
Dynamic Ontologies on the Web

Jeff Heflin and James Hendler

Department of Computer Science
University of Maryland

College Park, MD 20742
{heflin, hendler}@cs.umd.edu

Abstract
We discuss the problems associated with managing
ontologies in distributed environments such as the Web.
The Web poses unique problems for the use of ontologies
because of the rapid evolution and autonomy of web sites.
We present SHOE, a web-based knowledge representation
language that supports multiple versions of ontologies. We
describe SHOE in the terms of a logic that separates data
from ontologies and allows ontologies to provide different
perspectives on the data. We then discuss the features of
SHOE that address ontology versioning, the effects of
ontology revision on SHOE web pages, and methods for
implementing ontology integration using SHOE’s
extension and version mechanisms.

1. Introduction

The World Wide Web is a repository of information that
is structured for presentation to human readers and is thus
mostly inaccessible to machines. This situation will be
somewhat alleviated by the Extensible Markup Language
(XML), which allows content to be separated from
presentation. However, although XML Document Type
Declarations (DTDs) can specify the grammar of markup
languages, there are no facilities for formalizing the
meaning of these languages. To create a web language
with semantics, one must extend XML with features of
knowledge representation (KR) languages.

However, the Web presents new challenges for KR;
simply creating an XML syntax for traditional KR
languages is insufficient. The Web is a distributed system
and there are many providers of information. As such, the
reliability of information is questionable, and it is
inevitable that inconsistencies will arise. The Web is also
in a constant state of change. Although standard
vocabularies will be necessary for interoperability, these
vocabularies must be able to evolve as the Web does.
Additionally, the sheer size of the Web will test the
scalability of KR systems and algorithms. As a
consequence of the Web’s size and dynamic nature, it
must be treated as an open-world, since it would be

Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

unrealistic for any agent to assume that it knows all true
facts about the Web.

The Simple HTML Ontology Extensions (SHOE) is an
ontology-based knowledge representation language that is
embedded in web pages (Luke et al. 1997; Heflin,
Hendler, and Luke 1999). Over the course of four years,
we have investigated the use of ontologies to support the
structuring and querying of data on the Web. We begin
this paper with an overview of the SHOE language, and
then provide a logical semantics for it. We then discuss
the problem of ontology revision, which is necessary in a
dynamic environment such as the Web, and describe how
SHOE’s versioning mechanism copes with this. Next, we
discuss the tendency of distributed ontologies to diverge,
and provide methods for reintegrating them using SHOE’s
extension and version mechanisms. Finally, we discuss
related work and present our conclusions.

2. SHOE

The underlying philosophy of SHOE is that intelligent
internet agents will be able to better perform their tasks if
the most useful information is provided in a structured
manner. To this end, SHOE extends HTML with a set of
knowledge oriented tags that, unlike HTML tags, provide
structure for knowledge acquisition as opposed to
information presentation. SHOE associates meaning with
this content by making each web page commit to one or
more ontologies. These ontologies permit the discovery of
implicit knowledge through the use of taxonomies and
inference rules, allowing information providers to encode
only the necessary information on their web pages, and to
use the level of detail that is appropriate to the context.
Interoperability is promoted through the sharing and reuse
of ontologies.

To achieve compatibility with existing web standards,
SHOE’s syntax is defined as an application of SGML, a
language that defines tag-based languages and was the
influence for HTML’s syntax. A slight variant of the
syntax exists for compatibility with XML, and can be
used by web sites that have begun to migrate to XML.

The nature of the SHOE language makes it possible to
develop numerous tools and architectures for processing
it. In order to evaluate the language, we have built a suite

of tools, including a tool for adding SHOE markup to web
pages, a web crawler that gathers SHOE from web pages
and stores it in a knowledge base, and a number of query
tools. We have applied these tools to various domains,
including computer science departments and food safety.
A discussion of these tools and applications can be found
in Heflin, Hendler and Luke (1999). Demos of the tools
are available at
http://www.cs.umd.edu/projects/plus/SHOE.

