt for and read values from cin

 cout << "Enter integer values, ending with ctrl-z" << endl;

 int userValue; //value from cin

 while (cin >> userValue) //while not end of file (ctrl-z)

 v.push_back(userValue); // append to vector

 // sort the values between two random iterators, begin() and end()

 sort(v.begin(), v.end());

 //display the values

 int n = v.size();

 for (int i = 0; i < n; i++)

 cout << v[i] << "\n";

}

First three #include directives include the code from the standard library used in this example

· First one includes the standard string class

· Second one, algorith, includes efficient implementation of general algorithms on containers,

such as sorting, searching, merging, permuting, etc.

(The sort() algorithm in this program performs about 20 times as fast as the qsort() Third one implements the generic vector class.

First line of the function constructs a vector of int.

Fourth line uses functions from the standard C++ library and fifth line uses standard input/output

The vector class can grow on deman: each iteration of v.push_back adds another value to end, possibly allocating more memory (for efficiency, additional memory gets allocated in blocks)

The last part of the program uses an overloaded [] operator to subscript individual elements

and a size() member function to control a loop.

But the one, succinct statement which does sorting, introduces the concept of abstract iterators

Cthe begin() and end() iterators, which tell sort()the bounds of the loop.

CHow do these iterators avoid potential errors assocaited with getting loops right?
Following program fills a vector with the integers from 0 to n, shuffles them pseudo-randomly, and finally prints out the results.

#include <iostream.h>

#include <vector>

#include <algorith>

#include <iterator>

void main()

{

 const int n = 52;
//52 cards in a deck

 vector<int> v;

 for (int i = 0; i < n; i++) //insert n integers into v

 v.push_back(i); //OR for_each(v.begin(),v.endl,v.pushback);

 random_shuffle(v.begin(),v.end()); //pseudo-random shuffle

 copy(v.begin(),v.end(),ostream_iterator<int>(cout,"\n")); //print

}
This example illustrates another generic algorithm from algorith, randomizing all the elements

in a vector (ony other STL container class).

Last line replaces the print loop of the previous example with the abstraction of iterators.

Instead of worrying about whether we got the loop right, this statement just Acopies@

vector v, from begin() to end(), to an ostream_iterator.

Cparameter cout instructs ostream_iterator() to use standard output

Cand the parameter \n inserts newlines between elements in the output

Cother possible parameters make these template and procedural parameter quite versatile

Next example uses the set class to construct a concordance of words in a book such as the Bible

#include <string>

#include <set>

#include <iterator>

#include <iostream.h>

//Need to instantiate a template for a set of strings

template class set<string,less<string> >;

void main(int argc, char* argv[])

{ //Program takes a parameter specifying an input file name

 set<string,less<string> > concordance; //create concordance

 string word;

 while (!cin.eof()) //up to end of file

 { cin >> word;
//read a word up to a space, tab or new line

 concordance.insert(word); //insert word in concordance

 }

 //display concordance by copying from concordance to ostream

 copy(concordance.begin(),concordance.end(),

ostream_iterator<string>(cout,"\n")); //OR: send to outfile

}

The set class lets you look up elements by their value rather than their subscript number

This example constructs a set, whose elements are of type string, called concordance.

The parameter less<string> tells the set how to compare elements as they get inserted

Cless is a template function defining a Aless than@ comparison

Loop then reads words from the input file and inserts them one at a time into the concordance. Finally, the last line outputs the results to cout, demonstrating that the genericity of copy() well.)

4

