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Abstract 
The Semantic Web has the potential to allow software 
agents to intelligently process and integrate the Web’s 
wealth of information. These agents must plan how to 
achieve their goals in light of the information available. 
However, because the Web is so vast and changes so 
rapidly, the agent cannot make a closed-world assumption. 
This condition makes it difficult for an agent to know when 
it has gathered all relevant information or when additional 
searches may be redundant. We propose to use local closed 
world (LCW) information to assist these agents. LCW 
information can be obtained by accessing sources that are 
described in a Semantic Web language with LCW 
extensions, or by executing operators that provide 
exhaustive information. In this paper, we demonstrate how 
two Semantic Web languages (DAML+OIL and SHOE) 
can be augmented with the ability to state LCW 
information. We also show that DAML+OIL can represent 
many kinds of LCW information even without additional 
language features. Finally, we describe how ordered task 
decomposition can be used with LCW information to 
efficiently plan in distributed information environments. 

1 Introduction 
The World Wide Web has transformed society, changing 
the way people communicate, learn, and conduct business. 
However, the dramatic growth of the Web over recent 
years has made it increasingly difficult for people to take 
full advantage of its capabilities. One solution is to build 
sophisticated intelligent agents, programs that can 
autonomously take actions in order to achieve their 
owners’ goals. These agents could process and integrate 
the multitude of data available, filtering information for 
users or acting on their behalf. The Semantic Web 
(Berners-Lee, Hendler, and Lasilla 2001) is an approach to 
making the Web’s information accessible to intelligent 
agents that does not require them to understand natural 
language. Instead, the Semantic Web encodes the content 
of pages in a machine-readable format and explicitly links 
this content to machine-understandable semantics in the 
form of ontologies. 
 Agents on the Semantic Web will need to plan how to 
achieve their goals and must use heterogeneous web 
resources in order to make their decisions. However, most 
planning methodologies assume that the planner has 
complete knowledge about the state of the world. On the 
Web, this is simply impossible: the Web is too large and 
changes too quickly for any agent to reasonably assume 
that it has complete knowledge. However, with an open-
world, an agent may spend an unbounded amount of time 

attempting to find an answer to a query when none exists. 
Golden, Etzioni, and Weld (1994) have proposed that local 
closed world information (LCW) can be used to handle 
such problems in incomplete information environments. 
However, this approach has never been directly applied to 
the Semantic Web. 
 In this paper, we propose extensions to two Semantic 
Web languages that allow Web documents and other 
resources to express LCW information. We then describe 
the design of an agent that can integrate Semantic Web 
information and use it in its planning process. 

2 Background 
This work builds on research in the Semantic Web and 
research into the use of LCW information. We will now 
briefly discuss each of these areas. 

2.1 The Semantic Web 
The goal of the Semantic Web is to automate machine 
processing of web documents by making their meanings 
explicit (Berners-Lee, Hendler, and Lasilla 2001). 
Semantic web languages do this by allowing users to 
create ontologies, which specify standard terms and 
machine-readable definitions. Semantic web documents 
then commit to one or more ontologies, thus stating which 
sets of definitions are applicable. Over the last ten years, 
knowledge representation researchers have studied the use 
of ontologies for sharing and reusing knowledge (Gruber 
1993, Guarino 1998, Noy and Hafner 1997). Although 
there is some disagreement as to what comprises an 
ontology, most ontologies include a taxonomy of terms 
(e.g., a Car is a Vehicle), and many ontology languages 
allow additional definitions using some form of a logic. 
Guarino (1998) has defined an ontology as “a logical 
theory that accounts for the intended meaning of a formal 
vocabulary.” A common feature in ontology languages is 
the ability to extend preexisting ontologies. Thus, users 
can gain the interoperability benefits of sharing 
terminology where possible, but can also customize 
ontologies to include domain specific information.  
 Although there are many Semantic Web languages, 
this paper will focus on two with very different features. 
The first is DAML+OIL (Hendler and McGuinness 2000), 
a language developed by an international committee of 
researchers interested in the Semantic Web. DAML+OIL 
has its logical basis in description logics and its syntactic 
basis is RDF. Description logic systems accept complex 
expressions as class definitions and provide the ability to 