2.1 Language Features
In this section we describe the features of SHOE that are
necessary for an understanding of this paper. The reader
may be surprised by the simplicity of the language. In the
context of the Web this is actually a virtue. In order for a
language to be accepted by the web community, it must
be easy for users to understand and tool developers to
implement. As such, a guiding principle of the SHOE
project has been to add features to the language only
when it became clear that they were necessary.

SHOE ontologies are made publicly available by
locating them on web pages. An example ontology is
presented in Figure 1. An <ONTOLOGY> tag delimits
the machine-readable portion of the ontology and
specifies a unique identifier and a version number for the
ontology. As is common in many ontology efforts, such as
Ontolingua (Farquhar, Fikes, and Rice 1997) or Cyc
(Lenat and Guha 1990), SHOE ontologies build on or
extend other ontologies, forming a lattice with the most
general ontologies at the top and the more specific ones at
the bottom. Ontologies inherit all of the components
present in their ancestors. As a result, ontologies are
interoperable to the extent that they share the same
ancestor ontologies.

Ontology reuse in SHOE is accomplished by extending
general ontologies to create more specific ontologies.
Specifically, the <USE-ONTOLOGY> tag indicates the id
and version number of an ontology that is extended. An
optional URL field allows systems to locate the ontology
if needed and a PREFIX field is used to establish a short
local identifier for the ontology. When an ontology refers
to an element from an extended ontology, this prefix and
a period is appended before the element’s name. In this
way, references are guaranteed to be unambiguous, even
when two ontologies use the same term to mean different
things. By chaining the prefixes, one can specify a path
through the extended ontologies to an element in a
general ontology.

An ontology can define categories, relations, and other
components. Categories are introduced with a <DEF-
CATEGORY> tag and may specify one or more
subsuming categories. Note that it is not possible to
specify subsuming categories for a category defined in
another ontology. Relations, which are essentially n-ary
predicates, are defined with a <DEF-RELATION> tag
and must specify types for each argument.

Sometimes an ontology may need to use a term from
another ontology, but a different label may be more useful
within its context. The <DEF-RENAME> tag allows the
ontology to specify a local name for a concept from any
extended ontology. This local name must be unique
within the scope of the ontology in which the rename
appears. Renaming allows domain specific ontologies to
use the vocabulary that is appropriate for the domain,
while maintaining interoperability with other domains.

SHOE uses inference rules, indicated by the <DEF-
INFERENCE> tag, to supply additional axioms. A SHOE
inference rule consists of a body of one or more
subclauses describing claims that entities might make and

<HTML>
...
<BODY>
<ONTOLOGY ID="cs-dept-ontology" VERSION="1.1"
 BACKWARD-COMPATIBLE-WITH="1.0">
<USE-ONTOLOGY ID="univ-ontology" VERSION="1.0" PREFIX="u"
 URL="http://ontlib.org/univ_v1.0.html">
...
<DEF-CATEGORY NAME="ComputerScience" ISA="u.ResearchArea">
...
<DEF-RELATION NAME="writtenIn">
 <DEF-ARG POS=1 TYPE="Program">
 <DEF-ARG POS=2 TYPE="ComputerLanguage">
</DEF-RELATION>
...
<DEF-RENAME FROM="u.Department" TO="Department">
<DEF-RENAME FROM="u.Chair" TO="DepartmentHead">
...
</ONTOLOGY>
</BODY>
</HTML>

Figure 1. An Example Ontology

a head consisting of one or more subclauses describing a
claim that may be inferred if all claims in the body are
made. The <INF-IF> and <INF-THEN> tags indicate the
head and body of the inference, respectively. SHOE rules
can be reduced to Horn clauses, which allows
implementations to take advantage of algorithms
developed for datalog programs.

