
Choosing the Best Knowledge Base System for Large
Semantic Web Applications

Yuanbo Guo
Lehigh University

19 Memorial Drive West
Bethlehem, PA18015, USA

+1-610-758-4719

yug2@cse.lehigh.edu

Zhengxiang Pan
Lehigh University

19 Memorial Drive West
Bethlehem, PA18015, USA

+1-610-758-4719

zhp2@cse.lehigh.edu

Jeff Heflin
Lehigh University

19 Memorial Drive West
Bethlehem, PA18015, USA

+1-610-758-6533

heflin@cse.lehigh.edu

ABSTRACT
We present an evaluation of four knowledge base systems with
respect to use in large Semantic Web applications. We discuss
the performance of each system. In particular, we show that
existing systems need to place a greater emphasis on scalability.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods – representation languages

H.3.4 [Information Storage and Retrieval]: Systems and
Software – Performance Evaluation

General Terms
Experimentation, Measurement, Performance.

Keywords
Semantic Web, Knowledge Base System, Evaluation,
Benchmark, DAML+OIL.

1. INTRODUCTION
In this work, we evaluate two memory-based systems
(DAMLJessKB and memory-based Sesame) and two systems
with persistent storage (database-based Sesame and DLDB) with
respect to use in large Semantic Web applications. Especially we
evaluate the systems in terms of how well they support the
conflicting requirements of scalability/efficiency and reasoning
capabilities.

We have based the experiment on the Lehigh University
Benchmark [2], which supports the evaluation of DAML+OIL
repositories with respect to extensional queries over large data
sets that commit to a single realistic ontology. The test bed is
accessible at http://www.lehigh.edu/~yug2/Research/Semantic
Web/LUBM/LUBM.htm.

In our test, the smallest data set used consists of 15 DAML+OIL
files totaling 8MB, while the largest data set consists of 999 files
totaling 547MB. To our knowledge, no Semantic Web KBS has
been tested with the scale of data used here.

2. THE EXPERIMENT

Sesame [1] supports RDF/RDF Schema inference, but is an
incomplete reasoner for DAML+OIL. We test two
implementations of it, main memory-based and database-based
(Sesame-Memory and Sesame-DB hereafter). For Sesame-DB,
we use MySQL as the underlying DBMS since it is reported that
Sesame performs best with it. We evaluate DAMLJessKB [6], a
memory-based tool for description logic languages, as a system
that supports most DAML+OIL entailments. As the fourth
system, DLDB [7] is a repository featuring the extension of a
relational database system (MS Access®) with description logic
inference capabilities (provided by FaCT reasoner [3]). We have
created a wrapper over each of the above systems as an interface
to the benchmark’s test module.1

We have created 5 sets of synthetic test data containing
DAML+OIL files for 1, 5, 10, 20, and 50 universities. They have
respectively 99,565, 623,537, 1,271,585, 2,687,066 and
6,653,612 class instances and property instances in total.2 We
measure the elapsed time for loading each data set, and also the
consequent database sizes of Sesame-DB and DLDB. For
Sesame-Memory and DAMLJessKB, we evaluate their memory
efficiency by looking at the largest data set they can handle.

Thirteen benchmark queries (cf. [2]) are expressed in RQL [5],
Jess [4] and a KIF-like language and issued to Sesame,
DAMLJessKB, and DLDB respectively. We do not use a
common language in the test to eliminate the affect of query
translation to the query response time. Query response time is
collected and answer completeness is measured in the way as it
is defined in the benchmark.

The test has been carried out on a modern desktop computer with
1.8GHz P4 CPU, 256MB of RAM, and 40GB of hard disk.

3. RESULT DISCUSSION
As it turned out, DAMLJessKB could only load the 1-university
data set (99,565 instances), and took over five times longer than
any other system to do so. On the other hand, we were surprised
to see that Sesame-Memory could load up to 10 universities, and
was able to do it in fourth of the time of the next fastest system.
However, for 20 or more universities, Sesame-Memory also
succumbed to memory limitations.

1 We use Sesame v0.96, MySQL v4.0.16, DAMLJessKB 03-6-9

release, MS Access 2002, and DLDB 03-4-16 release.
2 To our knowledge, prior to this experiment, Sesame has been

tested with at most 3,000,000 statements.

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

Figures 1 and 2 show the load time and repository sizes
respectively. The results reveal a problem for Sesame: neither of
its two implementations scales in data loading: their load time is
clearly non-linear. As an example, it cost Sesame-DB over 750
times longer to load the 50-university data set than the 1-
university data set. In contrast, DLDB displays good scalability
in this regard.

