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Abstract. We present a benchmark that facilitates the evaluation of 
DAML+OIL repositories in a standard and systematic way. This benchmark is 
intended to evaluate the performance of DAML+OIL repositories with respect 
to extensional queries over a large data set that commits to a single realistic 
ontology. It consists of the ontology, customizable synthetic data, a set of test 
queries, and several performance metrics. Main features of the benchmark in-
clude simulated data for the university domain, a repeatable data set that can 
be scaled to an arbitrary size, and an approach for measuring the degree to 
which a repository returns complete query answers. We also show a bench-
mark experiment for the evaluation of DLDB, a DAML+OIL repository that 
extends a relational database management system with description logic infer-
ence capabilities. 

1 Introduction 

DAML+OIL [6], built on RDF and RDF Schema [23] as a markup language for Web 
resources, is the subject of much research. One important issue in using DAML+OIL 
is to explore efficient and scalable mechanisms for storing and querying its semantic 
data. A variety of systems may be used as the repository, for example, relational da-
tabases, simple knowledge representation systems, deductive databases, and descrip-
tion logic systems. Furthermore, given a particular style of system such as relational 
database, numerous schemata are possible [1, 2, 11, 19]. 

Another issue, which is closely related to the previous one, is to exploit the se-
mantics of DAML+OIL. DAML+OIL extends RDF and RDF Schema with richer 
modelling primitives and has a clear and well defined semantics [6]. Hence tech-
niques like ontology reasoning could be integrated into the repositories in order to 
enhance them. 

Clearly every approach has its pros and cons. Given so many potential combina-
tions of systems, schemata and techniques for constructing DAML+OIL repositories, 
there is obviously a need for a standard and systematic way to evaluate those reposi-
tories in order to help users to choose an implementation that meets their needs. 

This paper presents a first step to meet such a need. We have developed the Le-
high University benchmark (LUBM) to facilitate the evaluation of DAML+OIL re-
positories. The benchmark consists of a realistic ontology, customizable synthetic test 



data, a set of test queries, and several performance metrics. In order to use the 
benchmark, we have also implemented related facilities. We show in the paper how 
we designed the benchmark and tailored it to the Semantic Web and DAML+OIL. In 
addition, based on the benchmark, we have successfully conducted an experiment to 
evaluate DLDB [20], a DAML+OIL repository developed by us, which extends a re-
lational DBMS with description logic inference capabilities. 

The rest of the paper is organized as follows: Section 2 details the design of the 
benchmark and talks about some implementation issues as well. Section 3 presents 
the aforementioned experiment. Section 4 discusses some related work. Section 5 
concludes. 

2 The Benchmark 

As noted, the goal of the Lehigh University benchmark is to standardize and facili-
tate the evaluation of repositories for DAML+OIL. It has four major components: a 
benchmark ontology, benchmark data, test queries, and performance metrics. It also 
consists of a tool for synthetic data generation. We describe them in the following 
sections. 

2.1 Benchmark Ontology 

Recognizing that on the Semantic Web, data will by far outnumber ontologies, we 
wanted to develop a benchmark for this. Therefore, we chose to generate large 
amounts of data for a single ontology of moderate size. We aimed for this data to be 
as realistic as possible. 

We have created the Univ-Bench ontology [13] as the benchmark ontology, based 
on which the benchmark data are generated. The ontology describes universities and 
departments and the activities that occur at them. It currently contains 43 classes and 
32 properties. Its predecessor is the Univ1.0 ontology [12], which has been used to 
describe DAML data about actual universities and departments. We chose this ontol-
ogy expecting that its domain would be familiar to most of the benchmark users. In 
creating the benchmark ontology, we have made some changes to the Univ1.0 ontol-
ogy mainly to use more DAML+OIL features that are required by the benchmark. 
For instance, the Univ1.0 ontology states that GraduateStudent is a subclass of Stu-
dent. In the Univ-Bench ontology, we have replaced that definition with what is 
shown in Fig. 1, using restriction. As a result, the subclass relationship between the 
two classes must be inferred using DAML+OIL semantics. 