There are three types of inference subclauses: category,
relation and comparison. The arguments of any subclause
may be a constant or a variable, where variables are
indicated by the keyword VAR. Constants must be
matched exactly and variables of the same name must
bind to the same value. The following example, which
states “If X is a Car and the age of X is greater than 25,
then X is an Antique,” illustrates the construction of an
inference that uses all three types of subclauses.

<DEF-INFERENCE>
<INF-IF>
 <CATEGORY NAME="Car" VAR FOR="X">
 <RELATION NAME="age">
 <ARG POS=1 VAR VALUE="X">
 <ARG POS=2 VAR VALUE="A">
 </RELATION>
 <COMPARISON OP="greaterThan">
 <ARG POS=1 VAR VALUE="A">
 <ARG POS=2 VALUE="25">
 </COMPARISON>
</INF-IF>
<INF-THEN>
 <CATEGORY NAME="Antique" VAR FOR="X">
</INF-THEN>
</DEF-INFERENCE>

The data sources for SHOE are web pages, where each
can be thought of as a miniature knowledge base. These
web pages declare one or more instances that represent
SHOE entities, and each instance describes itself using
categories and relations. The syntax for instances includes
an <INSTANCE> tag that has a field for a KEY that
uniquely identifies the instance. We recommend that the
URL of the web page be used as this key, since it is
guaranteed to identify only a single resource. An instance
commits to a particular ontology by means of the <USE-
ONTOLOGY> tag, which has the same function as the
identically named tag used within ontologies. The use of
common ontologies makes it possible to issue a single
logical query to a set of data sources and enables the
integration of related domains. To prevent ambiguity in
the declarations, ontology elements are referred to using
the prefixing mechanism described earlier.

It is important to note that the features of the language
have been carefully chosen to prevent logical
inconsistency. There are no negations, no single-valued
relations, and no disjoint constraints between categories.
Although this may seem extremely restrictive, it is very
useful for practical systems on the Web, where
inconsistencies would otherwise be unavoidable.

2.2 Mapping SHOE to First Order Logic
In order to provide formal semantics for SHOE, we will
map it into a first order logical theory. This mapping will

intentionally omit some features of the language so that
we may focus on the issue of dynamic, distributed
ontologies.

Essentially an ontology O can be thought of as a tuple
<V,A> where V is the vocabulary and A is the set of
axioms1 that govern the theory. In the terminology of
first-order theory, V is the set of predicate symbols, each
with some arity >= 0, and A is a set of Horn clauses. For
convenience, we will assume that the symbols in the
vocabulary of each ontology are distinct. In actuality,
SHOE has a separate namespace for each ontology, but
we can make our assumption without loss of generality
since it is possible to apply a renaming that appends a
unique ontology identifier to each symbol. We now
discuss how to build V and A, based upon the components
that are defined in the ontology:

A <USE-ONTOLOGY> statement adds the vocabulary
and axioms of the specified ontology to the current
ontology. Since we have assumed that names must be
unique, we do not have to concern ourselves with name
conflicts.

A <DEF-RELATION> adds a symbol to the vocabulary
and, for each argument type that is a category, adds an
axiom that states that an instance in that argument must
be a member of the category. If the tag specifies a name R
and has n arguments then there is an n-ary predicate
symbol R in V. If the type of the ith argument is a category
C, then [R(x1,...,xi,...xn)ÆC(xi)] ∈ A. Note that this rule is
necessary because the Web must be treated as an open-
world. Since there is no way to know that a given object
is not a member of the required category, it is better to
assume that this information is as yet undiscovered than to
assume that the relation is in error.

A <DEF-CATEGORY> adds a unary predicate symbol
to the vocabulary and possibly a set of rules indicating
membership. If the name is C, then C∈V. For each super-
category Pi specified, [C(x)ÆPi(x)] ∈ A.

