
CSC 498, Fall 2002

 1

Program #1: Vacuum Cleaning Agent

Due: Friday, Oct. 11

Your assignment is to write an intelligent agent for a variation of the vacuum cleaning
world described in the textbook. Like the robot in the book, your robot is capable of sucking up
dirt, moving forward and turning right. It is also able to sense if it is over any dirt. However, we
will use a more complex environment, in that there are obstacles that may block the agent.
Fortunately, the robot has a sensor that can detect if an obstacle is directly in front of it. Another
sensor can detect if the agent has accidentally bumped into an obstacle.
 The robot’s task is to make sure the entire room is clean. When this task is successfully
completed, it should return to its starting position and turn itself off (this can be done with the
robot facing any direction it chooses). The agent should be intelligent in that it can perform this
task efficiently in new situations. In other words, the robot does not know the location of the
obstacles or dirt ahead of time, but must make sure that the room is free of dirt using as little
power as possible. This means it should try to minimize its movements and only turn on its
suction device when necessary. The robot should also avoid bumping into things, because this
can damage valuable personal articles and/or the robot itself.
 The figure below shows an example initial state for the room. The robot is indicated by
the “A”, dirt is indicated by “*”, and obstacles are indicated by an “X”. The agent starts in the
upper left corner of the room in square (1,1) and is facing south. Note that the room itself is 5x5
and is completely surrounded by obstacles (walls). In this case, there are also obstacles
(furniture) in the upper right and lower left corners of the room.

 0 1 2 3 4 5 6
 +--+--+--+--+--+--+--+
0|X |X |X |X |X |X |X |
 +--+--+--+--+--+--+--+
1|X |A | | | |X |X |
 +--+--+--+--+--+--+--+
2|X | |* | |* |X |X |
 +--+--+--+--+--+--+--+
3|X | | | | |X |X |
 +--+--+--+--+--+--+--+
4|X |X | | | | |X |
 +--+--+--+--+--+--+--+
5|X |X |X | |* | |X |
 +--+--+--+--+--+--+--+
6|X |X |X |X |X |X |X |
 +--+--+--+--+--+--+--+
Location: (1,1) Facing: SOUTH

Although the robot must be able to cope with a number of different situations, we will put

some constraints on the task to make it feasible. First of all, the agent will only be used in 5x5
rooms that are completely surrounded by walls. Second, the agent will always start in square
(1,1) facing south. This is also the square the agent must return to when it completes its task.
Finally, it will be able to reach any dirt in the room. Otherwise, dirt and obstacles may be in any
open square.

CSC 498, Fall 2002

 2

In order to help you test your agent, I have written a Java Vacuum World simulation
using the design we worked on in class. This source code can be downloaded from our course
web page (http://www.cse.lehigh.edu/~heflin/courses/agents-2002/). Everything is provided for
you, except you must write the VacAgent class yourself. This class should be in the vacworld
package, be a subclass of Agent, and should implement the see() and selectAction() methods.

Before each move, the agent receives a VacPercept by way of its see() method. This
percept contains information about whether the robot sees dirt below it (the seeDirt() method),
sees an obstacle directly in front of it (the seeObstacle() method) and if it bumped into an
obstacle on its last turn (the feelBump() method). For details, see the VacPercept.java file.

When the robot’s selectAction() method is called, it must return one of four actions. Each
type of action is a subclass of Action. These classes are:

• SuckDirt – This action will remove dirt from the square the robot is in
• GoForward – This will move the robot forward one square in the direction it is

facing. If it is facing an obstacle then the robot will not move, but will feel a bump in
its next percept.

• TurnRight – This will turn the robot 90 degrees to the right.
• ShutOff – This will cause the robot to power down. The robot should only execute

this action when it has cleaned the room of all dirt and returned to its starting
position.

After you have compiled your VacAgent file in the vacworld directory, you can start the

simulator by typing “java vacworld.VacuumWorld” (assuming you are in the directory
directly above vacworld and have “.” in your Java CLASSPATH environment variable). The
simulator outputs a map of the state of the world to the console. To advance to the next state,
simply press RETURN. The percept received by the agent and the action that it selects will be
printed, along with the resulting map. If this primitive-looking interface bothers you, feel free to
modify the code with a more graphical interface, but make sure that your program also works
with the original code, because that’s what I’ll be using to test it.

You will primarily be graded on your agent’s ability to complete the task (that is, clean
the room and return to the starting position). I will test it with multiple room and dirt
configurations, one of which will be the one shown in this assignment. The degree of intelligence
that your agent displays will also be factored into your grade. Agents that are able to complete all
tasks with fewer moves, bumps, and use of suction will be graded higher than ones that
needlessly waste energy. Note that you don’t have to have an optimal solution to get an A on this
assignment, but a near optimal solution would help. Finally, the elegance of your design will be
considered in your grade as well. However, this design need not be based on an architecture
described in the book; it could be something you developed yourself.

You must submit your assignment to me by the beginning of class on Friday, October 11.
There are hardcopy and electronic components to your submission. Your electronic submission
must consist of the source code (.java files) and compiled (.class) files for VacAgent and any
other supporting classes you developed. I expect you to have a descriptive comment for each
class and method, as well as comments to explain any complicated logic you might have. You
may send this by e-mail to heflin@cse.lehigh.edu or you can submit it on a 3.5” floppy disk. You
must also hand in a hard copy of your source code.

	Program #1: Vacuum Cleaning Agent