2.2 Benchmark Data 

The benchmark data are the DAML+OIL data to be stored to the target repository. 
We have adopted a method of synthetic data generation. This serves multiple pur-  



 

Fig. 1. Definition of classes Student and GraduateStudent 

poses. As with the Wisconsin benchmark [3, 4], a standard and widely used database 
benchmark, this allows us to control the selectivity and output size of each test query. 
However, there are some other DAML+OIL specific considerations: 

1. We would like the benchmark data to be of a range of sizes including considerably 
large ones. It is hard to find such data sources that are based on the same ontol-
ogy. 

2. We may need the presence of certain kinds of instances in the benchmark data. 
This allows us to design repeatable tests for as many representative query types as 
possible. These tests not only evaluate the storage mechanisms for DAML+OIL 
data but also the techniques that exploit DAML+OIL semantics. We may rely on 
instances of certain classes and/or properties to test against those techniques. 

Data generation is carried out by UBA (Univ-Bench Artificial data generator), a 
tool we have developed for the benchmark. UBA features random and repeatable 
generation of DAML+OIL instances. A university is the minimum unit of data gen-

<daml:Class ID="GraduateStudent"> 
      <rdfs:label>graduate student</rdfs:label> 
      <daml:subClassOf> 
           <rdfs:Class> 
                <daml:intersectionOf rdf:parseType="daml:collection"> 
                     <daml:Class rdf:about="#Person" />  
                     <daml:Restriction> 
                          <daml:onProperty rdf:resource="#takesCourse" />  
                          <daml:hasClass> 
                               <daml:Class rdf:about="#GraduateCourse" />  
                          </daml:hasClass> 
                     </daml:Restriction> 
               </daml:intersectionOf> 
          </rdfs:Class> 
     </daml:subClassOf> 
</daml:Class> 
<daml:Class ID="Student"> 
      <rdfs:label>student</rdfs:label> 
      <daml:sameClassAs> 
           <rdfs:Class> 
                <daml:intersectionOf rdf:parseType="daml:collection"> 
                     <daml:Class rdf:about="#Person" />  
                     <daml:Restriction> 
                          <daml:onProperty rdf:resource="#takesCourse" />  
                          <daml:hasClass> 
                               <daml:Class rdf:about="#Course" />  
                          </daml:hasClass> 
                     </daml:Restriction> 
               </daml:intersectionOf> 
          </rdfs:Class> 
     </daml:sameClassAs> 
</daml:Class> 
<daml:Class ID="GraduateCourse"> 

<rdfs:label>Graduate Level Courses</rdfs:label> 
<rdfs:subClassOf rdf:resource="#Course" /> 

</daml:Class> 



eration and for each university, a set of files describing its departments are gener-
ated. Instances of both classes and properties are randomly decided. To make the 
data as realistic as possible, some restrictions are applied based on common sense 
and domain investigation. Examples are “a minimum of 15 and a maximum of 25 
departments in each university”, “an undergraduate student/faculty ratio between 8 
and 14 inclusively”, “each graduate student takes at least 1 but at most 3 courses”, 
and so on and so forth. 

UBA identifies universities by assigning them zero-based indexes, e.g., the first 
university is named University0. Data generated by the tool are exactly repeatable in 
respect of universities. This is possible because the tool allows the user to enter an 
initial seed for the random number generator that is used in the data generation 
process. 

UBA makes it possible to systematically produce the benchmark data. We may 
specify how many and which universities to generate. And information such as the 
number of instances of each class and property is provided so that we can easily de-
termine how many universities to load to the repository in order to conduct the ex-
periment on data of a specific size. In the benchmark, we choose data sets via look-
ing at the total number of class instances. To help identify the data set, we introduce 
the following notation: 

LUBM(N, S): The data set that contains N’s universities beginning at University0 
and is generated by the UBA tool starting with seed S. 

We use this notation in section 3 when describing the experiment. 

2.3 Test Queries 

We have constructed thirteen queries for the benchmark, as shown at the end of the 
section. For each query, we first describe it in natural language and then in a KIF 
[10] like language, in which a query is written as a conjunction of atoms.1 Then we 
analyze the characteristics of the query to show why it has been chosen. 

