
Efficient Source Discovery and Service Composition for Ubiquitous
Computing Environments

Abir Qasem, Jeff Heflin, Héctor Muñoz-Avila
Dept. of Computer Science & Engineering

Lehigh University
19 Memorial Drive West

Bethlehem, PA 18015
{qasem, heflin, munoz}@cse.lehigh.edu

Abstract. To be truly pervasive the devices in a ubiquitous computing environment
have to be able to form a “coalition” without human intervention. The Semantic Web
provides the infrastructure for discovery and composition of device functionalities. AI
planning has been a popular technology for automatic service discovery and
composition in the Semantic Web. However, because the Web is so vast and changes
so rapidly, a planning agent cannot make a closed-world assumption. This condition
makes it difficult for an agent to know when it has gathered all relevant information
or when additional searches may be redundant. To avoid redundancy we incorporate
Local Closed World reasoning with HTN planning to compose Semantic Web
services. In addition, when performing information gathering tasks on the Semantic
Web, we use Local Closed World reasoning and a concept of “source relevance” to
control the search process. We also describe a prototype agent that we have
developed.

1 Introduction

A decade ago, virtually the only way to access the Web was through a personal computer or workstation.
While this is still primarily true, the number of different kinds of device that can access the Web has grown
astronomically and so have their capabilities. Smart phones, PDAs, interactive television systems, voice
response systems, and even certain domestic appliances have all become regular user of the Web. The
range of their capabilities for input and output and the number of markup languages and networks
supported mean that it has become quite a challenge to provide a technological infrastructure that would
support this new ubiquitous computing on the Web.

To achieve true pervasiveness as envisioned by Weiser [93], the devices have to become aware of
each other and be able to form a “coalition” without human intervention Lassila & Adler [03]. For example,
if no single device can match the user’s need, then it should be possible to determine if there is a sequence
of services offered by different devices, which solve the problem. This issue has led to the development of
semantic web services. The OWL-S initiative is attempting to define how a web service can be described
using OWL. Essentially, OWL-S is an ontology represented in OWL [OWL 04] that describes web
services. This ontology focuses on three type of knowledge about a service: a profile of the service, a
process model that describes how it works, and a description of how to invoke it.

A natural approach to automatic service composition is to view it as an AI planning problem [Peer
02] [Hendler 99]. This is natural because a service profile describes the inputs and outputs of services,
which match with the preconditions and effects of planning operators. McIlraith et. al. [01] has proposed an
approach to composing web services using Golog They distinguish between information gathering and
world altering actions. Instead of using conditional plans, which result in a large search space, they execute
information gathering actions as needed during planning and only include world altering actions in the final
plan. Of course, the correctness of this approach depends on the assumption that any information that is
gathered remains static until the plan is executed. Wu et. al. [03] make similar assumptions however, they
use hierarchical task network (HTN) planning to compose services that are described using the DAML-S
[DAML-S 03] ontology. The idea of a using a planner to automatically discover and compose services
offered by numerous ubiquitous “semantic gadgets” (A term coined by Lassila & Adler [03]) may seem

seductive but there are several difficult technical hurdles that still need to be overcome before this becomes
a reality. For example, we would need to develop mechanisms for reasoning on the relationship between
the information-gathering search and the complex tasks being solved and introduce techniques that reduce
and control the search effort of the information-gathering process, while simultaneously maintaining
guarantees about the coverage of the search, when possible.

We would also have to address the fact that the information sources may use different schemas
(i.e., represent the same domain differently) and / or data models (e.g. XML, relational databases, etc.). The
highly distributed nature of ubiquitous computing and the large number of devices, combined with narrow
bandwidth of a wireless environment requires that we locate the desired information without querying
every possible source. This is critical for ensuring that network communication does not become
overloaded. It is therefore critical that we choose a plan generation paradigm that addresses these
challenges.

In our work we use HTN planning to compose Semantic Web services. To avoid redundancy in
service composition we use Local Closed World reasoning (LCW). In addition when performing
information gathering tasks on the Semantic Web we use LCW and a concept of “source relevance” that we
introduce to control the search process. We developed an agent prototype, OntoPlan, which demonstrates
the feasibility and potential of this research. The rest of the paper is organized as follows. In section 2 we
describe HTN in details and show how we have incorporated it in OntoPlan, in section 3 we describe how
LCW and relevance is expressed in OWL. In section 4 we describe the architecture of OntoPlan and its
functionality. Finally in section 5 we provide some conclusion and future work.