 

determine subsumption (that is, which classes are 
necessarily subsets of other classes). Typically, the 
features of such languages are chosen so that subsumption 
can be performed efficiently. Class expressions in 
DAML+OIL can include subclass relationships, boolean 
combinations of class expressions, and restrictions on 
properties that a class may have. These property 
restrictions include minimum and maximum cardinality of 
a property, restriction of values to a specific class, and 
specific values that the property must have. The complete 
description of the language is available on the Web (van 
Harmelen, Patel-Schneider, and Horrocks 2001). 
 This paper will also discuss the SHOE language (Luke 
et al. 1997, Heflin 2001). Like DAML+OIL, SHOE has 
ontologies which provide definitions of classes and 
properties (called categories and relations in SHOE). 
However, SHOE  is not based on description logic, instead 
it is based on datalog, a data model commonly used for 
deductive databases. The syntax of datalog is basically 
Prolog without function symbols, but unlike Prolog, no 
control flow is implied by the ordering of statements and 
atoms. SHOE does not have as rich expressions for 
defining classes as DAML+OIL, but does have the ability 
to express arbitrary Horn clauses, something that 
DAML+OIL lacks. SHOE data consists of instances that 
can be found in web documents. These instances commit 
to one or more SHOE ontologies. The data can specify 
categories (classes) of which instances are members and 
relationships between instances (predicates). The complete 
specification of the language is available on the Web 
(Luke and Heflin 2000). In this paper, our SHOE examples 
will use SHOE’s XML syntax. 

2.2 Local Closed World Information 
The closed-world assumption (CWA) is used in the 
semantics of programming languages like Prolog and most 
databases. It basically states that if a fact cannot be proven 
to be true, then the fact is assumed to be false. This 
assumption is useful in that it allows additional inferences 
to be drawn from the absence of information. However, 
this assumption is often inappropriate because knowledge 
may be incomplete. Local closed-world (LCW) 
information is an approach to this problem in which 
closed-world information can be obtained on subsets of the 
information that are known to be complete, while still 
allowing other information to be treated as unknown 
(Golden, Etzioni and Weld 1994). LCW information is 
given as meta-level sentences of the form LCW(Φ). The 
semantics of such a sentence is that for all variable 
substitutions θ, if the ground sentence Φθ is true in the 
world then Φθ is represented in the agent’s knowledge 
base. Any matching ground sentence that is not in the 
knowledge base is known to be false. 
 Golden, Etzioni and Weld originally developed LCW 
in the context of agent planning, and used it to describe the 

effects of sensing operations that return exhaustive 
information. Levy (1996) extended this formalism to deal 
with obtaining complete answers from partial databases, 
that is, databases that have incomplete information. 
Various work in information integration has followed, with 
an emphasis on using LCW to generate efficient 
information gathering plans (Friedman and Weld 1997; 
Duschka 1997; Lambrecht, Kambhampati, and 
Gnanaprakasam 1999). However, this work assumes a 
priori knowledge of the local completeness information for 
each information source. These systems typically have a 
small number of predetermined information sources, and 
in such a system, this information could be provided by an 
administrator whenever a new source was added. 
However, if this work is to be applied to the Semantic 
Web, then one must realize that there are potentially 
millions of information sources, since each web page could 
be considered a data source. In the next section, we will 
discuss how Semantic Web languages can be extended to 
allow web resources to provide LCW information 
regarding their contents. 
 

3 LCW on the Semantic Web 
The closed-world assumption is inappropriate for the 
Semantic Web due to its size and rate of change. Since the 
Web, is so large, no single agent could expect to have 
complete knowledge of its contents, and thus an 
assumption that any unknown facts must be false will often 
be mistaken. However, if an open-world is assumed, then 
an agent’s search is unbounded, because if it has not found 
an answer, it has no way of knowing if the answer may be 
available elsewhere if it simply continues its search. In this 
section we propose how two Semantic Web languages can 
be extended to use LCW information. 

3.1 Adding LCW to DAML+OIL 
Since all instance information in DAML+OIL is expressed 
using RDF, all DAML+OIL data either states that an 
instance is a member of a class or that an object has a 
specific property value. A natural LCW extension to 
DAML+OIL would be to allow DAML+OIL document to 
say that it has complete information on members of a 
particular class or on the properties of a specific object. 
We will call our extended version of the language DAML-
LCW 
 We propose that a document can use a new property 
lcw:hasLcw to state that it has complete information on 
some subset of information. This property is in a new 
namespace identified by the lcw prefix,1 and has 
rdf:Resource in its domain and daml:Class in its range. As 
such, it can be applied to any resource. Typically it would 

                                                           
1 The namespace identifier for this namespace has not been 
chosen yet. 



 

be used by a DAML+OIL document to describe LCW 
information about its own contents, but by applying the 
property to another resource, any document can provide 
LCW information about any other document. 
 The example below shows a DAML+OIL LCW 
statement which means that the document that contains it 
has complete information on all instances of the class 
http://www.faa.org/ont#UsCommercialFlights. 
 