In choosing the queries, first of all, we wanted them to be realistic. Meanwhile, 
we have mainly taken into account following factors: 

1. Input size. This is measured as the proportion of the class instances involved in 
the query to the total class instances in the benchmark data. Here we refer to not 
just class instances explicitly expressed but also those that are entailed by the 
knowledge base. We define the input size as large if the proportion is greater than 
5%, and small otherwise. 

2. Selectivity. This is measured as the estimated proportion of the class instances in-
volved in the query that satisfy the query criteria. We regard the selectivity as high 
if the proportion is lower than 10%, and low otherwise. Generally, we did the es-
timation based on DAML+OIL semantics, the Univ-Bench ontology, the bench-

                                                        
1 As we will show later, the benchmark user is not restricted to use this query language. We 

use it here for the sake of the subsequent explanation and also because we use it in the 
experiment. 



 

mark data model, and the actual data sets. Whether the selectivity is high or low 
for a query may depend on the data set used. For instance, the selectivity of Query 
8, 11 and 12 is low if the data set contains only University0 while high if the data 
set contains more than 10 universities. 

3. Complexity. We use the number of classes and properties that are involved in the 
query as an indication of complexity. Since we do not assume any specific imple-
mentation of the repository, the real degree of complexity may vary by systems 
and schemata. For example, in a relational database the number may directly in-
dicate the times of join, which is a significant operation, or may not depending on 
the schema design. 

4. Hierarchy information assumed. This considers whether information of class hi-
erarchy or property hierarchy is required to achieve the complete answer. (We de-
fine completeness in next section). 

5. Description logic inference assumed. This considers whether description logic in-
ference is required to achieve the completeness of the answer. DAML+OIL fea-
tures used in the test queries include subsumption, i.e., inference of implicit sub-
class relationship, TransitiveProperty, inverseOf, and realization, i.e., inference of 
the most specific concepts that an individual is an instance of. One thing to note is 
that we are not benchmarking complex description logic reasoning. We are con-
cerned with extensional queries. Some queries use simple description logic rea-
soning mainly to verify that this capability is present. 

We have chosen test queries that cover a range of types in terms of the above cri-
teria. At the same time, to the end of performance evaluation, we have emphasized 
queries with large input and high selectivity. If not otherwise noted, all the test que-
ries are of this type. Some subtler factors have also been considered in designing the 
queries, such as the depth and width of class hierarchies2, and the way the classes 
and properties chain together in the query. 
 
Query1: All the graduate students who take GraduateCourse0 at Department0 of 
University0. 

(type GraduateStudent ?X) 
(takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0) 

This query bears large input and high selectivity. It is the simplest in the query set: it 
queries about just one class and one property and does not assume any hierarchy in-
formation or description logic inference. 
 
Query2: All the graduate students who are now studying at the university from 
which they obtained their bachelor's degrees. 

(type GraduateStudent ?X) 
(type University ?Y) 
(type Department ?Z) 
(memberOf ?X ?Z) 

                                                        
2 We define a class hierarchy as deep if its depth is greater than 3, and as wide if its average 

branching factor is greater than 3. 



(subOrganizationOf ?Z ?Y) 
(undergraduateDegreeFrom ?X ?Y) 

This query increases in complexity: 3 classes and 3 properties are involved. Addi-
tionally, there is a triangular pattern of relationships between the objects involved. 
 
Query3: All the publications of AssistantProfessor0 at Department0 of University0. 

(type Publication ?X) 
(publicationAuthor ?X  
http://www.Department0.University0.edu/AssistantProfessor0) 

This query is similar to Query 1 but class Publication has a wide hierarchy. 
 
Query4: All the professors at Department0 of University0 and their email addresses 
and telephone numbers 

(type Professor ?X) 
(worksFor ?X http://www.Department0.University0.edu) 
(name ?X ?Y1) 
(emailAddress ?X ?Y2) 
(telephone ?X ?Y3) 

This query has small input and high selectivity. It assumes subClassOf relationship 
between Professor and its subclasses. Class Professor has a wide hierarchy. Another 
feature is that it queries about multiple properties of a single class. 
 
Query5: All the members of Department0 of University0. 