2 Planning for Service Discovery and Composition

Sirin et. al. [04] have considered a semi-automatic service composition technique for a sensor network
environment and Zhang et. al. [03] have used automatic service discovery by capturing user’s expected
outcome explicitly. The techniques are based on a pipe and filter approach. In this approach the individual
services placed earlier in the composition should supply appropriate outputs to the following services in a
coordinated assembly line fashion. This implies a total order in the composition of services and assumes a
non-hierarchical nature of the devices providing the services. This implication and the assumption may not
be very applicable in the ubiquitous computing environments.

For example, if we consider a car’s On Board Diagnostic (OBD) system to be able to provide the car’s
distance from the closest Wal-Mart superstore, we observe the following:

• The service is a composition of several lower level services like getting the location of the car,
accessing Wal-Mart’s website (that provides a locator service). There is a natural hierarchy among
the devices of a ubiquitous computing environment.

• The environment is partially observable and information is distributed
• The services can be composed in partial order. For example, the car’s sensors do not have to wait

for Wal-Mart’s location to be available.

Similar to Wu et. al. [03] and as we also previously proposed in Heflin & Muñoz-Avila [02], we use
HTN planning to compose semantic web services. HTN representations advocate a top-down view of the
world. High-level tasks are refined into simpler tasks. By continuing the decomposition process, eventually
non-decomposable tasks (called primitive tasks) are reached. These tasks correspond to actual actions that
must be executed. HTN planning seems a natural match for web services composition whereby a top-down
task refinement is performed linking the tasks to be achieved with the web services that need to be accessed
to accomplish these tasks.

Heflin and Muñoz-Avila [02] have demonstrated how an HTN planner can exploit LCW information
encoded in SHOE [Heflin et. al. 98] and DAML+OIL [DAML+OIL 00]. Our research builds on this work.
We provide an OWL language syntax and semantics for LCW, introduce the idea of relevance statements,
and describe a refined system architecture that has been implemented as a prototype system.

In what follows we first give a more detailed description of HTN and then describe how we have
adopted LCW in an HTN planning situation.

2.1 HTN Planning

The knowledge artifacts in HTN Planning that describe how to decompose are called methods. A method
indicates the conditions that must be met to decompose a task into some subtasks. A fundamental
characteristic of HTN planning is that it allows the formulation of high-level tasks to be accomplished and
the encoding of high-level strategies (in the methods) before reasoning on low level tasks or concrete
actions. This allows a stratified refinement of complex tasks into simpler ones. This flexibility has been
crucial for the use of HTN techniques in solving real-world problems [Smith et. al. 98], [Currie & Tate 91],
[Wilkins 90], [Paolucci et. al. 99]. We believe that it is crucial for ubiquitous computing environments,
since adequate strategies will constrain the kinds of devices needed to be considered for accomplishing the
task. In addition, it is provable that HTN planning is more expressive than operator-based representations
[Erol et. al. 94]. We used a variant of HTN planning called Ordered Task Decomposition [Nau et. al., 99,
Nau et. al. 01]. Ordered Task Decomposition (OTD) uses forward search and encodes control knowledge in
the HTNs. Combining forward search and control knowledge has been the key characteristic for the
surprisingly efficient planning systems showcased in recent planning competitions [Bacchus 2001].

Formally, decomposable tasks are called compound, while non-decomposable tasks are called
primitive. A domain theory consists of methods and operators for generating plans. A method is an
expression of the form M=(h,P,ST), where h (the method's head) is a compound task, P is a set of
preconditions, and ST is the set of M's (children) subtasks. M is applicable to a task t, relative to a state S
(a set of ground atoms), iff matches(h,t,S) (i.e., h and t have the same predicate and arity, and a consistent
set of bindings _ exists that maps variables to values such that all terms in h match their corresponding
ground terms in t) and the preconditions P are satisfied in S (i.e., there exists a consistent extension of _,
named _', such that " pŒP {p_'ŒS}), in which case M(t,S)=ST _'.