<rdf:Description about=””> 
 <lcw:hasLcw> 
  <daml:Class rdf:ID= 
   ”http://www.faa.org/ont#UsCmrclFlights”/> 
 </lcw:hasLcw> 
</rdf:Description> 
 
This statement is equivalent to 
LCW(UsCommercialFlights(x)). 
 Due to DAML+OIL’s features for composing 
complex class expressions, even more specific LCW 
statements could be made. For example, it would be 
possible to state local completeness for all flights that have 
a city in the U.S. as their destination. 
 
<lcw:hasLcw> 
 <daml:Class> 
 <daml:intersectionOf rdf:parseType= 
      ”daml:collection”> 
  <daml:Class rdf:about= 
      ”http://www.faa.org/ont#Flight”/> 
  <daml:Restriction> 
   <daml:onProperty rdf:resource= 
      ”http://www.faa.org/ont#destination”/> 
   <daml:toClass rdf:resource= 
      ”http://www.faa.org/ont#UsCity”/> 
  </daml:Restriction> 
 </daml:intersectionOf> 
 </daml:Class> 
</lcw:hasLcw> 
 
Note that this example is equivalent to LCW(Flight(x) ^ 
destination(x,y) ^ UsCity(y)). 

What about LCW statements that do not use 
classes? For example, how can DAML+OIL be extended 
to represent LCW(prop(x,c))? In this case, we can apply 
LCW to the class of things with a specific hasValue 
restriction. 
 
<lcw:hasLcw> 
  <daml:Restriction> 
   <daml:onProperty rdf:resource=”prop”/> 
   <daml:hasValue rdf:resource=”c”/> 
  </daml:Restriction> 
</lcw:hasLcw> 
 
However, it is unclear how LCW(prop(c,x)) could be 
represented in DAML+OIL. The language only provides 
limited facilities for describing properties, and as such, 
there is no natural way to extend the language to state that 
there is complete information on an object’s values for a 
specific property.  

 The semantics of these DAML+OIL expressions is 
based on the original semantics of LCW sentences by 
Golden, Etzioni, and Weld. Any DAML+OIL expression 
can be rewritten as an equivalent first-order logic 
expression, thus obtaining a standard LCW statement. 
However, on the Semantic Web, we must describe what it 
means to have an LCW sentences about a particular 
resource. Here, the resource takes the role of the 
knowledge base. A sentence of the form LCW(Φ) means 
that for all variable substitutions θ, if the ground sentence 
Φθ is true in the world then Φθ is represented in the 
resource described by the sentence. Any matching ground 
sentence that is not represented by the resource is known 
to be false. 
 Interestingly, DAML-LCW is no more expressive 
than DAML+OIL. Using standard DAML+OIL constructs, 
one can express the same semantics as the hasLcw 
statement. Consider a document that has some set of 
resources R, whose elements are r1, r2, …, r n all of which 
have the same class C as their type. DAML-LCW can be 
used to express that the document has LCW information 
on class C, thus stating that any resources not in R are not 
members of class C. We can express this same information 
using the daml:oneOf, daml:complementOf, and 
daml:disjointWith features of DAML+OIL. First you use 
daml:oneOf to construct the class of objects in R. Then 
you take the daml:complementOf this result to represent 
the class of objects that are not in R. Finally, you say that 
this class is daml:disjointWith class C. This DAML+OIL 
syntax for this is shown below: 
 
<daml:Class rdf:about=”C”> 
 <daml:disjointWith > 
  <daml:Class> 
   <daml:complementOf> 
    <daml:Class> 
      <daml:oneOf rdf:parseType=”daml:collection”> 
      <daml:Thing rdf:resource=”r1”> 
      <daml:Thing rdf:resource=”r2”> 
      … 
      <daml:Thing rdf:resource=”rn”> 
      </daml:oneOf> 
    </daml:Class> 
   </daml:complementOf> 
  </daml:Class> 
 </daml:disjointWith> 
</daml:Class> 
 