(type Person ?X) 
(memberOf ?X http://www.Department0.University0.edu) 

This query assumes subClassOf relationship between Person and its subclasses and 
subPropertyOf relationship between memberOf and its subproperties. Moreover, 
class Person features a deep and wide hierarchy. 
 
Query6: All the students 

(type Student ?X) 
This query queries about only one class. And it assumes both the explicit subClassOf 
relationship between UndergraduateStudent and Student and the implicit one be-
tween GraduateStudent and Student. In addition, this query represents those with 
large input and low selectivity. 
 
Query7: All the students who take the courses of AssociateProfessor0 at Depart-
ment0 of University0. 

(type Student ?X) 
(type Course ?Y) 
(teacherOf http://www.Department0.University0.edu/AssociateProfessor0 ?Y) 
(takesCourse ?X ?Y) 

This query is similar to Query 6 in terms of class Student but it increases in the 
number of classes and properties and its selectivity is high. 
 



 

Query8: All the students of University0 and their email addresses. 
(type Student ?X) 
(type Department ?Y) 
(memberOf ?X ?Y) 
(subOrganizationOf ?Y http://www.University0.edu) 
(emailAddress ?X ?Z) 

This query is further more complex than Query 7 by including one more property. 
And as mentioned, the selectivity of this query and also Query 11 and 12 depends on 
the data set. 
 
Query9: All the students who take the courses of their advisors. 

(type Student ?X) 
(type Faculty ?Y) 
(type Course ?Z) 
(advisor ?X ?Y) 
(takesCourse ?X ?Z) 
(teacherOf ?Y ?Z) 

Besides the aforementioned features of class Student and the wide hierarchy of class 
Faculty, this query is characterized by the most classes and properties in the query 
set. Like Query 2, there is a triangular pattern of relationships. 
 
Query10: All the students who take GraduateCourse0 at Department0 of Univer-
sity0. 

(type Student ?X) 
(takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0) 

This query differs from Query 6, 7, 8 and 9 in that it only requires the (implicit) 
subClassOf relationship between GraduateStudent and Student, i.e., subClassOf rela-
tionship between UndergraduateStudent and Student does not add to the results. 
 
Query11: All the research groups at University0. 

(type ResearchGroup ?X) 
(subOrganizationOf ?X http://www.University0.edu) 

Query 11, 12 and 13 are intended to verify the presence of certain DAML+OIL rea-
soning capabilities in the repository. In this query, property subOrganizationOf is de-
fined as transitive. Since in the benchmark data, instances of ResearchGroup are 
stated as a sub-organization of a Department individual and the later sub-
organization of a University individual, inference about the subOrgnizationOf rela-
tionship between instances of ResearchGroup and University is required to answer 
this query. Additionally, its input is small. 
 
Query12: All the department chairs of University0. 

(type Chair ?X) 
(type Department ?Y) 
(worksFor ?X ?Y) 
(subOrganizationOf ?Y  http://www.University0.edu) 



The benchmark data do not produce any instances of class Chair. Instead, each De-
partment individual is linked to the chair professor of that department by property 
head. Hence this query requires realization, i.e., inference that that professor is an 
instance of class Chair because he or she is the head of a department. Input of this 
query is small as well. 
 
Query13: All the alumni of University0. 
    (type Person ?X) 
    (hasAlumnus http://www.University0.edu ?X) 
Property hasAlumnus is defined in the benchmark ontology as the inverse of prop-
erty degreeFrom, which has three subproperties: undergraduateDegreeFrom, mas-
tersDegreeFrom, and doctoralDegreeFrom. The benchmark data state a person as an 
alumnus of a university using one of these three subproperties instead of hasAlum-
nus. Therefore, this query assumes subPropertyOf relationships between degreeFrom 
and its subproperties, and also requires inference about inverseOf. 

2.4 Performance Metrics 

We have introduced four performance metrics for the evaluation of DAML+OIL re-
positories, defined as follows: 

1. Load time. The stand alone elapsed time for storing the benchmark data to the re-
pository. This also counts the time spent in any processing of the ontology and 
source files, such as parsing and reasoning. 

