

Block Edit Models for Approximate String Matching∗

Daniel Lopresti Andrew Tomkins
dpl@research.panasonic.com andrewt@cs.cmu.edu

Matsushita Information Technology Laboratory
Panasonic Technologies, Inc.

Two Research Way
Princeton, NJ 08540

USA

February 2, 1996

Abstract

In this paper we examine string block edit distance, in which two strings A and B
are compared by extracting collections of substrings and placing them into correspon-
dence. This model accounts for certain phenomena encountered in important real-world
applications, including pen computing and molecular biology. The basic problem ad-
mits a family of variations depending on whether the strings must be matched in their
entireties, and whether overlap is permitted. We show that several variants are NP-
complete, and give polynomial-time algorithms for solving the remainder.

Keywords: block edit distance, approximate string matching, sequence comparison, ap-
proximate ink matching, dynamic programming.

1 Introduction

The edit distance model for string comparison [Lev66, NW70, WF74] has found widespread
application in fields ranging from molecular biology to bird song classification [SK83]. A
great deal of research has been devoted to this area, and numerous algorithms have been
proposed for computing edit distance efficiently (e.g., [LL85, Ukk85, GG88, LV89, CL90,
GP90]). For a recent survey, see [Ste94].

In a previous paper [LT94], we introduced a new application of edit distance in the
realm of pen computing. Approximate ink matching, or AIM, is the concept of matching
handwritten/drawn queries against an existing ink database. While ink is an expressive two-
dimensional medium, its creation, when viewed in the temporal domain, is an inherently
one-dimensional process: the path of a stylus tip against a writing surface. Ink can be

∗Appears in Theoretical Computer Science, 181: 159-179, 1997.

1

treated as a string by taking pen input from a digitizing tablet and segmenting it into
strokes, extracting a standard set of features (e.g., stroke length, total angle traversed),
and clustering the resulting vectors into a smaller number of basic stroke types. It then
becomes possible to compare strings over this “ink” alphabet using approximate string
matching techniques.

For handwritten text (English and Japanese, cursive and printed), our empirical studies
indicate that this approach, which is writer-dependent, performs quite well. However, the
situation becomes more complicated for pictorial data. Certain substructures within a larger
image can correspond stroke-for-stroke, but these basic “blocks” may have been drawn by
the user in an otherwise arbitrary order. Figure 1 demonstrates this; the two trees in
Picture A are drawn last, while the tree in Picture B is drawn first. Moreover, if the goal
is to search a database, the best match may be imprecise in the sense that certain elements
are omitted or repeated. This phenomenon is also illustrated in Figure 1. Intuitively, we
judge the two pictures to be quite similar, even though Picture A has an extra tree and is
missing the car and driveway. Existing string matching algorithms are not flexible enough
to capture these forms of block motion.

Time

1 2 3 4 5 6 7

A3

A4

A5

A7

A7

B7

B3

B4

B6

B5

B1

B2

B2

Picture A

Abstract Basic Blocks

Picture B

A Block String Matching

Figure 1: Approximate string matching applied to hand-drawn pictorial data.

Likewise, in genetic sequence alignment, some biologists suggest that comparisons based
on simple edit distance may fail to account for certain common evolutionary processes
[GD91]:

Global dynamic programming alignments of such rearranged sequences yield
unpredictable, evolutionarily confusing results. . . . Global alignment methods
are generally incapable of dealing with intrasequence rearrangements, yet this

2

phenomenon is quite common among mosaic and repetitive sequence proteins.
[pg. 96]

Manual inspection of a “dot matrix” plot appears to be the most popular approach for
addressing this problem today.1 As shown in Figure 2, to compare two sequences A and B,
a table of size |A| × |B| is built and a dot placed at the (i, j)th entry if the ith symbol of A
is the same as the jth symbol of B. To reduce noise, a minimum number of exact matches
within a window centered around the location in question can be required before a dot is
placed there. In our example, the window is 25 nucleotides and must contain at least 12
matches. The resulting plot is then examined visually for interesting similarities.