 This means that complete reasoners for DAML+OIL 
are also complete reasoners for DAML-LCW. One naïve 
algorithm is to use a preprocessing step that converts all 
lcw:hasLcw statements to the form described above, and 
then run the ordinary inferential process.  
 Of course, this raises the question whether 
daml:hasLcw is really necessary. We argue that although it 
is basically syntactic sugar, that it greatly simplifies the 



 

process of expressing LCW information. Without it, all 
members of a locally closed class would have to be 
explicitly listed twice, once to indicate they are a member 
of the class, and once to define the complement of that set 
of resources. Furthermore, document maintenance would 
become much more difficult, because any changes to the 
classifications of resources would need to be made in both 
places. 

3.2 Adding LCW to SHOE 
LCW can be added to SHOE more naturally since its data 
model is more similar to that used by the information 
integration approaches that use LCW. In the information 
integration literature, LCW is used with datalog programs 
to develop efficient queries for a set of distributed 
information sources. As mentioned earlier, one of SHOE’s 
chief differences from DAML+OIL is that it is based on 
datalog. 
 We can add LCW information to SHOE by 
introducing a lcw element to instances. That is, a particular 
SHOE instance can claim to have complete knowledge 
over some set of information. As with the formulation by 
Etzioni, Golden, and Weld (1997), we will restrict SHOE 
LCW sentences to positive conjunctions. In SHOE syntax, 
this essentially means the child elements of the lcw 
element are an arbitrary number of category and relation 
elements. We call the language with this construct SHOE-
LCW. 
 In the previous section, we provided DAML+OIL 
examples of different LCW statements. The example for 
LCW(Flight(x) ^ destination(x,y) ^ UsCity(y)) can be 
represented in SHOE-LCW as follows: 
 
<lcw> 
 <category name=”faa.Flight” 
           usage=”var” for=”x” /> 
 <relation name=”faa.destination”> 
  <arg pos=”1” usage=”var” value=”x” /> 
  <arg pos=”2” value=”var” value=”y” /> 
 </relation> 
 <category name=”faa.UsCity” 
            usage=”var” for=”y” /> 
</lcw> 
 
The use of relations allow SHOE to naturally capture 
statements such as LCW(prop(x,c)) and LCW(prop(c,x)). 
In each case, the lcw element contains a single relation 
element with one argument that is a constant and one 
argument that is a variable. 
 The semantics of SHOE-LCW is based on the 
semantics of SHOE (Heflin 2001), with one modification 
to handle the lcw element. This element can be expressed 
as a standard LCW statement by representing each 
category as a unary predicate, and representing each n-ary 
relation as an n-ary predicate. The conjunction of these 
sentences forms the LCW sentence. The semantics of this 
sentence are similar to those described in the previous 
section. The instance element in SHOE represents a web 

page whose content is described by the SHOE tags. 
Typically this instance is the page in which the tags occur, 
but may be another web resource. Thus, SHOE-LCW has 
the same flexibility to describe different resources as 
DAML-LCW. However, unlike DAML+OIL, there is no 
way to express the SHOE-LCW semantics without the 
language extension. This is because SHOE does not have 
the capability to express complements and disjointness. 
 Note that LCW adds implicit negation to SHOE, 
introducing the possibility of logical inconsistency.2 That 
is, if one source claims to have LCW information about a 
relation, and another source contains an instance of the 
relation that is not in the former, then the two sources 
contradict each other. Handling inconsistency on the 
Semantic Web is still an unsolved problem, so we will 
assume that information sources only state LCW 
information when they actually have local completeness 
information, thereby allowing us to ignore any resources 
that contradict it. 

4 LCW for Agent Planning 
In this section we are going to explain how the LCW 
statements added to the SHOE language can be used for 
agent planning on the Semantic Web. First we are going to 
describe the planning formalism known as Ordered Task 
Decomposition (OTD)  (Nau et al, 1999). We have chosen 
to use OTD planning for two main reasons: first, HTN 
planning, of which OTD is an special form, has been 
shown to be strictly more expressive than STRIPS 
planning, of which partial-order planning is an special 
form (Erol, Hendler, and Nau 1994). Second, hierarchical 
task decomposition has been shown to be useful for many 
real-world domains (Nau et al. 1998). 