2. Repository size. The consequent size of the repository after loading the specified 
benchmark data into it. 

3. Query response time. The stand alone elapsed time of the query. The benchmark 
measures the time of each query on the target repositories as the following: 

   For each target repository: 
For each test query: 

            Open the repository. 
                   Execute the query on the repository consecutively for 10 

times and compute the average response time. Each time: 
Issue the query, obtain the pointer to the result 
set, traverse that set sequentially, and collect the 
elapsed time. 

Close the repository. 
4. Completeness. In logic, an inference procedure is complete if it can find a proof 

for any sentence that is entailed by the knowledge base. With respect to queries, 
we say a repository is complete if it generates all answers that are entailed by the 
knowledge base, where each answer is a binding of the query variables that results 
in an entailed sentence. However, on the Semantic Web, partial answers will often 
be acceptable. So it is important not to measure completeness with such a coarse 
distinction. Instead we measure degree of completeness of each query answer as 
the percentage of the complete results. 



 

Among the above metrics, while the first three are standard (query response time 
was introduced in the Wisconsin benchmark [3, 4], and load time and repository size 
have been commonly used in other database benchmarks, e.g., the OO1 benchmark 
[5]), completeness is a new metric we developed for our benchmark. 

2.5 Implementing the Benchmark on a Repository 

 

 

Fig. 2. Architecture of the Benchmark System 

Fig. 2 depicts the architecture of the benchmark system. The benchmark pre-
scribes an interface to be implemented by each target repository. Through the inter-
face, the benchmark system launches the loading process, requests operations on the 
repository (e.g. open and close), issues queries and obtains the results. 

The benchmark user makes the benchmark system aware of the repositories by de-
claring them in a repository configuration file. The test queries are materialized via a 
specific language in a query configuration file. The language used depends on the 
functionality of the repository and the objective of the benchmarking task. The 
benchmark system just reads the lines of each query from the configuration file and 
passes them to each repository. 

3 An Experiment Using the Benchmark 

3.1 Introduction 

DLDB [20] is a repository we have developed for the processing, storing and query-
ing of DAML+OIL data. Its major feature is the extension of a relational database 
system with description logic inference capabilities. Specifically, DLDB uses Micro-
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soft Access as the DBMS and FaCT [14, 15] as the DAML+OIL reasoner. It uses a 
database schema in which each class and property has its own table. Furthermore, 
views are employed to store hierarchy information of classes and properties. The 
view of each class is the union of its table and the views of all of its subclasses. 
Views of properties are implemented in a similar way by making use of the subprop-
erty relationship. 

The goal of the experiment is to evaluate DLDB and particularly the tradeoff be-
tween logical completeness and system performance. To this end, we have created 
two limited versions of DLDB and compared DLDB to them by using the bench-
mark. Therefore there are three repositories in the experiment, as follows: 

1. DLDB. The aforementioned DLDB system. 
2. DLDB with No Reasoner (NR hereafter). Same as DLDB except that the FaCT 

reasoning is not applied during loading the benchmark data. Thus the system does 
not have any implicit class hierarchy information. 

3. Plain. A further simplified version of NR, wherein views are not used.  Therefore 
the system does not explicitly use hierarchy information for classes or properties. 

Test queries were shown in Section 2.3. The aforementioned benchmark interface 
was implemented in the three repositories respectively. Five different sizes of data 
sets containing 1, 5, 10, 20 and 50 universities were tested on those repositories.  
The experiment environment was the following:  

Windows XP Professional Operating System; 
1.80GHz Pentium 4 CPU; 
256MB of RAM; 40 GB of Hard Disk; 
MS Access 2002 DBMS; JDBC/ODBC 

We show the experiment results in next section. 

3.2 Results and Analysis 

Table 1 lists the time for loading the benchmark data to each repository and the 
consequent database sizes. To make them more comparable, we measured the 
database sizes after compacting the databases via using the MS Access database 
compacting utility, which rearranges how the database file is stored on the disk in 
order to improve the disk space effeciency. 

Even though DLDB spends extra time in ontology reasoning, as displayed in the 
results there is no significant increase in its load time. This is unsurprising since 
DLDB only spends a fixed time doing reasoning at the start of loading so that the 
overhead is trivial and is quickly dominated by the time required to parse and load 
large amounts of data. 

