
CSE 428, Fall 2014 

1 

 

Homework #1: RDF  
The following exercises are due at the beginning of class on Tuesday, Sep. 16. There are two sections: 

written exercises and electronic exercises. This will count for 10% of your overall grade.  

 

Written Exercises: 

The exercises in this section should be completed and turned in on paper. 

 

1. [10 pts.] Translate the following RDF/XML Document into the Turtle syntax.  

 
<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#” 

   xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#” 

   xmlns:u=“http://www.example.org/uni#” 

   xml:base=“http://www.example.org/uni”> 

<rdfs:Class rdf:ID=“Person” /> 

<rdfs:Class rdf:ID=“Student”> 

 <rdfs:subClassOf=“#Person” /> 

</rdfs:Class> 

<rdfs:Class rdf:ID=“Professor”> 

 <rdfs:subClassOf=“#Person” /> 

</rdfs:Class> 

<rdfs:Class rdf:ID=“Course” /> 

<rdf:Property rdf:ID=“advises”> 

 <rdfs:domain rdf:resource=“#Professor” /> 

 <rdfs:range rdf:resource=“#Student” /> 

 <rdfs:subPropertyOf=“#knows”> 

</rdf:Property> 

<rdf:Property rdf:ID=“takes”> 

 <rdfs:domain rdf:resource=“#Student” /> 

 <rdfs:range rdf:resource=“#Course” /> 

</rdf:Property> 

<rdf:Property rdf:ID=“teaches”> 

 <rdfs:domain rdf:resource=“#Professor” /> 

 <rdfs:range rdf:resource=“#Course” /> 

</rdf:Property> 

<rdf:Property rdf:ID=“knows” /> 

<u:Professor rdf:ID=“alan”> 

 <u:teaches rdf:resource=“#cs100” /> 

 <u:advises rdf:resource=“#rob” /> 

 <u:advises rdf:resource=“#sarah” /> 

</u:Professor> 

<u:Student rdf:ID=“rob”> 

 <u:takes rdf:resource=“#cs100” /> 

 <u:takes rdf:resource=“#cs200” /> 

</u:Student> 

</rdf:RDF> 

  



CSE 428, Fall 2014 

2 

 

2. [10 pts.] Translate the following RDF Graph into the RDF/XML syntax. Be careful to give the syntax 

that exactly translates into the provided graph. In particular, do not include syntax for any implied or 

inferred triples. Assume that rectangular nodes represent untyped literals. For nodes and arcs labeled 

with qnames, assume the standard prefixes apply. For other names, assume they are all local to the 

document you are writing. 

 

 

3.  [10 pts.] Using the RDFS entailment rules rdfs2, rdfs3, rdfs5, rdfs7, rdfs9, and rdfs11 (see the RDF 

Semantics recommendation [ http://www.w3.org/TR/rdf-mt/ ], Section 7), determine what triples can 

be inferred from the example in Problem #1. You may ignore the other entailment rules because they 

do not add anything particularly interesting. Give you answer by listing additional triples in Turtle. 

 

4. [10 pts.] Consider the following three triples (given in Turtle syntax): 

<A> rdfs:subClassOf <B> . 

<B> rdfs:subClassOf <C> . 

<C> rdfs.subClassOf <A> . 

According to the RDFS entailment rules, what additional triples can be inferred from these triples? 

Can you think of a situation where three triples could exhibit this pattern and not be the result of a 

modeiling error? 

  

king 

1978 

stand 

Book 

rdfs:Class 

Person 

Stephen King The Stand 

rdf:type 

rdf:type 

rdf:type 

rdf:type 

name 

wrote 

title year 

Document 
rdf:type 

rdfs:subClassOf 



CSE 428, Fall 2014 

3 

 

Electronic Exercises: 

For these two problems, you must use Jena 2.12.0 to solve two basic tasks in RDF. I expect these to 

programs to total somewhere between 250 and 300 lines of code, so plan your time accordingly. Note, the 

Jena distribution includes a number of JAR files, and many (but not all) of these will need to be in your 

classpath for your programs to compile and run. You will need to import classes from the 

com.hp.hpl.jena.rdf.model package, and may find the com.hp.hpl.jena.vocabulary.RDF class useful as 

well.  All of your classes should be placed in a Java package named with your Lehigh user id (e.g., 

aaa000), referred to as userId. . in the descriptions below. 