A <DEF-INFERENCE> adds one or more axioms to
the theory. If there is a single clause in the <INF-THEN>,
then there is one axiom with a conjunction of the <INF-
IF> clauses as the antecedent and the <INF-THEN>
clause as the consequent. If there are n clauses in the
<INF-THEN> then there are n axioms, each of which has
one of the clauses as the consequent and has the same
antecedent as above.

A <DEF-RENAME> provides an alias for a non-logical
symbol. It is meant as a convenience for users and can be
implemented using a simple pre-processing step that
translates the alias to the original, unique non-logical
symbol. Therefore, it can be ignored for the logical
theory.

A formula F is well-formed with respect to O if: 1) F is
an atom of the form p(t1,...,tn) where p is a n-ary predicate
symbol such that p∈V or 2) F is a Horn clause where each

1 We distinguish axioms from rules by using the former term in the
general sense and the later term to refer specifically to SHOE inference
rules.

atom is of such a form. An ontology is well-formed if
every axiom in the ontology is well-formed with respect
to the ontology.

A data source, such as a knowledge base or intelligent
agent, uses an ontology to make relation and category
claims. Let S=<OS,DS> be such a data source, where OS

=<VS,AS> is the ontology and DS is the set of claims. We
say S is well-formed if OS is well-formed and each
element of DS is a ground atom that is well-formed with
respect to OS. The terms of these ground atoms are
constants and can be instance keys or values of a SHOE
data type.

We introduce a perspective P=<S,O> as a data source
S=<OS,DS> viewed in the context of an ontology
O=<V,A>. If O=OS then we say that P is the intended
perspective, otherwise it is an alternate perspective. It is
possible that elements of DS will not be well-formed with
respect to O, such elements are considered to be irrelevant
to the perspective. If we let WS be the subset of DS that is
well-formed with respect to O, then we say that P results
in a theory T=WS∪A. An interpretation of the perspective
consists of a domain, the assignment of each constant in S
to an element of the domain, and an assignment of each
element in V to a relation from the domain. A model of P
is an interpretation such that every formula in its theory T
is true with respect to it. If every ground logical
consequence2 of perspective P is also a ground logical
consequence of perspective P′ then we say that P′
semantically subsumes P. That is, any query issued
against perspective P′ will have at least the same answers
as if the query was issued against P. If two perspectives
semantically subsume each other, then they are said to be
equivalent.

An important aspect of perspectives is that arbitrary
ontology extensions do not automatically change the
semantics of existing data sources. Instead, the semantics
of a data source are determined by the intended
perspective, which depends on the ontology that the
source commits to. Any axioms added by new ontologies
are invisible from the intended perspective, and will have
no effect on queries issued against it. However, an
extending ontology can reuse data sources that commit to
an included ontology by providing an alternate
perspective on them.

3. Revisioning

While previous ontology work has usually assumed static
environments or that the ontologies exist in isolation and
changes will not have side effects, when ontologies are
applied to the Web these assumptions must be dropped. It
is inevitable that web ontologies will change, whether the
purpose is to correct errors, accommodate new
information, or adjust the representation of a particular

2 More precisely, we mean the set of ground atoms that are logical
consequences of the corresponding theory T. This is also equivalent to the
least Herbrand model of T.

domain. However, changing any of these ontologies can
have far-reaching side effects because numerous web
pages and ontologies may depend on them. Any attempt
to coordinate ontology revisions with corresponding
revisions to the dependent objects will be very expensive
and likely to fail. Furthermore, in distributed
environments like the Web, the dependent objects are
likely to be owned by various parties who may be
opposed to or ill-prepared for such revisions.

In this section we define an ontology revision as a
change in the components of an ontology. Thus, it can
involve the addition or removal of categories, relations,
and/or axioms. A revision may also extend a new
ontology or stop extending one.