Overall, DLDB and NR have larger database sizes than Plain. This can be 
ascribed to the space overhead introduced by the use of views and the hierarchy 
information stored in the former two repositories. However the differences are minor: 
they are less than 1% for all the data sets. Moreover, it turns out that the overhead is 
stable as the data set size increases. 



 

Table 1. Load Time and Repository Sizes 

Repository Data Set 
No. of Class 

Instances 
Load Time 
(hh:mm:ss) 

Repository Size 
(KB) 

DLDB 00:06:51 13,042 
NR 00:06:46 13,042 

Plain 
LUBM(1, 0) 17,150 

00:06:46 12,943 
DLDB 00:42:39 73,925 

NR 00:41:57 73,925 
Plain 

LUBM(5, 0) 107,421 
00:41:34 73,794 

DLDB 01:27:24 147,948 
NR 01:25:32 147,948 

Plain 
LUBM(10, 0) 218,690 

01:26:02 147,816 
DLDB 03:06:32 311,099 

NR 03:02:41 311,067 
Plain 

LUBM(20, 0) 462,316 
03:04:45 310,936 

DLDB 07:59:46 766,738 
NR 07:49:40 766,738 

Plain 
LUBM(50, 0) 1,146,186 

07:52:19 766,607 

 
Table 2 shows the results of each test query on the three repositories, including 

the query response time, the number of answers and the answer completeness in 
percentage. 

With respect to the completeness of answers, there are four patterns in the results, 
as described below. Meanwhile, we analyze the query response time inside each 
pattern and show some repesentative results via charts in Fig. 3. 

1. The three repositories return the same number of answers. This happens when 
answering the query requires neither hierarchy information nor DAML+OIL 
inference. Query 1, 2 and 3 belong to this pattern. As for the response time, the 
three repositories have close performance for Query 1. But as the chart of Query 2 
shows, DLDB and NR takes significant longer time than Plain for the other two 
queries. This is not hard to understand if we refer to Section 2.3. Class Publication 
in Query 3 has a wide hierarchy, and DLDB and NR are implemented to search 
all the way along the hierarchy even though that will not add any answers since 
all publications in the benchmark data are of class Publication. In Query 2, though 
only memberOf has one subproperty, due to the complexity of the query, i.e., it 
has five more classes and properties, even extra consideration of just one 
subproperty in combination with those classes and properties can lead to 
significant time overhead. In this case, the extra work by DLDB and NR will not 
add any answers either since all relationships between GraduateStudent and 
Department in the benchmark data are of property memberOf. 

2. DLDB and NR return the same number of answers while Plain returns no 
answers. Query 4 and 5 exhibit this pattern, both of which require class hierarchy 
information. It is not surprising that the former two repositories have much longer 
response time than Plain. Chart of Query 4 is shown in Fig. 3. 

3. Both DLDB and NR return more than one answer while Plain returns no answers. 
In addition, DLDB returns more answers than NR. Queries of this kind include 
Query 6, 7, 8 and 9. All of them require not only the hierarchy information but 
also DAML+OIL inference, which causes the difference among the three 



repositories. Response time for query 6 is shown in Fig. 3. We regard that the 
longer time DLDB takes than NR can mainly be ascribed to the larger answers it 
finds and handles. 

4. DLDB returns multiple answers while both NR and Plain return no answers. 
Query 10 is the example, which requires inference capability to find any answer. 
Query 10’s chart appears in Fig. 3. Again it is unsurprising that it costs DLDB 
longer time to handle more results than the others. In addition, it is notable that 
NR takes about half as long as DLDB to get no results. 

5. None of the repositories is able to return any answers. Those queries include 
Query 11, 12 and 13, which, as Section 2.3 shows, require certain DAML+OIL 
inferences that DLDB’s reasoner is currently incapable of. 

As far as the primary goal of this experiment is concerned, by the comparision of 
the three repositories, we see that the storage mechanism and the additional 
inference capabilities of DLDB have enabled it to achieve a considerably higher 
degree of the completeness of answers to many queries. Though this has to be traded 
off with performance mainly represented by the query response time, both for queries 
that can benifit from it and those that cannot, overall we consider the loss is small 
enough compared to what could potentially be gained. 