In addition, the results lead to some efficiency concerns. In terms
of query, although Sesame-DB scales well, it was extremely slow
in answering Queries 2, 8 (cf. Figure 3), and 9. DAMLJessKB
also spent a lot of time on these queries and almost two hours on
Query 8 on the smallest data set. Even worse, Sesame-DB failed
to answer Query 2 on the 50-univeristy data set after a JDBC
connection timed out and was forced to close.

Compared to the others, Sesame-Memory, although having the
above mentioned scalability problem, is the fastest in data
loading and in answering most of the queries. This suggests that
it might be a better choice over Sesame-DB for data of small
scale if persistent storage is not required. DAMLJessKB, though
also memory based, underperforms the others both in load time
and query time.

It is interesting to notice that Sesame and DLDB have distinct
sets of queries which they are fast to answer. Particularly, we
have observed that, for Queries 2, 8, and 9, which do not contain

a specific URI as a subject or object in the statements, Sesame’s
performance goes down dramatically. On the other hand, Sesame
shows a nice property in answering some other queries like
Queries 1, 3, 4 (cf. Figure 3), and 8: there was no proportional
increase in the response time as the data size grows. We have
also noticed a common feature of these queries, i.e., they have
constant number of results over the test data sets. This suggests a
subject for future work.

It turned out that all the four systems could answer Queries 1
through 4, which requires no extra DAML+OIL inference in
order to get complete results. As we expected, DLDB was able to
find all the answers for Queries 5 to 10, which requires
subsumption inference, while Sesame could only find partial or
no answers. However, it is surprising that DAMLJessKB could
not infer the necessary subsumption for Queries 6 to 10 and
hence only returned the same number of answers as Sesame. On
the other hand, DAMLJessKB is the only system that was able to
answer Query 11, which assumes daml:TransitiveProperty
inference. Finally, none of the systems could answer Queries 12
and 13 which requires realization and daml:inverseOf inference
respectively. Surprisingly DAMLJessKB did not find any
answers for these two queries.

4. CONCLUSIONS
In this paper, we did not attempt to answer the question of which
system is best. Instead, we revealed through the experiment some
important issues and challenges for Semantic Web knowledge
base systems. We found that Sesame did not scale in data loading
and its database-based version was very slow in answering some
queries, and DAMLJessKB could only handle a very small data
set and was slow in both data loading and querying compared to
the others. We believe the results show that existing systems
need to place a greater emphasis on scalability. We also found
that DLDB and Sesame performed well respectively on certain
queries with interesting characteristics and proposed to
investigate what design features contribute to these differences.
Moreover, we showed how the systems varied in query answer
completeness and pointed out DAMLJessKB was less complete
with respect to DAML+OIL entailment than we originally
expected.

5. REFERENCES
[1] Broekstra, J. and Kampman, A. Sesame: A Generic

Architecture for Storing and Querying RDF and RDF
Schema. In Proc. of ISWC2002.

[2] Guo, Y., Heflin, J., and Pan, Z. Benchmarking DAML+OIL
Repositories. In Proc. of ISWC2003.

[3] Horrocks, I. The FaCT System. In Tableaux’98.

[4] Jess: the Rule Engine for the Java Platform
http://herzberg.ca.sandia.gov/jess

[5] Karvounarakis, G. et al. RQL: A Declarative Query
Language for RDF. In Proc. of WWW2002.

[6] Kopena, J.B. and Regli, W.C. DAMLJessKB: A Tool for
Reasoning with the Semantic Web. In Proc. of ISWC2003.

[7] Pan, Z. and Heflin, J. DLDB: Extending Relational
Databases to Support Semantic Web Queries. Workshop on
Practical and Scalable Semantic Systems, ISWC2003.

Figure 2. Repository Sizes of Sesame-DB and DLDB

0

500

1,000

1,500

2,000

2,500

3,000

0 100 200 300 400 500 600 700
Instances # (10K)

R
ep

os
ito

ry
 S

iz
e
 (
M

B
)

DLDB Sesame-DB

0

50,000

100,000

150,000

200,000

250,000

300,000

0 100 200 300 400 500 600 700

Instances # (10K)

Lo
ad

 T
im

e
 (

S
)

DLDB Sesame-DB

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0 20 40 60 80 100 120 140
Instances # (10K)

L
oa

d
 T

im
e

(S
)

DLDB Sesame-DB

Sesame-Memory DAMLJessKB

Query 4

0

5

10

15

20

25

0 100 200 300 400 500 600 700

Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 8

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Figure 1. The left figure shows load time for DLDB and
Sesame-DB over all the data sets. The right one shows
load time for all the systems but only until the 10-
university data set.

Figure 3. Query time of DLDB, Sesame-DB, and Sesame-
Memory for Queries 4 and 8

