
CSE 497-012, Fall 2004

 1

Program #2: Package World Agents
Due: Thursday, Oct. 21

For this assignment, you will design a team of homogeneous agents that will cooperate in
order to achieve a simple package delivery task. The agents are situated in a 50x50 grid. The grid
will have some number p of randomly located packages, each of which must be delivered to one
of d locations. Note, there is a specific destination for each package. Your agents must be able to
handle any number of packages, destinations, and team size. I have provided a simulator which
you can use to test your agent teams.

The Agent Simulator

The simulator is similar to the one we used for the last project. This source code can be
downloaded from our course web page (http://www.cse.lehigh.edu/~heflin/courses/agents-
2004/). Everything is provided for you, except you must write the PacAgent class yourself.
There is a skeleton of this class in the pacworld package. In particular you must implement the
see() and selectAction() methods. You are not allowed to modify any simulator code other than
PacAgent. In this assignment, the only direct communication that should occur between agents
is through the use of the Say action. In particular, static variables are prohibited unless they are
constants. When the simulation is started, it will place n copies of your agent at random locations
in the environment. Note, that the PacAgent constructor provides a unique integer id to the
agent.

The environment is essentially fully observable. That is, the agent knows the locations of
all packages and agents. Furthermore, it knows where each package must be delivered. On each
turn, each agent receives a PacPercept which has the following methods:

• public VisibleAgent[] getVisAgents() – Returns an array which contains the id and
location information for each agent. See the VisibleAgent class for details on how to
access this information.

• public VisiblePackage[] getVisPackages() – Returns an array which contains the id,
current location, delivery destination, and status (is it held by an agent or not) for each
remaining package. See the VisiblePackage class for details on how to access this
information.

• public String[] getMessages() – Returns an array of messages broadcast by the agents
since the perceiving agent’s last turn. It is up to you to decide the format and content of
the message.

• public boolean feelBump() – Returns true if the agent (or the package it was carrying)
bumped into something on the last turn.

There are separate classes for each action available to the agents. The actions available to each
agent are:

• Drop – Causes the agent to drop the package that it is holding in an adjacent square (the
agent must specify a compass direction). If the package is dropped at its destination then
it is successfully delivered and disappears. The package cannot be dropped on a location
where there is an agent or another packages.

• Idle – Causes the agent to skip its turn.

CSE 497-012, Fall 2004

 2

• Move – Causes the agent to move one step north, south, east or west. If the agent is
holding a package, the package will move in the same direction. If the agent or the
package is blocked by an obstacle (another package or agent) then the agent will feel a
bump and not move.

• Pickup – Causes the agent to pick up an adjacent package at the direction specified. The
package will be held to that side of the agent until the agent drops the package. The agent
can only pick up one package at a time.

• Say – Agent broadcasts a message to all other agents. The message is a string.
Note, some actions require a parameter for use.
 The simulator takes four optional command line parameters: the number of agents, the
number of packages, the number of destinations, and the size of the world (note, since we are
fixing the world size at 50 for this environment, you do not need this parameter). If fewer
parameters are provided, then defaults are used. In order to start the simulator with n agents, p
packages, and d destinations, type java pacword.PackageWorld n p d. The simulator will
launch a simple graphical user interface that allows you to step through each turn in the
environment or to run it to completion in real time. In this user interface, agents are represented
by black squares, packages by colored squares, and destinations by colored circles. Each package
will be the same color as the destination it is to be delivered to.

Evaluation
 The performance of the team will depend on the number of packages successfully
delivered, the number of turns required to deliver these packages, the amount of communication
needed, and the processor time used by your agents to make their decisions. See the
getPerformanceMeasure() method in PackageWorld for details. Note, that communication and
processor time are relatively cheap compared to the number of turns taken, so you should
consider how thinking more intelligently and communicating can improve the coherence of your
agents. In particular, you should consider the kinds of conflicts that can occur when two agents
get in each other’s way or choose to go after the same package. Note, that coordination may be
more important in worlds that have more packages and agents. You should test your agents with
a range of configurations (i.e., different team sizes, number of packages, and number of
destinations). You will be graded both on the performance of your agents and on the quality of
your design.

Submission

You must submit your assignment to me by the beginning of class on Thursday, October
21. There are hardcopy and electronic components to your submission. Your electronic
submission must consist of the source code (.java files) and compiled (.class) files for PacAgent
and any other supporting classes you developed. There should be a comment at the beginning of
the file that identifies you and that provides a clear and detailed description of the strategy used
by your agents. I also expect you to have a descriptive comment for each class and method, as
well as comments to explain any complicated logic you might have. You may send this by e-mail
to heflin@cse.lehigh.edu (please put “CSE 497-012 Project #2 Submission” in the subject line)
or you can submit it on a 3.5” floppy disk. You must also hand in a hard copy of your source
code.