More intensive analysis is possible when taking into account other charateristics 
of the queries that are described in section 2.3. In addition, the experiment results 
have hinted at some potential subjects. For one example, the curves for the queries as 
in Fig. 3 are all close to linear, suggesting the repositories are likely to scale. This 
motivates us to examine the issue with even larger data sets. For another, response 
time of NR for Query 5 and 13 is outstandingly longer than that of DLDB, although 
we regard the two repositories are very similiar with respect to those two queries.3 
Also as shown above, even DLDB is unable to answer some queries with its current 
inference capability. 

4 Related work 

To the best of our knowledge, the benchmark presented herein is the first one for 
DAML+OIL repositories in the Semantic Web area. There is a research work in 
benchmarking RDF schemata, which performs statistical analysis about the size and 
morphology of RDF schemata [18]. However this work does not provide a bench-
mark for evaluating a repository. [2] has developed some benchmark queries for 
RDF, however, these are mostly intensional queries, while we are concerned with ex-
tensional queries for DAML+OIL. 

We have referred to several database benchmarks, including the Wisconsin 
benchmark [3, 4], the OO1 benchmark [5], and the SEQUOIA 2000 benchmark 
[22]. They are all DBMS-oriented benchmarks and storage benchmarks (vs. 

                                                        
3 Our initial investigation suggested that this was due to the difference in the structures of 

class Person’s hierarchies in the two repositories. 



 

Table 2. Results of Test Queries 
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Time(ms) 32 48 43 200 201 209 396 396 420 881 885 885 2295 2106 2248 

Answers 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Time(ms) 139 132 20 850 867 142 1823 1871 382 5020 5060 1132 17782 16635 3854 

Answers 0 0 0 9 9 9 28 28 28 59 59 59 130 130 130 2 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Time(ms) 168 182 31 2545 2506 115 5535 5518 215 11948 11867 437 35334 35157 1129 

Answers 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 3 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Time(ms) 281 268 7 1996 1981 9 5159 5243 15 12740 12562 21 23100 21440 76 

Answers 34 34 0 34 34 0 34 34 0 34 34 0 34 34 0 4 

Completeness 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 

Time(ms) 270 306 3 2729 3734 3 6348 8639 3 14615 19306 3 44428 56970 3 

Answers 719 719 0 719 719 0 719 719 0 719 719 0 719 719 0 5 

Completeness 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 

Time(ms) 85 50 3 1073 526 4 2332 1075 3 5151 2346 7 14590 6553 7 

Answers 7790 5916 0 48582 36682 0 99566 75547 0 210603 160120 0 519842 393730 0 6 

Completeness 100 76 0 100 76 0 100 76 0 100 76 0 100 76 0 

Time(ms) 351 68 17 1398 817 57 3126 1806 120 7082 4087 254 20134 11334 340 

Answers 34 30 0 34 30 0 34 30 0 34 30 0 34 30 0 7 

Completeness 100 88 0 100 88 0 100 88 0 100 88 0 100 88 0 

Time(ms) 418 360 25 2843 2139 26 5982 4756 20 14031 11829 34 39250 32120 98 

Answers 7790 5916 0 7790 5916 0 7790 5916 0 7790 5916 0 7790 5916 0 8 

Completeness 100 76 0 100 76 0 100 76 0 100 76 0 100 76 0 

Time(ms) 298 239 6 4962 3906 10 11953 8857 18 32948 24845 23 115782 41604 54 

Answers 113 57 0 715 353 0 1345 671 0 2864 1421 0 7368 3587 0 9 

Completeness 100 50 0 100 49 0 100 50 0 100 50 0 100 49 0 

Time(ms) 92 48 3 1031 512 3 2264 1073 3 5000 2501 3 14525 6776 11 

Answers 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 10 

Completeness 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 

Time(ms) 7 7 6 12 12 10 18 21 15 32 23 18 73 59 36 

Answers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 

Completeness 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Time(ms) 14 15 4 37 36 4 67 68 4 262 264 4 600 600 7 