Dot Plot of B.taurus DNA sequence 2 x B.taurus BoIFN-alpha A mRNA

Base Window: 25 Stringency: 12 Points: 732

B.taurus BoIFN-alpha A mRNA (351 to 677)

B
.ta

ur
us

 D
N

A
 s

eq
ue

nc
e

2
 (

0
to

 1
94

)

400 500 600

0

100

Figure 2: Dot matrix plot of two short genetic sequences.

Tichy has examined a special case of the problem where the blocks themselves must
match exactly [Tic84]. However, this is of limited value in applications where the flexibility
of allowing the blocks to be edited to create a better correspondence is important.

In another approach, a number of researchers have addressed the problem of finding
good local alignments, or sets of alignments, that avoid unconserved regions [GK82, Sel84,
HM88, AGM+90]. Smith and Waterman [SW81] and later Waterman and Eggert [WE87]
showed how to locate the best local alignment, and then how to iterate the process to
determine the next-best non-overlapping alignment. Others have extended this approach,
resulting in better time and space complexities [HHM90, HM91].

All of this earlier work shares the same strategy: find the optimal alignment, then find
the best alignment that does not overlap this, then find the best alignment that does not
overlap the first two, etc. This approach yields a series of local alignments with costs

1Also from [GD91]: “Dot matrix analysis is the only currently available tool that deals sensibly with this
phenomenon.” [pg. 96]

3

p1, p2, . . . , pk such that no other series of alignments with costs q1, q2, . . . , qk is better, under
lexicographic order. That is, p1 ≤ q1, and, if they are equal, p2 ≤ q2, etc.

In this paper, we describe a family of models for the string block edit problem. These
formalize in a succinct and rigorous way the notions illustrated in the preceding discussion:
blocks can be moved and matched freely, while individual characters within blocks can
be edited in the traditional way. This work can be distinguished from previous efforts in
that it focuses on finding a set of alignments that is optimal under a different criterion:
the L1 norm, or sum-of-costs . That is, it determines a set of block alignments with costs
{p1, p2, . . . , pk} such that for any other set of alignments with costs {q1, q2, . . . , qk}, we have∑
i pi ≤

∑
i qi. We prove that certain variants of the problem are NP-complete, and give

polynomial-time algorithms for the remainder. We conclude the paper by suggesting some
directions for further research.

2 Block Edit Models

Standard edit distance allows the relationship between two strings to be expressed graphi-
cally by means of an alignment . An example showing how “quick brown fox” can be mapped
into “kick draw flax” is:

q u i c k b r o w n f o ε x
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
k ε i c k d r a w ε f l a x

The special symbol ‘ε’ is used to represent the absence of a character. A transformation from
a character into ε is considered a deletion (e.g., u → ε), from ε into a character an insertion
(e.g., ε → a), and from one character into another, different character a substitution (e.g.,
q → k).

As a rule, the arrows in an alignment are not allowed to cross.2 Moreover, the character-
to-character correspondence is determined on an individual basis, with no regard to higher-
level structure. Consider now an alignment comparing the strings “hello world” and “world
hello”:

h e l l o w o r l d ε ε ε ε ε ε
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
ε ε ε ε ε ε w o r l d h e l l o

The “cost” of this alignment is five deletions and five insertions. By overlooking the higher-
level structure, the motion of the word “hello” from the beginning of the string to the end,
traditional edit distance (e.g., [WF74]) produces an alignment that seems to miss the true
relationship between the two strings. There is no obvious way of taking the result returned
by simple edit distance and using it to generate a more representative block matching.

Figure 3 presents a block alignment relating the strings “The quick brown fox jumps
over the lazy dog.” and “Jump over the brown fox, lazy dog. Quick!” This captures both
the low-level notion of approximate string matching (e.g., the close similarity between the

2This is dictated by the model and enforced by the dynamic programming algorithm used to perform the
computation.

4

blocks “jumps over the” and “Jump over the”), as well as the higher-level concept of block
motion. We seek algorithms capable of producing alignments such as this.

String B

The quick brown fox jumps over the lazy dog.

Jump over the brown fox, lazy dog. Quick!

String A

Figure 3: Example of a block alignment.

We now give a more formal definition of a string block edit model.