Since the environment is partially observable, the agent’s operators can no longer depend directly on
the state of the world, but instead must depend on the agent’s beliefs about the world. The agents will also
need special information gathering actions that can provide information about the state of the world. These
are similar to the standard operators in OTD planning, except that the add list contains knowledge
propositions of the form B(f). Standard operators (i.e., those with add lists that do not contain knowledge
propositions) are called world-altering actions.

2.2 HTN and LCW

When choosing how to implement a particular task, the agent must test the preconditions of a method to
determine its applicability in the current situation. Its knowledge base stores the background knowledge as
well as any information it has already gathered. The agent will issue queries to this knowledge base in order
to test the validity of the planning conditions. In order to reduce redundant access, the knowledge base
keeps track of local completeness information in the form of LCW statements. LCW, as proposed by
Golden et. al. [94], is a formalism for obtaining closed-world information on subsets of information that is
known to be complete.

We can represent completeness by first order logic (FOL) formula of the form LCW (f), where the
formulas contain variables. LCW (f) means that for all variable substitutions q, if fq is true in the world
state, then Agent_KB |= fq. Any matching ground sentence that Agent_KB does not entail, is assumed to
be false. So for LCW (f), if a sentence matches a substitution for f then it is either already entailed by the
agent’s knowledge base or it is false. In this sense, the sentence f provides a scope for the relative
completeness of the knowledge base. Note, that this information is local in the sense that it is local to the
knowledge base that it describes.

The typical approach for planning with partial information is to have special information gathering actions
that help the agent to learn about the world. However, we don't include such actions in the plan, instead the
planner calls the Semantic Web mediator described in section 3. We believe this has two main advantages:

1) In general, it reduces the number of possible actions the agent has to choose from and as such reduces
the overall search space, resulting in finding a solution more quickly [Ashish et. al. 97].
2) If information gathering actions (operators) were used, each type of query to an information source
would have to be modeled as a separate action. When dealing with complex information sources, such as
databases, there are an enormous number of queries that can be asked of the system, and thus it is
unreasonable to treat them as actions.

Often the knowledge base will not have sufficient information to test the validity of a condition. In
these cases, the information must be gathered from information sources. The Semantic Web mediator does
this work. It is important to notice that world-altering actions are not executed while planning; instead the
expected results are hypothesized in the knowledge base of the planner. In complex scenarios, information
sources are queried for pieces of information, which are composed to solve other tasks that, in turn,
accomplish the required tasks.

3 Reducing Information Gathering Operations

In order to control the search process during the information gathering phase we need to be able to identify
sources that have relevant or complete information with respect to a query. If a source can express that it
has relevant information with respect to a query we can choose to query it over other sources that does not
express this information. In this way we can locate the desired information without querying every possible
source. Duschka [97] has used a similar concept “view-minimality” to control the number of sources that
are queried in an information integration scenario. Having relevant information, however, does not mean
that the source is capable of answering the query completely. It just says that the source has some useful
information on the query.

We will need to query other sources (that also have relevant information) and integrate the results to
be able to get a complete response. If a source can express that it has complete information with respect to a
query then there is no need to continue our information gathering task any further. When we have complete
information on a query it also allows us to reason with overlapping contents of various sources. Overlap of
content is a common phenomenon in ubiquitous computing environments, e.g. we may have several sensors
scanning one specific environment. We can use completeness information to select an optimal collection of
sources that need to be queried in order to form a response. Levy [96] extended LCW (described in section
2.2) to obtain complete answers from databases that have incomplete information. His work can be adapted
to express completeness information on ubiquitous computing environments.

In what follows, we show how we have adapted the representation of completeness and relevance
information to the Semantic Web. We also provide some OWL examples of expressing source relevance
and completeness on the Semantic Web.

3.1 Completeness and Relevance Formalisms for the Semantic Web

FOL formulas that we have used to express LCW in the planner cannot be directly adapted to the Semantic
Web. OWL, the de facto standard for the Semantic Web is closer to Description Logic (DL) rather than
FOL. To represent LCW using OWL one has to express the formulas in DL. Unlike FOL, DL does not
allow us to use variables to refer to unknown objects. DL has notation to express definitions and properties
of classes of objects. Classes provide an abstraction mechanism for grouping objects with similar
characteristics. OWL classes are described through "class descriptions". Hence we have to express LCW
for a class description, which will mean that we have LCW over all the instances of that class. For a given
class C, if we now consider LCW (C) as DL class expressions then we say for a device i with associated

knowledge base KBi, LCWi (C) indicates that for all x, if KBi does not entail that x is an instance of C, then
x is in the complement of C. Formally, we can say "x KBi |= C(x) fi KBi |= ÿC(x).

