
CSE 428, Spring 2006

 1

Homework #3: OWL Constraint Checker
Due: March 23

The following program is due at the beginning of class on March 23. This will count for 15% of
your overall grade. Note, this program is more complicated than it first appears, so be sure to
start early, particularly if you are not comfortable programming in Java.

When creating OWL data, it is sometimes useful to know how well this data conforms to a given
ontology. Many data sets are designed to be locally complete: that is, any relevant information
about the individuals is provided within the file. It is also common to assume that individuals
with different names in a file are supposed to denote different things. If we make the unique
names assumption and the closed world assumption (of course, both of the assumptions are
incorrect with respect to OWL in general), it is possible to create a constraint checker that
determines how well each individual conforms to the constraints specified by the ontology. In
this assignment, you will write a tool that takes as input a simple OWL ontology and an OWL
data document, and does some basic checks to see if the data document obeys the constraints of
the ontology. In order to keep this task manageable, we will only be concerned with checking the
following constraints:

• That the rdf:type of every instance in the data file is a class defined in the ontology file.
• If the rdf:type of an instance is a class that is defined as the subclass of an OWL DL

Restriction, then the instance's properties obey the specified constraint.

Furthermore, the input ontologies we use will not have:

• rdfs:subPropertyOf, rdfs:domain, or rdfs:range
• RDF-style datatyping (a la the rdf:datatype attribute).
• versioning or imports information
• property characteristics, such as owl:FunctionalProperty, owl:inverseOf, etc.
• ontology mapping properties, such as owl:sameClassAs, owl:equivalentTo, etc.
• complex classes, such as those defined by owl:intersectionOf, owl:oneOf, etc.

When checking constraints, the tool should make both the unique names assumption and the
closed world assumption. That is, you can assume that if two resources have different URIs then
they are distinct, and you can assume that all relevant data is specified in the data file. Therefore,
if there was a minCardinality of 2 on a property, and an instance only had one value for that
property, that would be considered a constraint violation that the tool should report. A particular
class may have multiple constraints, and each should be checked for any instance of the class.

Your file should be run as:

java Checker ontfile datafile

CSE 428, Spring 2006

 2

where ontfile is the pathname of an OWL ontology file, and datafile is the pathname of a file
with OWL instance data.

The output of your program should be:

No constraints violated.

or a list of specific error messages. In the case of an instance that is of an undefined type, report
an error message of the form:

ERROR: Undefined Type - Instance instance_id member of class class_id

In the case of the violation of a restriction, the message should report the ID of the instance in
which the error occurs, the type of constraint that is violated, the class in which this constraint is
specified, and the property on which the constraint is placed. For example:

ERROR: Property Restriction Violation
 Instance: http://somewhere.org/data#band1
 Class: http://somewhere.org/ont#Band
 Property: http://somewhere.org/ont#hasMember
 Constraint: minCardinality = 2

In these error messages, the Class should be the class on which the property restriction is defined.
Note, this may be a superclass of the instances actual rdf:type.

Use of Jena
Every OWL file can be viewed as a set of RDF triples, thus you can use an RDF parser to read
OWL. For this project, you must use Jena to parse the input files. In order to do this the jena.jar,
log4j-1.2.7.jar, commons-logging.jar, xmlParserAPIs.jar, xercesImpl.jar, icu4j.jar and
jakarta-oro-2.0.5.jar files must be in your classpath. You will need to use classes from the
com.hp.hpl.jena.rdf.model package, and may find the com.hp.hpl.jena.vocabulary.* packages
useful as well. Do not directly use any other packages from the Jena distribution without my
permission. In particular, you are forbidden to use Jena's ontology or reasoner components.

Design Hints
Even with the simplifications specified above, this task can be challenging, so here is a suggested
approach to solving this problem:

1. Create a set of Java class that can parse an ontology and store basic OWL class
information, including superclasses and property restrictions. In order to help you out, I
have provided three unfinished classes that you may use (OwlOnt.java, OwlClass.java,
and OwlProperty.java). These classes provide basic data structures and some simple
access methods. However you will have to implement the methods for parsing an
ontology from an OWL file, and eventually for testing if one OWL class is a subclass of
another class (see Step 4 for the later). You may modify these Java classes in any way
you wish, and may also choose not to use them at all. In any case, be careful when trying

CSE 428, Spring 2006

 3

to determine the superclasses of an OWL class. The property rdfs:subClassOf can be used
either with a named class or with an anonymous owl:Restriction. These two forms should
be treated differently by your application.

2. Write code that reads a data file, determines what the instances are, and verifies that all
types correspond to a Class in the ontology file. Print an error message for each instance
that fails this test. You can ignore instances that are untyped.

3. Since the cardinality and hasValue constraints should be the easiest to check, you should
next write code that takes those instances that pass step 2, checks these instances for
cardinality and hasValue constraints, and reports any violations (e.g., an instance has a
property that doesn't have enough values, or has a property that doesn't include the value
specified by a owl:hasValue restriction). Note this must be done after steps 1 and 2,
because it requires the program to know the type of the instance and what constraints are
applicable for that type (as specified in the ontology). Since the constraints of any
superclasses of the type should also apply, be sure your program checks these as well.

4. Write code to test if one class is a subClassOf another, whether implicitly or explicitly.
Because we are restricting ourselves to very simple ontologies, we only need to look at
the explicit rdfs:subClassOf relations and any transitive inferences that result (e.g., if A is
a subclass of B, and B is a subclass of C, then we can conclude that A is also a subclass
of C). I emphasize that no description logic inference is needed.

5. Write code to check the owl:allValuesFrom and owl:someValuesFrom constraints. Note
that you must take extra care when checking these kinds of constraints. An instance of a
class is also an instance of all of its superclasses, so be sure to take this into account when
you try to determine if the value of a property is of the type specified by the constraint.

Submission Instructions
This assignment is due by the beginning of class on Thursday, March, 23. Create a zip or tar file
that contains both your source code (.java) and compiled (.class) files (but do not include any of
the Jena files in it). If you used the three files I provided, make sure they are included. Also, if
you use a .BAT file or some other form of script to compile and run your program, please
include this as well. The electronic version of your program file must be submitted using the
course webpage on the Blackboard Learning System (see https://ci.lehigh.edu/). Select
Assignments, and then click on “View/Complete” for Programming Assignment #2. You will
then be able to attach your file for submission. Once you are absolutely certain that your file is
complete, press the “Submit” button (although you can add your file at any time, we will not be
able to access it until you press “Submit”). Also print out your .java files, and turn them in
during class. All of your files should be reasonably commented, including an intitial comment
that identifies you as the author and descriptive comments for each class and method.