2.1 Substring Families

Assume we have a finite alphabet Σ. Let A = [a1a2 . . . am] and B = [b1b2 . . . bn] be strings
over the alphabet, ai, bj ∈ Σ. We say that a t-block substring family of A, A|t, is a multiset
containing t substrings of A, some of which may be identical. In the following, we will
write A|t = {A(1), . . . , A(t)}, with the understanding that the A(i)’s need not be distinct. A
corresponding t-block substring family of B, B|t, is a multiset of t substrings of B.

If the substrings in A|t do not overlap, we say the family is disjoint . If each character of
A is contained in some substring, we say the family represents a cover of A. Thus, Figure 1
shows a mapping between substring families such that A|5, on the left, is a disjoint cover, and
B|5, on the right, is neither disjoint nor a cover. Figure 2 illustrates that substantial overlap
can occur between candidate substrings of genetic sequences, hence there is an argument
for preferring substring families that are not necessarily disjoint in this case. Finally, in
Figure 3 the lower substring family is a disjoint cover, while the upper is disjoint but not a
cover.

In general, we may require that either or both of the substring families be disjoint and/or
a cover. Each possible combination of constraints represents a particular block edit model.
For succinctness, we introduce the following notation:

C must be a cover,
C need not be a cover,
D must be disjoint,
D need not be disjoint.

To refer to the model in which the first substring family must be a disjoint cover, and the
second substring family is unconstrained, we write CD-CD. (Note: from a computational
standpoint, by symmetry CD-CD is exactly the same problem.)

5

2.2 Block Edit Distance

Before defining block edit distance, we require an underlying function dist that returns the
cost of corresponding a substring of A with a substring of B:

dist : {i, j | 1 ≤ i ≤ j ≤ |A|} × {k, l | 1 ≤ k ≤ l ≤ |B|} → <

In practice, it is natural to assume that dist is traditional string edit distance, but any
cost function could be used. The algorithms we give work for arbitrary measures, and the
reductions work for bi-valued measures as well as for string edit distance, so the generality
of the cost function does not affect the difficulty of the problem.3

The block edit distance B between two strings A and B is determined by finding the best
way to choose t-block substring families of A and B and correspond each member of A|t with
some member of B|t. For each pairing, a cost is assessed based on the distance between the
two substrings plus a constant per-block cost, cblock . The correspondence between blocks is
given by a permutation σ ∈ St from the symmetric group on t elements. More formally,

B(A,B) ≡ min
t

min
A|t,B|t

min
σ∈S(t)

{
t · cblock +

t∑

i=1

dist
(
A(i), B(σ(i))

)}
(1)

Equation 1 does not specify whether the particular substring families must be covers, dis-
joint, or both. In this paper, we examine the various cases, show which are hard, and give
algorithms for those that are solvable in polynomial time. Table 1 summarizes our results.

Before proceeding, however, we take the opportunity to clarify an important point. In
our analyses, we impose the restriction that if i 6= j and A(i) = A(j), then B(σ(i)) 6= B(σ(j)).
That is, a particular pair of blocks cannot be placed into correspondence more than once.
This allows us to keep the measure from diverging if a negative-cost pairing exists and the
substring families do not have to be disjoint. In the event of negative-cost pairings, it may
be helpful to think of the dual problem, maximizing similarity, as opposed to minimizing
distance.

3 CD-CD Block Edit Distance is NP-complete

In this section we show that if both substring families must be disjoint covers, the block
edit distance problem is NP-complete. In Section 4, we extend the same reduction to the
other hard versions of the problem.

Theorem 1 CD-CD block edit distance is NP-complete.

Proof. Membership in NP is trivial. We must show that the problem is NP-hard.
The reduction is from uniprocessor scheduling. From Garey and Johnson [GJ79]:

3As per common usage, we refer to dist as a “distance” when in fact it is more general than this: it
need not be symmetric, can take on negative values, and does not have to obey the triangle inequality. A
bi-valued measure is one that takes on only two values; for instance, just 0 and 1.

6

CD CD CD CD

CD
O(m2n2)
Section 5

CD
O(m2n) NP-complete
Section 5 Section 4

CD
O(m2n2) NP-complete NP-complete
Section 5 Section 4 Section 4

CD
O(m2n) NP-complete NP-complete NP-complete
Section 5 Section 4 Section 4 Section 3

Table 1: Summary of the results presented in this paper.