4.1 Ordered Task Decomposition 
An HTN (hierarchical task network) is a set of tasks and 
their ordering relations, denoted as N=({t1,…,tm},<) 
(m≥0), where < is a binary relation expressing temporal 
constraints between tasks. Decomposable tasks are called 
compound, while non-decomposable tasks are called 
primitive.  

A domain theory consists of methods and operators 
for generating plans. A method is an expression of the 
form M=(h,P,ST), where h (the method's head) is a 
compound task, P is a set of preconditions, and ST is the 
set of M's (children) subtasks. M is applicable to a task t, 
relative to a state S (a set of ground atoms), iff 
matches(h,t,S) (i.e., h and t have the same predicate and 
DULW\� DQG D FRQVLVWHQW VHW RI ELQGLQJV , H[LVWV WKDW PDSV

variables to values such that all terms in h match their 
corresponding ground terms in t) and the preconditions P 
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such inconsistencies, but as yet does not suggest how they 
should be resolved. 



 

are satisfied in S (i.e., there exists a consistent extension of 
,� QDPHG ,
� VXFK WKDW ∀ p∈P {p,
∈S}), in which case 
M(t,S)=ST ,
� 

An operator is an expression of the form 
O=(h,P,aL,dL), where h (the operator's head) is a 
primitive task, P is a set of preconditions, and aL and dL 
are the so-called add- and delete-lists. These lists define 
how the operator's application transforms the current state 
S: every element in the add-list is added to S and every 
element in the delete-list is removed from S. An operator O 
is applicable to a task t, relative to a state S, iff 
matches(h,t,S) and the preconditions P are satisfied in S. 

A planning problem is a triple (T,S,D), where T is a 
set of tasks, S is a state, and D is a domain theory. A plan 
is the collection of primitive tasks obtained by 
decomposing all compound tasks in a planning problem 
(T,S,D). 

At any point during the Ordered Task Decomposition 
process (OTD), a task list T’ is being refined relative to a 
state S and a domain theory D. Initially, T’ is the set of 
tasks T in the planning problem (T,S,D).  In an ordered 
task decomposition process, the tasks must be totally 
ordered (i.e., the < relation on HTNs is a total order).  
During the OTD process the partial solution plan p being 
derived (i.e., the primitive tasks in T’) is maintained. 
Initially p is empty. The OTD process selects the first task 
t in T’ and continues as follows: 

• If t is primitive and has an applicable operator O, then O 
is applied to t, S is updated accordingly, t is removed 
from T’ and added to the end of p. 

• Else if t is compound and has an applicable method M 
(that has not yet been applied to t), then M is applied, 
which replaces t in T’ with M’s subtasks.  

• Else if T’ is not empty, then backtracking occurs. 

• Else the process fails. 

 The OTD process terminates when T’ is empty, in 
which case p is the solution, or when trying to backtrack 
on a compound task t whose applicable methods have been 
exhausted. The OTD process was first implemented in the 
SHOP planning system (Nau et al., 1999). A variant was 
created that relaxes the condition requiring the tasks to be 
totally order (Nau et al., 2001) but for the sake of 
simplicity we'll concentrate on the original assumption that 
the tasks are totally ordered. 

4.2 LCW Statements in Planning 
LCW statements are meta-knowledge about the available 
facts. There are two sources for LCW statements during 
planning: 
 
- LCW information is provided explicitly. Explicit 

LCW information could be part of the agent’s 
background knowledge or may be provided by the 

information sources. The later means that the 
information sources being accessed know in advance 
that the information is locally closed. As an example, 
American Airlines has complete information about all 
American Airlines flights. 
 

- LCW is inferred as a result of an action. This 
means that the execution an action yields local closed-
world information. As an example, the UNIX 
command ls, when executed in a directory /dir, yields 
complete information about the files contained and not 
contained in /dir. 
 

The first source of LCW information has been explored in 
work on information integration, where the information is 
used to generate efficient information gathering plans 
(Levy 1996, Friedman and Weld 1997, Duschka 1997). In 
our framework, this information is provided by the LCW 
statements in the SHOE or the DAML extensions 
discussed in the previous sections. The second source of 
LCW was proposed in (Golden, Etzioni, and Weld 1994). 
It reflects the fact that it is typically assumed that all 
knowledge about changes in the world is modeled in 
actions known by the planner.  
 To include these two sources of planning within OTD, 
we need to (1) cope with the problem of distributed state 
information (classical planners assume a centralized state 
that contains all known facts), (2) extend the way methods 
and (3) operators are used.  
 