5.  [25 pts.] Consider the file top20albums.txt that is available on the course web page. This file 

includes a list of albums, one per line. Each line has the form: 

rank artist album year 

where fields are separated by tabs. Decide on an approach of representing this data as an RDF graph, 

choosing URIs for classes and properties as appropriate. You may create new URIs or reuse ones 

defined by existing schemas; you do not need to create an explicit RDF schema. Choose a scheme for 

generating a unique URI for each album. Then use Jena to write a class userId.AlbumsToRdf that 

can read in any file of the same form, and write out an equivalent RDF/XML file. 

From the command-line, your program should run as:  

java userId.AlbumsToRdf input output 

where input is the name of the text file to read from and output is the name of the resulting RDF file. 

File names will be specified as paths relative to the JVM’s working directory. 

6. [35 pts.] Using Jena, write a class userId.ReadPubRdf that can read in an RDF file describing a set 

of publications, and then output a condensed list of these publications to the screen, one per line. The 

input file will use the vocabulary from the RDF Schema swpub.rdf,  which is available on the course 

web page. From the command-line, your program should run as:  

java userId.ReadPubRdf rdf-filename 

where rdf-filename is a relative path to the input RDF. Each entry in the output should be of the form: 

 pub-type: “title” by author1, author2, ... and authorn (year) 

where each italicized symbol represents information from a triple. The pub-type placeholder should 

be one of: Article In Periodical, In Proceedings, Book Chapter, or Tech Report. You can ignore 

any resources that are not instances of one of the corresponding classes.  I have provided the file 

reasoning.rdf to help you test your program. If we ignore the linebreaks below, the output line 

corresponding to the first publication in this file might look like: 

In Proceedings: " SAOR: Template Rule Optimisations for 
Distributed Reasoning over 1 Billion Linked Data Triples" by 

Aidan Hogan, Jeff Z. Pan, Axel Polleres, and Stefan Decker (2010) 

Note, the input files will use the <rdf:Seq> and <rdf:li> elements to provide ordered lists of authors. 

Your code must appropriately navigate the resulting Jena model constructs. 

On the course website, I provide a file SwPub.java that includes useful constants for the various 

classes, properties and other resources, defined in swpub.rdf. 

The program should terminate successfully for any syntactically correct RDF/XML file. You should 

ignore any triples that do not match the expected vocabulary, and you should ignore any publications 

that are missing the required rdf:type, title, authorList or publishedYear triples or that have authors 

that are missing fullName triples. 



CSE 428, Fall 2014 

4 

 

Submission: 

These exercises require both submission of files and hardcopies of these files. The specified files should 

be included as attachments to a single e-mail sent to heflin@cse.lehigh.edu with subject line “CSE 428 – 

Homework #1 Submission”. 

Create a zip file userId-prog.zip that contains your source code (.java) files, organized according to Java’s 

file structure (i.e., classes in packages are in subdirectories corresponding to the package naming 

structure. Do not include any .class or Jena files in your submission, and do not put the code in a “src” 

directory. The contents of your zip file should be something like: 

/userId/AlbumsToRdf.java 

/userId/ReadPubRdf.java 

… 

Note, I will unzip your file directly into the working directory I will use. I will then run the commands as 

described for each exercise above. Thus it is important the your submission be organized exactly as I have 

described. 

Attach the zip file to the e-mail mentioned above.  Print out your .java file(s) and turn in the hardcopy 

with the rest of your written answers.   

Grading: 

Your programs will be graded on functionality (90%) and style (10%). Style includes modularity (avoid 

repeated code when possible, keep methods under ~60 lines, use multiple classes when appropriate), 

commenting (all of your files should be reasonably commented, including an initial comment that 

identifies you as the author and descriptive comments for each class and method), proper indentation, 

clear names, and use of standard naming conventions.  

If I cannot immediately compile your program or run it using the procedure above, it will be returned to 

you to fix, and then a late penalty will be assessed depending on how long it takes you to fix it. 


