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ABSTRACT 
We present an evaluation of four knowledge base systems with 
respect to use in large Semantic Web applications. We discuss 
the performance of each system. In particular, we show that 
existing systems need to place a greater emphasis on scalability. 

Categories and Subject Descriptors 
I.2.4 [Artificial Intelligence]: Knowledge Representation 
Formalisms and Methods – representation languages 

H.3.4 [Information Storage and Retrieval]: Systems and 
Software – Performance Evaluation 

General Terms 
Experimentation, Measurement, Performance. 

Keywords 
Semantic Web, Knowledge Base System, Evaluation, 
Benchmark, DAML+OIL. 

1. INTRODUCTION 
In this work, we evaluate two memory-based systems 
(DAMLJessKB and memory-based Sesame) and two systems 
with persistent storage (database-based Sesame and DLDB) with 
respect to use in large Semantic Web applications. Especially we 
evaluate the systems in terms of how well they support the 
conflicting requirements of scalability/efficiency and reasoning 
capabilities. 

We have based the experiment on the Lehigh University 
Benchmark [2], which supports the evaluation of DAML+OIL 
repositories with respect to extensional queries over large data 
sets that commit to a single realistic ontology. The test bed is 
accessible at http://www.lehigh.edu/~yug2/Research/Semantic 
Web/LUBM/LUBM.htm. 

In our test, the smallest data set used consists of 15 DAML+OIL 
files totaling 8MB, while the largest data set consists of 999 files 
totaling 547MB. To our knowledge, no Semantic Web KBS has 
been tested with the scale of data used here. 

2. THE EXPERIMENT 

Sesame [1] supports RDF/RDF Schema inference, but is an 
incomplete reasoner for DAML+OIL. We test two 
implementations of it, main memory-based and database-based 
(Sesame-Memory and Sesame-DB hereafter). For Sesame-DB, 
we use MySQL as the underlying DBMS since it is reported that 
Sesame performs best with it. We evaluate DAMLJessKB [6], a 
memory-based tool for description logic languages, as a system 
that supports most DAML+OIL entailments. As the fourth 
system, DLDB [7] is a repository featuring the extension of a 
relational database system (MS Access®) with description logic 
inference capabilities (provided by FaCT reasoner [3]). We have 
created a wrapper over each of the above systems as an interface 
to the benchmark’s test module.1 

We have created 5 sets of synthetic test data containing 
DAML+OIL files for 1, 5, 10, 20, and 50 universities. They have  
respectively 99,565, 623,537, 1,271,585, 2,687,066 and 
6,653,612 class instances and property instances in total.2 We 
measure the elapsed time for loading each data set, and also the 
consequent database sizes of Sesame-DB and DLDB. For 
Sesame-Memory and DAMLJessKB, we evaluate their memory 
efficiency by looking at the largest data set they can handle. 

Thirteen benchmark queries (cf. [2]) are expressed in RQL [5], 
Jess [4] and a KIF-like language and issued to Sesame, 
DAMLJessKB, and DLDB respectively. We do not use a 
common language in the test to eliminate the affect of query 
translation to the query response time. Query response time is 
collected and answer completeness is measured in the way as it 
is defined in the benchmark. 

The test has been carried out on a modern desktop computer with 
1.8GHz P4 CPU, 256MB of RAM, and 40GB of hard disk. 

3. RESULT DISCUSSION 
As it turned out, DAMLJessKB could only load the 1-university 
data set (99,565 instances), and took over five times longer than 
any other system to do so. On the other hand, we were surprised 
to see that Sesame-Memory could load up to 10 universities, and 
was able to do it in fourth of the time of the next fastest system. 
However, for 20 or more universities, Sesame-Memory also 
succumbed to memory limitations. 

                                                             
1 We use Sesame v0.96, MySQL v4.0.16, DAMLJessKB 03-6-9 

release, MS Access 2002, and DLDB 03-4-16 release. 
2 To our knowledge, prior to this experiment, Sesame has been 

tested with at most 3,000,000 statements. 