4.3 OTD Planning with the Semantic Web 
During the OTD decomposition process queries to external 
information sources need to be performed to evaluate if the 
preconditions can be satisfied and to take into account 
LCW statements that had been gathered so far. To handle 
this situation we created two additional entities external to 
the OTD Plan Generator: The Knowledge Base (KB) and 
the Semantic Web Mediator (see Figure 1). The former 
maintains known facts and LCW statements and the latter 
mediates between the OTD Plan Generator and the 
external information sources by accessing and interpreting 
relevant Semantic Web documents. 
 The Semantic Web Mediator is based on the concept 
of mediators proposed by Wiederhold (1992); it is a 
system that is capable of integrating multiple sources in 
order to answer questions for another system. Its main 
function is to evaluate the OTD Plan Generator’s 
preconditions by accessing Semantic Web resources. To 
accomplish this task the Semantic Web Mediator uses and 
maintains information about remote sites available, access 
information, and known ontologies in the KB. 
 



 

 

Figure 1 

 The KB maintains three forms of knowledge: 
 
• Facts that has been gathered so far either through actions 

of the OTD Plan Generator or through remote access by 
the Semantic Web Mediator 

• LCW statements yielded by the OTD Plan Generator or 
collected by the Semantic Web Mediator 

• Summary of information source contents 
 
It is important to notice that changes resulting from actions 
taken by the OTD Plan Generator are made in the KB 
rather than in the actual sources. Consider an action to 
reserve a seat in a flight that the mediator discovered was 
free. In the KB we keep track of this action as if the seat 
was reserved without actually going to the information 
source and reserving it. We choose this approach because 
backtracking may occur if we are not be able to satisfy the 
conditions for other actions later on. Such situations would 
require the costly process of reaccessing sources in order 
to tell them to undo previous actions. Thus, we continue 
planning and once we complete the plan we perform the 
execution.  
 For this approach to work we are making the 
assumption that the content of the information sources 
(particularly with regards to LCW information) does not 
change during the planning time. This is a typical 
assumption made by other systems planning with external 
information sources (e.g., (Golden, Etzioni, and Weld 
1994)) with the rationale being that the small amount of 
time taken to complete the plan makes it unlikely that this 
information would change. However, we do acknowledge 
that in the context of the Semantic Web the validity of this 
assumption may be questionable and we are currently 
investigating solutions to the problem.  

4.4 Precondition Evaluation 
When a precondition p is evaluated, four steps need to be 
performed: 

 
1. Determine if p can be satisfied or not by accessing the 

KB’s facts 
2. If p can be satisfied, the variable bindings satisfying p 

are returned. 
3. If p cannot be satisfied, the KB’s LCW statements are 

accessed to determine if complete information about p 
is contained. If this is the case, p is false 

4. If p cannot be satisfied and there is no complete 
information about p in the KB’s LCW statements, p is 
unknown. In this case, p is passed to the Semantic 
Web Mediator. 

 
 The first two steps mimic the standard precondition 
evaluation; in OTD the current state is locally maintained 
and to determine if the preconditions are satisfied or not, 
one looks if p is matched in the current state. The third and 
fourth steps are necessary to handle LCW information. An 
example of such a situation can be illustrated with the 
following method, which is the knowledge unit describing 
the conditions (called preconditions) under which a task 
can be decomposed into subtasks: 
 
      Task:  
            Get a direct flight Ticket from start to destination 
at date 
      Preconditions: 

1. Airline(aline) 
2. DirectFlight(f, aline, start, destination) 
3. SeatFree(f, date, s) 

      Subtasks:   
1. Buy ticket for s on f at date 

       Orderings: 
                {}             
   where start, destination, aline, f, date, and s  are 
variables.  
 