3.1 Effects of Revisions
We describe revisions by the impact they would have on
perspectives of existing data sources. To be succinct, we
will only discuss revisions that add or remove
components; the modification of a component can be
thought of as a removal followed by an addition. In the
rest of this section, O will refer to the original ontology,
O′ to its revision, P and P′ to the perspectives formed by
these respective ontologies and an arbitrary source
S=<O,DS>, and T and T′ to the respective theories for
these perspectives.

If a revision O′ adds an arbitrary rule to ontology O,
then for any source S, the perspective P′ semantically
subsumes P. This proof is trivial: since the revision only
adds a sentence to the corresponding theory T′⊃T, and by
the monotonicity of first-order logic any logical
consequence of T is also a logical consequence of T′.
Similar reasoning is used to ascertain that if the revision
removes rules, then P semantically subsumes P′. Thus, a
revision that adds or removes rules can provide an
alternate perspective of a legacy data source, but it may
restrict or loosen the semantics that were originally
intended by the author of the data.

If O′ consists of the removal of categories or relations
from O, then P semantically subsumes P′. This is because
there may be some atoms in S that were well-formed with
respect to O that are not well-formed with respect to O′.
Informally, if categories or relations are removed,
predicate symbols are removed from the vocabulary. If
the ground atoms of S depended on these symbols for
well-formedness, then the sentences are no longer well-
formed when the symbols are removed. Thus, T′⊆T and
due to the monotonicity of first order logic every logical
consequence of T′ is a logical consequence of T.
Revisions of this type may mean that using the revised
ontology to form a perspective may result in fewer
answers to a given query.

Finally, if the revision only adds categories or relations,
the corresponding perspective P′ is equivalent to P. Since
T⊂T′ it is easy to show that P′ semantically subsumes P.
The proof of the other direction depends on the nature of
the axioms added: R(x1,...,xi,...xn)ÆC(xi) for relations and
C(x)ÆPi(x) for categories. It also relies on the fact that,

due to the definitions of categories and relations, the
predicate of each antecedent is a symbol added by the
new ontology and must be distinct from symbols in any
other ontology. Therefore any atoms formed from these
predicates are not well-formed with respect to any
preexisting ontology. There can be no such atoms in S,
since S must be well-formed with respect to some
ontology ≠ O′. Since the antecedents cannot be fulfilled,
the rules will have no new logical consequences that are
ground atoms. Since P semantically subsumes P′ and vice
versa, P and P′ are equivalent. This result indicates that
we can safely add relations or categories to the revision,
and maintain the same perspective on all legacy data
sources.

3.2 Versioning
As described in the previous section, different types of
revisions may have different effects on the perspectives
that we have on our data sources. It is these situations that
make SHOE’s versioning scheme important. SHOE
maintains each version of the ontology as a separate web
page and an instance must state which version it commits
to. As a result, data sources can upgrade to the new
ontology at their own pace and some may never upgrade.

To accomplish a revision in SHOE, the ontology
designer copies the original ontology file, assigns it a new
version number, and adds or removes elements as needed.
If the revision merely adds ontology elements, then it can
be used to form perspectives that semantically subsume
the original perspective. Therefore, it can specify that it is
compatible with previous versions using the optional
BACKWARD-COMPATIBLE-WITH field in the
<ONTOLOGY> tag. Agents and query systems that
discover this ontology can also use it in place of any of
the ontologies that it is backward-compatible with to form
an alternate perspective of any data source. However,
there is a danger in this as we describe below.

Consider the following scenario: an individual for
whatever reasons, malicious or otherwise, decides that
they want to create a revision to a popular ontology that is
owned by somebody else. This revision only adds
components, and thus is compatible with all existing web
pages that reference the original ontology. The individual
then indicates that this ontology is backward-compatible
with the original. Unless there is a mechanism to
determine if a revision is official, any agents or query
systems that come across the revision will assume that
they can use it in place of the old one, and unintended
inferences may result. We suggest three methods to
prevent this:
• agents will only use the revision as a substitute if it

only adds categories or relations. Since such revisions
will result in equivalent perspectives for existing data
sources, it does not matter if it is an official revision.