 
Copyright is held by the author/owner(s). 
WWW 2004, May 17–22, 2004, New York, New York, USA. 
ACM 1-58113-912-8/04/0005. 
 



Figures 1 and 2 show the load time and repository sizes 
respectively. The results reveal a problem for Sesame: neither of 
its two implementations scales in data loading: their load time is 
clearly non-linear. As an example, it cost Sesame-DB over 750 
times longer to load the 50-university data set than the 1-
university data set. In contrast, DLDB displays good scalability 
in this regard. 

 

 

 

In addition, the results lead to some efficiency concerns. In terms 
of query, although Sesame-DB scales well, it was extremely slow 
in answering Queries 2, 8 (cf. Figure 3), and 9. DAMLJessKB 
also spent a lot of time on these queries and almost two hours on 
Query 8 on the smallest data set. Even worse, Sesame-DB failed 
to answer Query 2 on the 50-univeristy data set after a JDBC 
connection timed out and was forced to close. 

 
 

Compared to the others, Sesame-Memory, although having the 
above mentioned scalability problem, is the fastest in data 
loading and in answering most of the queries. This suggests that 
it might be a better choice over Sesame-DB for data of small 
scale if persistent storage is not required. DAMLJessKB, though 
also memory based, underperforms the others both in load time 
and query time.  

It is interesting to notice that Sesame and DLDB have distinct 
sets of queries which they are fast to answer. Particularly, we 
have observed that, for Queries 2, 8, and 9, which do not contain 

a specific URI as a subject or object in the statements, Sesame’s 
performance goes down dramatically. On the other hand, Sesame 
shows a nice property in answering some other queries like 
Queries 1, 3, 4 (cf. Figure 3), and 8: there was no proportional 
increase in the response time as the data size grows. We have 
also noticed a common feature of these queries, i.e., they have 
constant number of results over the test data sets. This suggests a 
subject for future work. 

It turned out that all the four systems could answer Queries 1 
through 4, which requires no extra DAML+OIL inference in 
order to get complete results. As we expected, DLDB was able to 
find all the answers for Queries 5 to 10, which requires 
subsumption inference, while Sesame could only find partial or 
no answers. However, it is surprising that DAMLJessKB could 
not infer the necessary subsumption for Queries 6 to 10 and 
hence only returned the same number of answers as Sesame. On 
the other hand, DAMLJessKB is the only system that was able to 
answer Query 11, which assumes daml:TransitiveProperty 
inference. Finally, none of the systems could answer Queries 12 
and 13 which requires realization and daml:inverseOf inference 
respectively. Surprisingly DAMLJessKB did not find any 
answers for these two queries. 

4. CONCLUSIONS 
In this paper, we did not attempt to answer the question of which 
system is best. Instead, we revealed through the experiment some 
important issues and challenges for Semantic Web knowledge 
base systems. We found that Sesame did not scale in data loading 
and its database-based version was very slow in answering some 
queries, and DAMLJessKB could only handle a very small data 
set and was slow in both data loading and querying compared to 
the others. We believe the results show that existing systems 
need to place a greater emphasis on scalability. We also found 
that DLDB and Sesame performed well respectively on certain 
queries with interesting characteristics and proposed to 
investigate what design features contribute to these differences. 
Moreover, we showed how the systems varied in query answer 
completeness and pointed out DAMLJessKB was less complete 
with respect to DAML+OIL entailment than we originally 
expected. 
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Figure 2. Repository Sizes of Sesame-DB and DLDB 
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Figure 1. The left figure shows load time for DLDB and 
Sesame-DB over all the data sets. The right one shows 
load time for all the systems but only until the 10-
university data set. 

Figure 3. Query time of DLDB, Sesame-DB, and Sesame-
Memory for Queries 4 and 8 


