

An Introduction to the Semantic Web

Jeff Heflin Lehigh University

The Semantic Web

Definition

The Semantic Web is not a separate Web but an extension of the current one, in which information is given well-defined meaning, better enabling computers and people to work in cooperation.
(Berners-Lee et al., Scientific American, May 2001)

Applications

- managing corporate web sites (intranets)
- more automatic generation of web portals
- better indexing of multimedia resources
- web agents and web services
- ubiquitous computing

Ontology

Definition

- a logical theory that accounts for the intended meaning of a formal vocabulary (Guarino 98)
- has a formal syntax and unambiguous semantics
- inference algorithms can compute what logically follows

• Relevance to the Semantic Web:

- ontologies define the semantics of the terms used in semi-structured web pages
- identify context
- provide shared definitions
- ease the integration of distinct resources

A Web of Ontologies

Semantic Web Standards

World Wide Web Consortium (W3C) Recommendations

- ◆ RDF(S) (1999, revised 2004)
 - essentially semantic networks with URIs
 - XML serialization syntax

- ◆ OWL (2004)
 - extends RDF with more semantic primitives
 - based on description logics (DLs)
 - has a model theoretic semantics

A Band is a subset of the groups which only have Musicians as members

URIs and Namespaces

URI

- Uniform Resource Identifier
- includes URLs
- but also anything that you can design an identification scheme for
- helps to prevent collision of names
- all the "symbols" in RDF are either URIs or Literals

Namespace

- a mechanism for abbreviating URIs
- by assigning a prefix for a URI fragment

Description Logic (DL)

- form of knowledge representation
 - useful for formally defining classes
 - studied extensively in 1990's
 - mature reasoning software
 - » e.g., FaCT, RACER, Pellet
- benefits
 - optimized computation of subsumption
 - » calculate implicit subClassOf relations
 - ontology integration
 - » if two ontologies use class expressions to define their vocabularies in terms of a third ontology, then subsumption can be used to compute an integrated ontology

OWL Class Constructors

Constructor	DL Syntax	Example
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer
complementOf	$\neg C$	⊣Male
oneOf	$\{x_1 \dots x_n\}$	{john, mary}
allValuesFrom	$\forall P.C$	∀hasChild.Doctor
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer
maxCardinality	$\leq nP$	≤1hasChild
minCardinality	$\geqslant nP$	≽2hasChild

borrowed from Ian Horrocks

OWL Axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human ⊓ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	$\{President_Bush\} \equiv \{G_W_Bush\}$
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	$\{\text{john}\} \sqsubseteq \neg \{\text{peter}\}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	$cost \equiv price$
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
transitiveProperty	$P^+ \sqsubseteq P$	$ancestor^+ \sqsubseteq ancestor$
functionalProperty	$\top \sqsubseteq \leqslant 1P$	$\top \sqsubseteq \leqslant 1$ hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^-$	⊤ ⊑ ≼1hasSSN⁻

borrowed from Ian Horrocks

OWL Inference

- The head of an organization is also a member of it
- A member of a terror organization is a terrorist
- Therefore, the head of a terror organization is a terrorist

Is the Semantic Web a Fad?

- ◆ Analysts have estimated that 35-65% of system integration costs are due to **semantic** issues
- Companies that have invested in semantic solutions
 - Time Inc., BellSouth, Raytheon, Walt Disney Company, General Motors, Cisco Systems, Met Life, etc.
- Growth of the Semantic Web
 - $-2005 \rightarrow 350,000 \text{ RDF/OWL documents}$
 - Feb. 2006 → 1 million RDF/OWL documents
 - Nov. 2007 \rightarrow 2.3 million RDF/OWL documents

For more information...

- ◆ For more on the Semantic Web
 - http://www.cse.lehigh.edu/~heflin/
 - http://www.semwebcentral.org/
 - http://www.w3.org/2001/sw/
 - http://www.daml.org/
 - http://www.semanticweb.org/