A source needs to express that it contains relevant information with respect to a query when it has
some (but not all) useful information to respond to a query. This allows us to locate the desired information
without querying every possible source. Informally, we define the relation RELs(q) to indicate if an
information source s has relevant information about a query q. In DL we will have to express this
information by stating that a source has relevant information on some instance of a class. For a given class
C, if we now consider REL (C) as DL class expression then we say for a device i with associated
knowledge base KBi, RELi (C) indicates that there exists an instance in KBi of class C. Formally, $x KBi |=
C(x).

3.2 Expressing REL and LCW in OWL

To represent above in OWL we propose that an OWL document can use new properties lcw:
isCompleteFor and lcw: isRelevantFor to state that it has complete or relevant information on some subset
of information respectively. These properties are in a new namespace identified by the lcw prefix, and have
rdf:Resource in its domain and owl:Class in its range. As such, it can be applied to any resource.

Since OWL has features for composing complex class expressions it is possible to use this method
to represent LCW on any binary FOL atom with at most one variable. The following examples show how
to apply these properties to represent LCW on various binary atoms. REL statements will essentially work
in similar way. It is worth mentioning that OWL-S essentially allows the description of a service that
accepts a handful of predefined queries. Our approach allows us to manage rich information sources that
allow complex ad hoc queries.

For a given property p, class c, and some individual x we use the following to represent LCW (p
(x, c)) on source s.
<rdf:Description rdf:about="s">
 <lcw:isCompleteFor>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#p" />
 <owl:hasValue rdf:resource="#c" />
 </owl:Restriction>

 </lcw:isCompleteFor>
 </rdf:Description>

Here isCompleteFor is applied to an individual of a class that has at least one of its property values
equal to the resource c.

It is somewhat difficult to represent complete information on an object’s values for a specific property. So
to represent LCW (p (c, x)), we create an anonymous property that is the inverse of p, and restrict the value
of the inverse (essentially restricting the value of the subject of p). This is shown below:
<rdf:Description rdf:about="s">
 <lcw:isCompleteFor>
 <owl:Restriction>
 <owl:onProperty>

 <rdf:Property>
 <owl:inverseOf rdf:resource="#p" />
 </rdf:Property>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#c" />
 </owl:Restriction>
 </lcw:isCompleteFor>
 </rdf:Description>

4 OntoPlan

We have developed a prototype planner agent, which demonstrates the techniques of efficient discovery
and composition of Semantic Web Services we have proposed above. Figure 1 below shows the main
components and the environment of OntoPlan.

Fig. 1: Architecture of the OntoPlan

OntoPlan has two main components. The first is the HTN Plan Generator, which performs HTN planning
to generate a plan that represents a service composition. When choosing how to implement a particular
task, the system must test various planning conditions. It has a knowledge base, Agent KB, which stores the
background knowledge as well as any information it has already gathered. The HTN Plan Generator will
issue queries to Agent KB to test the validity of the planning conditions. In order to reduce redundant
access, Agent KB keeps track of local completeness information in the form of LCW statements. However,
often Agent KB will not have sufficient information to test the validity of a condition. In these cases, the
information must be gathered from information sources available in the Web.

The second component, the Semantic Web mediator, provides an interface to the information sources. The
information sources are devices in the ubiquitous computing environments. The information is distributed
and commits to different ontologies and some of the sources may contain distributed pieces of the HTN. In
what follows, we first describe the architecture of the Semantic Web mediator and give an overview of its
components. We then describe how the HTN plan generator and the Semantic Web mediator interact to
provide the functionality for OntoPlan.

HTN
Semantic Web
 Information
 Sources

S1 S2 S3

commits tocommits to

Ontologies

HTN Plan
Generator

Semantic Web
Mediator

OntoPlan

MetaInfo KB

Information-
Gathering Plan

USER
Information-
Gathering task

Agent KB

4.1 Semantic Web Mediator

The Semantic Web mediator is based on the Common Integration Architecture (CIA) proposed by
Wiederhold [97]. Figure 2 below shows the architecture of the Semantic Web mediator.