• a revision must be located on the same server and in
the same path as the ontology it revises. This
guarantees that the owner has made the revision, but

makes it difficult to move the location of an ontology
once it has been used.

• the original ontology must authorize the revision.
This could be accomplished by a <REVISED-BY>
tag that points to the location of the revision. To use
this method, upon discovering a purported revision, a
system should reload the original ontology and see if
it authorizes the revision.

 Currently, we recommend that SHOE systems use the
second approach, although we are considering the
inclusion of a revised-by tag in a future version of the
language.

 4. Ontology Divergence
 As discussed earlier, an important aspect of SHOE is that
interoperability is achieved through ontology reuse. That
is, the preferred method of ontology development is to
extend existing ontologies and create new definitions only
when existing definitions are unsuitable. In this way, all
concepts are automatically integrated. However, when
there is concurrent development of ontologies in a large,
distributed environment such as the Web, it is inevitable
that new concepts will be defined when existing ones
could be used. As a result there will be a tendency for the
most specific ontologies to diverge and become less
interoperable. In these situations, occasional manual
integration of ontologies is needed.
 Ontology integration typically involves identifying the
correspondences between two ontologies, determining the
differences in definitions, and creating a new ontology
that resolves these differences. Wiederhold (1994)
describes four types of domain differences, which we
paraphrase here:
• terminology: different names are used for the same

concepts
• scope: similar categories may not match exactly; their

extensions intersect, but each may have instances that
cannot be classified under the other

• encoding: the valid values for a property can be
different, even different scales could be used

• context: a term in one domain has a completely
different meaning in another

The process for aligning ontologies can be performed
either manually or semi-automatically (using tools and
algorithms currently under development by other
researchers). However, it is important to note that simply
creating a new integrated ontology does not solve the
problem of integrating information on the Web. When the
web community has synthesized the ontologies (that is,
other web pages and ontologies come to depend on them),
all of the dependent objects would have to be revised to
reflect the new ontology. Since this would be an
impossible task, we instead suggest three ways to
incorporate the results of an ontology integration effort,
each of which is shown in Figure 2.

In the first approach, we create a mapping ontology OM

that extends the two ontologies O1 and O2 and assign it a
unique id that distinguishes it from all other ontologies.

We then add a <USE-ONTOLOGY> tag for each
ontology to be integrated. Since this ontology has access
to objects from both domains, it can create inference rules
using the <DEF-INFERENCE> tag to map the common
items between them. First, terminological differences can
be mapped using simple if-and-only-if rules. For example:

BusOnt1.Employee(x) ⇔ BusOnt2.StaffMember(x)

Note that since SHOE’s rules only allow inference in one
direction, if-and-only-if rules like this one are actually
implemented as two rules, one for each direction. Second,
scope differences require mapping a category to the most
specific category in the other domain that subsumes it.
For example:

AF_Ont.FighterPilot(x) ⇒ FAA_Ont.JetPilot(x)

Third, some encoding differences can be handled by
mapping individual values as in:

CriticOnt1.Rating(x,“Good”) ⇔ CriticOnt2.Rating(x,“3”)

Of course, not all encodings can be mapped in SHOE, for
example arithmetic functions would be needed to map
meters to feet. Finally, SHOE’s prefix naming mechanism
obviates the need to resolve context differences. The
advantage of a mapping ontology is that the domain
ontologies are unchanged; thus, it can be created without
the approval of the owners of the original ontology. The
disadvantages are that a user must explicitly request that
the mapping ontology be used to provide a new
perspective and that the mapping of many domains could
result in a complex mess of mapping ontologies.