Answers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 

Completeness 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Time(ms) 156 201 3 1792 2882 1 3903 6298 3 9185 14056 4 26846 41360 4 

Answers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 

Completeness 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 



 

Fig. 3. Response Time for Query 3, 4, 6 and 10 

visualization benchmarks). The Lehigh University benchmark shares in spirit with 
them methodology and rationale in terms of the use of synthetic data, some criteria 
for choosing test queries, and all but one of the metrics. However, our benchmark is 
tailored to the evaluation of DAML+OIL repositories and thus has many unique fea-
tures. Particularly as shown in the previous sections, the benchmark contains an on-
tology, data sets, test queries and criteria that reflect special concepts, structures and 
concerns in the Semantic Web area such as classes and properties, logical complete-
ness vs. system performance, etc. Moreover, our benchmark is intended to work with 
any DAML+OIL repositories, not just database systems. 

Some attempts have been done to benchmark description logic systems [8, 16]. 
The emphasis of this work is to evaluate the reasoning algorithms in terms of the 
tradeoff between expressiveness and tractability in description logic. As noted before, 
our benchmark is not a description logic benchmark. We are more concerned about 
the issue of storing and querying large amount of data that are created for realistic 
Semantic Web systems. [8] and [16] test the systems with respect to knowledge bases 
composed of a Tbox and an Abox, which can essentially be viewed as the counter-
parts of the ontology and the data set in our benchmark respectively. [16] uses both 
synthetic and realistic Tboxes and uses a synthetic Abox. But its Abox is pre-
determined and not scalable. In contrast, our benchmark data are generated ran-
domly and can scale to arbitrary size. [8] generates the Abox randomly. However, 
unlike our benchmark data, the Abox is not customizable and repeatable. It generates 
the Tbox randomly while our benchmark is based on a realistic ontology. 
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Lastly, there exist some query languages for RDF or DAML+OIL such as DQL 
[9], RQL [17] and TRIPLE [21]. Since none of these has proven dominant, we de-
cided to use a query language that could be easily translated into any of them. 

5 Conclusions 

In this paper we presented the Lehigh University benchmark. The benchmark is in-
tended to evaluate the performance of DAML+OIL repositories with respect to ex-
tensional queries over a large data set that commits to a single realistic ontology. It 
supports the evaluation of arbitrary repositories. It facilitates the evaluation with syn-
thetically generated data based on the Univ-Bench ontology and allows tests to be 
conducted on data of arbitrary size. The test queries and performance metrics are de-
signed so that the benchmark could evaluate not only the underlying system and 
schema but functionalities integrated in the repository such as support for 
DAML+OIL entailment. Moreover, the benchmark includes a metric for the degree 
to which a repository returns complete query answers. Consequently, the benchmark 
could help the user to evaluate different repositories depending on the preference in 
the tradeoff between logical completeness and system performance. Those interested 
in obtaining the benchmark and supporting tools should visit 
http://www.cse.lehigh.edu/~heflin/research/. 

Using the benchmark, we have conducted an experiment to evaluate DLDB, a 
DAML+OIL repository that extends a relational DBMS with description logic infer-
ence capabilities. We compared DLDB against two limited versions of it.  The ex-
periment showed that the storage mechanism adopted in DLDB plus the inference 
capabilities added to it could help increase the degree of completeness of query an-
swers. It also showed that there was a tradeoff between the logical completeness and 
system performance. However the loss in the later appeared to be insignificant in 
light of the gain in the former. We also expect that the results in this experiment 
could be used as a baseline for other work on similar systems and schemata. 

We intend to explore a number of ideas as future work. First, although designed 
for DAML+OIL, the benchmark can be easily adapted to OWL [7]. Second, we will 
use the Lehigh University benchmark to evaluate a variety of Semantic Web reposi-
tories with respect to performance and answer completeness. Third, as mentioned, 
we will examine the scalability of the repositories with even larger data sets. Fourth, 
we intend to develop another benchmark that includes multiple ontologies and sup-
ports ontology integration. Finally, we want to create benchmarks that are based on 
ontologies with different characteristics. 
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