Fig. 2: Architecture of the Semantic Web Mediator

The main objective of the Semantic Web mediator is to identify appropriate information sources with
respect to a query. To accomplish this task, the Semantic Web mediator uses and maintains information
about the information sources available. The information sources are wrapped with an RDF interface. Its
knowledge base, MetaInfo KB, contains two kinds of meta-information: completeness and relevance of
information sources with respect to queries. It is currently initialized from an OWL file that has this meta-
information encoded using the proposed isComleteFor and isRelevantFor OWL properties described
in section 3. We plan to augment this with an ability to dynamically update the MetaInfo KB using data
from specialized pages and/or meta information that accompanies newly discovered sources. The function
mapSource uses this meta information and the query to determine the sources that can provide a
reasonable response.

The queries in our system are represented in FOL while the Semantic Web is an information space
described in DL. So, to process a query in the Semantic Web, we have to map the FOL representation to a
DL representation. In Section 3 we have described how LCW and REL statements expressed in FOL are
mapped to OWL. The queries are translated in a similar fashion. For example an FOL query location (PDA,
x) maps in the RDF/OWL documents as follows: location is a property, PDA is the subject and x is the
object. So we find every triple that has the property location and the subject PDA. Then the object of each
of those triples is returned as a binding for x. As we only support a binary representation for class
description in our queries and the predicate "type" is assumed to signify a class membership. For example,
for a query type (Bluetooth, x) matches an RDF triple with property rdf:type, subject Bluetooth
and unknown object, where Bluetooth is an owl:Class. Therefore, we find all triples that match this
pattern and return each object as a binding for x. When we have complete information on the query we also
set a flag to inform the plan generator so that it can update Agent KB with this fact.

Figure 2: Architecture of Semantic
Web Mediator

Mediator

Query

MetaInfo KB

IS(RDF)

IS(RDF)

IS(RDF)ResultSet

Planner
mapSource

OWL
Initializes

FOL:binary
predicates

InfoCache

The RDF pages that describe information sources are read only once in a "planning session".
These are stored in InfoCache. In addition to speeding up the system by avoiding expensive http calls, it
preserves a notion of consistency. This is critical in the ubiquitous environments where the information
may change at a rapid rate. For example if a source said P when first queried, and then NOT P when
queried the second time, there could be a problem if these were both used in the same plan.

OntoPlan is a proof of concept system that allowed us to examine the interaction of an HTN
planner and a Semantic Web mediator. Specifically we wanted to study how source selectivity and overlap
reasoning improve when we introduce local completeness and relevance meta-information about various
information sources. In order to achieve this goal in a reasonable time we decided to make several
simplifying assumptions in the system. In section 5, we discuss these assumptions, explain why we had to
make them and propose how they can be removed in a deployable system

4.2 Functionality of OntoPlan

Given an HTN description, OntoPlan chooses how to implement it by testing the preconditions of every
method to determine its applicability in the current situation. The precondition evaluation is described by
the following pseudo code:

For all preconditions
If a precondition is satisfied in Agent KB

Return variable bindings satisfying precondition
Else

if LCW on precondition is contained in Agent KB
precondition is false

Else
 Call mediator with the precondition
if mediator has responded with complete flag

update Agent KB
End For

The precondition passed onto the mediator as the query that the mediator tries to find a result for. The
mediator selects the information sources to be queried based on the LCW and REL information that it has
in its MetaInfo KB. The source selection is done using the following method:

If MetaInfo KB has LCW on query
select and query that source

return result and a completeness flag
Else

find all sources in MetaInfo KB that has REL on the query
select and query those sources and return result

When LCW information is not available, the mediator may have to search every single relevant data
source. In practice, this may be limited by resource-bounded constraints such as time limits or maximum
number of access.

5 Conclusion and future work

As mentioned before OntoPlan is a proof of concept system and is very much a work in progress. We made
several simplifications that allowed us to build a system quickly and examine the effect of introducing
meta-information about local completeness and relevance in a service composition and mediation scenario
in the Semantic Web. In this section we discuss these simplifications and propose how they can be removed
in a deployable system.