Another approach to implementing integration is to
revise each ontology to include mappings to the other.
First, we create a new version of each ontology, called a
mapping revision, and assign it an appropriate version
number. To each revision, we add mapping rules similar
to the ones described in the mapping ontology approach.
Since we are only adding inference rules, we can use the
BACKWARD-COMPATIBLE-WITH field to specify that
the revisions can be used in place of the original
ontologies. If these revisions are used as alternate
perspectives for data sources based on the domain
ontologies, then data integration is automatic.

The disadvantage of the two mapping approaches is
that they ignore a fundamental problem: the overlapping
concepts do not belong in either domain, but are more
general. The fact that two domains share the concept may
mean that other domains will use it as well. If this is so,
then each new domain would need a set of rules to map it
to the others. Obviously this can become unwieldy very
quickly. A more natural approach is to merge the common
items into a more general ontology, called an intersection
ontology, which is then extended by revisions to the
domain ontologies. We create a new ontology ON to serve
as the intersection ontology and give it a unique identifier.

Then, we standardize the common elements from the
source ontologies and add them to the intersection
ontology. To create the revisions for each source
ontology, we create new versions O1′ and O2′ with
appropriate version numbers and add the <USE-
ONTOLOGY> tag to each revision to specify that it uses
the intersection ontology. Since the intersection ontology
must use a standard terminology, we must translate this
terminology to that of each domain if we wish to make
existing data sources well-formed with respect to the new
ontologies. This is done by replacing the domain
definitions of the common elements with <DEF-
RENAME> tags that rename the intersection ontology’s
standardized names to the names originally used by the
source ontology. This has the advantage that equivalence
of terms can be determined in the preprocessing phase
rather than at query execution time. Finally, we use the
BACKWARD-COMPATIBLE-WITH field to indicate
that these revisions are compatible with the original
ontologies.

5. Related Work

There are numerous efforts to create semantic languages
for the Web. The Ontobroker project (Fensel et al. 1998)
uses a language to describe data that is embedded in
HTML, but relies on a centralized broker for ontology
definitions. The Ontology Markup Language (OML) and
Conceptual Knowledge Markup Language (CKML) (Kent
1999) are used together for semantic markup that is based
on the theories of formal concept analysis and information
flow. The W3C has developed the Resource Description
Framework (RDF) (Lassila and Swick 1999), which uses
XML to specify semantic networks for describing web
resources. RDF has only a weak notion of ontologies, and
although the RDF Schema proposal (Brickley and Guha
1999) improves this situation somewhat, it does not
sufficiently handle the notions of revising or integrating
ontologies.

O1 O2

O1
′ O2

′

O1 O2 O1 O2

O1
′ O2

′OM

ON

Mapping Ontology Mapping Revisions Intersection Ontology

OM contains rules
that map concepts
between the ontologies

O1
′ contains rules that

map O2 objects to O1
terminology. O2

′ does
the reverse

ON contains intersection
of concepts. O1

′ and O2
′

rename terms where
necessary

revised by
extended by

Key:

Figure 2. Integration Methods

In the last decade, there has been much active research
in the area of ontology. For an overview and comparison
of ontology design projects, see Noy and Hafner (1997).
An attempt to formalize the notion of ontology is
presented in Guarino and Giaretta (1995). There is little
existing ontology research that considers either distributed
environments or ontology revision. The Ontolingua Server
(Farquhar, Fikes, and Rice 1997) can be used for
collaborative ontology development; however, it
primarily deals with the construction of ontologies and
not the maintenance of ontologies that have been
synthesized in a distributed environment. Foo (1995) has
published some initial thoughts on ontology revision.