If the system is trying to accomplish the task: Get a direct 
flight Ticket from Atlanta to Allentown, and when solving 
the first precondition, aline is instantiated to American 
Airlines, SHOE will also indicate that local closed world 
information has been yielded (American Airlines is the 
only carrier that offers direct flights between Atlanta and 
Allentown, PA). The LCW statement has the form 
LCW(DirectFlight(f, aline, Atlanta, Allentown)), 
indicating that we have complete information about the 
direct flights from Atlanta to Allentown. Thus, if no seats 
were available in any of the flights between these two 
locations (preconditions 3 and 4), there is no need to 
search for another airline and check direct flights 
(preconditions 1 and 2). 
 The operators, which are the knowledge units 
describing actions changing the world, may yield or 
remove LCW information. As an example of an operator 
yielding LCW information, consider the following 
operator that uses the same variable names as before:    



 

 
Task:  
            Get all free seats available in f at date 
Preconditions: 

1. Flight(f, aline, start, destination) 
Add:   

1. ∀s SeatFree(f, date, s) 
       Delete: 
                  () 
 
This operators collects all free seats available in flight f at 
date. Thus we yield complete information since any seat 
that was not collected must be occupied. The 
corresponding statement that is added to KB is: 
LCW(SeatFree(355, 1/2/2002, s) assuming that the 
operator was executed with the bindings: f Æ 355 and date 
Æ 1/2/2002. 
 

4.5 Preconditions and the Semantic Web 
Mediator 

If p is unknown, the OTD Plan generator queries the 
Semantic Web Mediator for p. This subsytem executes the 
following steps: 
 

1. It determines an information source to access 
2. It accesses the source and parses the SHOE 

associated with it 
3. If the p can be satisfied from the KB, the source, 

and associated ontologies, the variable bindings 
satisfying p are returned. 

4. If p cannot be satisfied, the source’s and the KB’s 
LCW statements are accessed to determine if 
complete information about p is contained. If this 
is the case, p is false 

5. Otherwise, the system chooses another source and 
repeats the process. 

 
Any information that is gathered by the Semantic Web 
Mediator while performing these steps is passed to the KB. 
Notice that the fifth step implies that if LCW information 
is not available, the search may be unbounded. In practice, 
resource-bounded constraints such as time limits or 
maximum number of accesses may be used to terminate 
the search. 
 

5 Related Work 
XII is the planner that first introduced LCW to reduce the 
planning time when dealing with external information 
sources (Golden, Etzioni, and Weld 1994). This and other 
works show that LCW information can dramatically 
reduce the planning time by avoiding redundant access to 
external remote information sources. XII follows the 
partial-order planning paradigm instead of the ordered task 

decomposition paradigm discussed in this paper. As a 
result of this difference XII uses a very different 
mechanism to handle LCW information.  
 Another important difference is that in XII, only LCW 
information yielded by actions is accounted for whereas in 
our work we also allow LCW information to be defined as 
meta-knowledge. This difference is crucial to reflect the 
fact that no system has centralized knowledge about all 
possible inferences. In the semantic web, inference 
information is distributed in the ontologies of the remote 
information sources. 
 Our work is also similar to the Ashop planner (Dix et 
al 2002) in that OTD was extended for accessing external 
information sources for a multi-agent system called 
IMPACT. In our work, however, we extend OTD to take 
advantage of local closed-world information in the context 
of the semantic web. 

6 Conclusions and Future Work 
In this paper we discussed how many Semantic Web 
applications will need access to closed-world information, 
but the nature of the Semantic Web makes it naturally an 
open-world. To overcome this problem, we presented 
extensions to the DAML+OIL and the SHOE languages 
for representing LCW statements. We saw that due to 
limitations in the facilities for describing properties in 
DAML+OIL, LCW statements like LCW(prop(c,x)) are 
difficult to represent. However, a limited form of LCW can 
be expressed using DAML+OIL’s existing features, and 
our LCW extension merely makes it more convenient to 
create and maintain documents that need to express LCW 
information. We also discuss how LCW statements can be 
added to SHOE more naturally due to its similarity to 
information integration approaches to using LCW. 
 We also described an agent that takes advantages of 
these LCW statements. We discussed two sources for the 
LCW statements during the agent's OTD process:  LCW 
information is provided explicitly by the information 
sources using the extensions to the Semantic Web 
languages discussed and LCW information is inferred as a 
result of an action. We saw that the Semantic Web 
Mediator is a key component of the agent's design, whose 
main function is to evaluate the OTD Plan Generator’s 
preconditions by accessing remote information sites. 
 We are currently implementing an agent following 
this design and studying how to deal with changing 
information during the planning process. In future work, 
we plan to study how to deal with inconsistencies resulting 
from LCW information adding implicit negation to SHOE. 
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