Our first simplification is to restrict the queries to the Semantic Web Mediator to binary atoms that
contain at most one variable. This allowed for a set of bindings to be determined from a single source in
isolation. There was no need to query multiple sources to get a single answer. For similar reasons, the
determination of the completeness (and relevance) of a query needs to be done with respect to sources in
isolation. For example, had we allowed a query "foo(A,x) AND bar(A,y)" then the answer may have had to
come from combining two sources, one with "foo(A,B)" and the other with "bar(A,C)". One would also
have needed one source with "LCW(foo(A,x))" and another with "LCW(bar(A,x))" to determine the
completeness of the query. However, by limiting the query to a single atom, one reduces the determination
of completeness of a query to a simple matter of pattern matching.

Although this assumption allows us to observe source selectivity it does not allow us to reason
with overlapping contents. We realize, this is a serious limitation and we plan to address this in our next
version of the system.

Our second simplification is in the initialization of the Semantic Web Mediator’s knowledgebase,
MetaInfo KB. Currently we initialize the knowledgebase from a static OWL file. This implies that the
LCW and the REL information are known beforehand. This scenario does not reflect the real Semantic
Web by any stretch of the imagination, but it does not affect our analysis of source selectivity or overlap
reasoning either. The system could easily be extended to accept new metadata on additional sources when
they are discovered. For example, the sources can themselves have metadata about the local completeness
of their contents. In such cases we have to decide if given a set of local completeness statements, is a query
Q¢ a complete answer to Q [Knoblock and Kambhampati 02]. We can generate relevance statements by
analyzing the content of a source. Since the relevance basically states that we have some but not all
information on a topic, we can use a generalization process to develop a set of representative concepts for
each source we discovered. Conceptually this is similar to key word generation process of HTML Web
pages.

Our third simplification is to assume that all sources commit to a single ontology. This allowed us to
postpone work of the well-known and difficult ontology alignment problem. Clearly, if the sources commit
to different ontologies we will have to provide some form of translation mechanism. Possible approaches
include using a reasoner to provide alignment axioms during the query process, directly translating queries
and sources into a global merged ontology, or translating queries at runtime into the vocabularies of all
possible sources. An additional problem occurs in determining relevance and local completeness of sources
with respect to queries. If the meta-descriptions and the query are heterogeneous, then we have to address
these problems as well. We plan to augment OntoPlan’s capability to achieve this in the future.

Our immediate planned change for OntoPlan is as follows:

• Give the Semantic Web Mediator the ability to answer queries with any number of atoms
• Design a system that computes the relevance information of data sources through analysis of their

contents.
• Allow data sources to commit to heterogeneous ontologies.

The above amount to removing all the simplifications that we have made in our system. In the future we
would also like to extend OntoPlan with the following:

• Redesign the system for scalability with respect to the amount of data that must be accessed and
processed

• Express the domain knowledge used by the HTN planner in an OWL ontology. HTNs can be seen
as an ontology defining relations between tasks and the resources needed to accomplish them

• Allow the HTN domain knowledge descriptions to be distributed across data sources.

These changes will enable OntoPlan to operate with partial domain knowledge and to augment its
knowledge while achieving its tasks.

In this paper we have described a system, OntoPlan, which uses HTN planning to compose
Semantic Web services. To avoid redundancy in service composition it uses Local Closed World reasoning.
In addition when performing information gathering tasks on the Semantic Web it uses LCW and a concept
of “source relevance” to control the search process. Although this is a proof of concept system it
demonstrates the potential of research in efficient source discovery and service composition using local
completeness and relevance information.

References

Ashish, N., Knoblock, C.A., and Levy, A. Information gathering plans with sensing actions, In Sam Steel
and Rachid Alami, editors, Recent Advances in AI Planning: 4th European Conference on Planning,
ECP'97. Springer-Verlag, New York, 1997.

Bacchus, F. The AIPS'00 planning competition. AI Magazine, 22(3), 47-5

Currie K., and Tate, A. O-Plan: The Open Planning Architecture. Artificial Intelligence, 52:49 – 86, 1991

DAML-S (and OWL-S) 0.9 Draft Release retrieved June 30th, 2004 from
http://www.daml.org/services/daml-s/0.9/

DAML+OIL (March 2001) retrieved June 30th, 2004 from http://www.daml.org/2001/03/daml+oil-
index.html

Duschka, O. 1997. Query Optimization using Local Completeness. In Proc. of AAAI-97.