6. Conclusions

Although other projects are using ontologies to provide
some structure to Web, none of these have focused on the
problem of maintaining consistency as the ontologies
evolve. The main contribution of this paper is an analysis
of the problems associated with managing ontologies in a
dynamic, distributed, and heterogeneous environment
such as the Web. We have described the components of a
SHOE ontology and focused on those that support
revisions. We have developed a logic that separates data
from ontologies and allows ontologies to provide different
perspectives on the data. By mapping SHOE to this logic,
we have shown how different types of revisions to an
ontology affect the way we reason with existing data
sources. We have shown that revisions that add categories
or relations will have no effect, revisions that modify
rules may change the answers to queries against the data
sources, and revisions that remove categories or relations
may eliminate certain answers. This knowledge should be
used in weighing the benefits and costs of any revision.
Although, ideally, integration is a byproduct of ontology
extension, in a large, distributed environment, ontologies
will tend to diverge and ontology integration will need to
be performed periodically. We described three methods of
incorporating this integration, showed how they could be
applied in SHOE, and discussed the tradeoffs of each.

Although the Web is currently an untamed wilderness,
ontologies can be used to give it a sense of order.
However, we cannot expect the Web to stop growing and
changing simply because we have fit it into the
framework of an ontology. Instead, the ontologies must
evolve with the Web, and must allow for different growth
rates in different areas. This work is an initial step in this
direction. Future work will investigate these issues more
deeply and extend the analysis to richer ontology
languages.

Acknowledgments

This work was supported by the Army Research
Laboratory under contract number DAAL01-97-K0135.
Professor Hendler is currently working as a Program

Manager for the Defense Advanced Research Projects
Agency (DARPA). The opinions expressed in this paper
are his own, and not do not necessarily reflect the
opinions of DARPA, the Department of Defense, or any
other government agency.

References

Brickley, D. and Guha, R.V. 1999. RDF Schema Specification
(draft). W3C (World Wide Web Consortium). At
http://www.w3.org/TR/1999/PR-rdf-schema-19990303.html.

Farquhar, A.; Fikes, R.; and Rice, J. 1997. Tools for
Assembling Modular Ontologies in Ontolingua. In Proceedings
of the Fourteenth National Conference on Artificial Intelligence
(AAAI-97), 436-441. Menlo Park, CA: AAAI Press.

Fensel, D.; Decker, S.; Erdmann, M.; and Studer, R. 1998.
Ontobroker: How to enable intelligent access to the WWW. In
AI and Information Integration, Technical Report WS-98-14,
36-42. Menlo Park, CA: AAAI Press.

Foo, N. 1995. Ontology Revision. In Conceptual Structures;
Third International Conference, 16-31. Berlin: Springer-Verlag.

Guarino, N. and Giaretta, P. 1995. Ontologies and Knowledge
Bases: Towards a Terminological Clarification. In N. Mars (ed.)
Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing, 25-32. Amsterdam: IOS Press.

Heflin, J.; Hendler, J.; and Luke, S. 1999. SHOE: A Knowledge
Representation Language for Internet Applications, Technical
Report, CS-TR-4078 (UMIACS TR-99-71), Dept. of Computer
Science, University of Maryland.

Kent, R.E. 1999. Conceptual Knowledge Markup Language:
The Central Core. In Proceedings of the Twelfth Workshop on
Knowledge Acquisition, Modeling and Management.

Lassila, O. and Swick, R. 1999. Resource Description
Framework (RDF) Model and Syntax. W3C (World-Wide Web
Consortium). At http://www.w3.org/TR/REC-rdf-syntax-
19990222.html.

Lenat, D. and Guha, R. 1990. Building Large Knowledge Based
Systems. Reading, Mass.: Addison-Wesley.

Luke, S.; Spector, L.; Rager, D.; and Hendler, J. 1997.
Ontology-based Web Agents. In Proceedings of the First
International Conference on Autonomous Agents, 59-66. New
York, NY: Association of Computing Machinery.

Noy, N. and Hafner, C. 1997. The State of the Art in Ontology
Design. AI Magazine 18(3):53-74.

Wiederhold, G. 1994. An Algebra for Ontology Composition. In
Proceedings of 1994 Monterey Workshop on Formal Methods,
56-62. U.S. Naval Postgraduate School.