Erol, K., Hendler, J., and Nau, D.S. UMCP: A Sound and Complete Procedure for Hierarchical Task-
Network Planning. In Proc. of AIPS-94.

Friedman, M., and Weld, D. 1997. Efficiently Executing Information Gathering Plans. In Proc. of IJCAI-
97.

Golden, K., Etzioni O., and Weld, D. 1994. Omnipresence Without Omniscience: Efficient Sensor
Managment for Planning. In proc. of AAAI-94.

Heflin, J., Hendler J., and Luke S. Reading Between the Lines: Using SHOE to Discover Implicit
Knowledge from the Web. 1998. In AI and Information Integration. Papers from the1998 Workshop. WS-
98-14. AAAI Press, Menlo Park, CA, 1998. pp. 51-57.

Heflin, J., and Munoz-Avila, H. 2003. LCW-Based Agent Planning for the Semantic Web. In Ontologies
and the Semantic Web. Papers from the 2002 AAAI Workshop WS-02-11. AAAI Press, Menlo Park, CA,
2002. pp. 63-70.

Hendler, J. Is There an Intelligent Agent in Your Future? In www.nature.com retrieved June 15th, 2004
http://www.nature.com/nature/webmatters/agents/agents.html/

Knoblock C., and Kambhampati S. 2002. Tutorial on Information Integration on the Web. In Eighteenth
National Conference on Artificial Intelligence.

Lassila O., & Adler M. "Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web", in: Dieter
Fensel et al (eds.): " Spinning the Semantic Web ", pp.363-376, MIT Press, 2003

Levy, A. 1996. Obtaining Complete Answers from Incomplete Databases. In Proceedings of the 22’nd
VLDB Conference.

Mcllraith S.A., Son T.C., and Zeng H. Semantic Web Services. In IEEE Intelligent Systems, Special Issue
on the Semantic Web, Volume 16, No. 2, pp. 46-53.

Nau, D., Cao, Y, Lotem, A., and Muñoz-Avila, H. 1999. SHOP: Simple Hierarchical Ordered Planner. In
Proceedings of IJCAI-99.

Nau, D., Muñoz-Avila, H., Cao, Y., Lotem, A., and Mitchell, S. 2001. Total Order Planning with Partially
Ordered Subtasks. In Proceedings of IJCAI-2001.

OWL Web Ontology Language Guide, retrieved March 15th, 2004 from http:// http://www.w3.org/TR/owl-
guide/

Peer J. Bringing Together Semantic Web and Web Services. International Semantic Web Conference 2002
: 279-291

M. Paolucci, D. Kalp , A.S. Pannu, Shehory, O.,and Sycara K. 1999. A Planning Component for
RETSINA Agents. Lecture Notes in Artificial Intelligence, Intelligent Agents VI , 1999.

World Wide Web Consortium Issues RDF and OWL Recommendations, retrieved March 15th, 2004 from
http://www.w3.org/2004/01/sws-pressrelease

 Zhang, R., Budak Arpinar I., Aleman-Meza B., Automatic Composition of Semantic Web Services ,The
2003 International Conference on Web Service (ICWS'03) , Las Vegas NV, 2003

 Sirin, E.. Parsia, B., and Hendler, J.. Composition-driven filtering and selection of semantic web services.
In AAAI Spring Symposium on Semantic Web Services, 2004.

Smith S. J., Nau, D., and Throop T.. Computerbridge: A big win for AI planning. AI Magazine 19(2), 93-
105, 1998

Weiser M. Some Computer Science Problems in Ubiquitous Computing. Communications of the ACM, July
1993

Wilkins. D., Can AI planers solve practical problems? Computational Intelligence 6(4) 232-246, 1990

Wu, D., Parsia, B., Sirin, E., Hendler, J., and Nau, D. Automating DAML-S web services composition
using SHOP2. In Proceedings of 2nd International Semantic Web Conference (ISWC2003) , Sanibel
Island, Florida, October 2003.