Sequencing With Release Times and Deadlines

Instance: Set T of jobs and, for each Jobj ∈ T , a length l(j) ∈ Z+, a release
time r(j) ∈ Z+

0 , and a deadline d(j) ∈ Z+.

Question: Is there a one-processor schedule for T that schedules no job before
its release time and completes each job by its deadline?

We take the string alphabet to be Σ = {0, 1}. Assume that the number of jobs in the
scheduling problem is N = |T |. For n ∈ {1, . . . , N} we define the string #(j) to be

#(j) =

N−j︷ ︸︸ ︷
0 . . . 0

j︷ ︸︸ ︷
1 . . . 1

N︷ ︸︸ ︷
0 . . . 0

Thus, for all j, |#(j)| = 2N , and #(0) = 02N .
We must now specify two strings and a cost function as input to the block edit distance

algorithm. String A will represent time, and string B will represent the jobs. Let D be the
latest deadline, D = maxj{d(j)}. Strings A and B will have length 4N2D. Note that since
the scheduling problem is NP-hard in the strong sense, we can assume that the size of the
input is O(D), so these strings are polynomial-sized.

We assume without loss of generality that
∑
j l(j) = D. That is, if all jobs are scheduled

in time, then all units of time through the final deadline will be used. If this is not the case,
we can add to the list of jobs D−∑j l(j) additional jobs with length 1, release time 0, and
deadline D to meet the constraint without changing the problem. Figure 4 depicts the two
strings.

Each of the time-step blocks in string A is a filled-in copy of the template shown in
Figure 5. We need some new notation for referencing these substrings. We will write
A[Timei] to refer to the ith time-step of A, and A[Timei,Chunkj] to refer to the jth

“chunk” of 4N characters in substring A[Timei]. As the figure shows, A[Timei,Chunkj]
is made up of two components, each of length 2N . The first is #(j) if Jobj may start
at time-step i (i.e., if and only if r(j) ≤ i), and #(0) otherwise. Similarly, the second

7

TIMEDTIME1

4N 2D

String A =

JOB1String B = JOB j JOBN

TIME2 TIME3 TIME i TIMED-1

Figure 4: Strings A and B for the NP-completeness reduction.

component is #(j) if Jobj may end at time-step i (i.e., if and only if d(j) ≥ i), and #(0)
otherwise. Each time-step block represents a string of 4N2 characters.

#(j) if JOB j may start at TIME i, #(0) otherwise

CHUNK j

A[TIME i,CHUNK j]

CHUNK2CHUNK1 CHUNKN

#(j) if JOB j may end at TIME i, #(0) otherwise

4N 2

A[TIME i] =

Figure 5: Template of a time-step block.

At this point, we have completely specified string A. We now turn to the structure
of string B by specifying the job blocks in Figure 4. Following the notation introduced
previously, we will write B[Jobj] to refer to the entire block Jobj . Each such block is a
string consisting of l(j) · 4N2 characters.

Within B[Jobj], each of the l(j) substrings of 4N2 characters corresponds to a time-
step, so we will write B[Jobj ,Timei] to refer to the ith group of 4N2 characters within
B[Jobj]. Finally, these 4N2 characters are broken into N “chunks” of 4N characters, each
of which corresponds to a particular task. We will refer to the kth chunk within time-step
i in job j as B[Jobj ,Timei,Chunkk]. Within B[Jobj ,Timei], all chunks except those
numbered j will consist of 4N 0’s.

We now give the procedure for assigning substrings to each of the chunks. As in the
construction of string A, the first and second groups of 2N characters are used to hold
information about starting and ending a job, respectively:

start(j, i) =

{
#(j) if i = 1
#(0) otherwise

(2)

end(j, i) =

{
#(j) if i = l(j)
#(0) otherwise

(3)

B[Jobj ,Timei,Chunkk] =

{
#(0) || #(0) if j 6= k
start(j, i) || end(j, i) otherwise

(4)

8

B[Jobj ,Time1,Chunkj] has the effect of constraining job j to begin at or after its release
time, while B[Jobj ,Timel(j),Chunkj] constrains it to end at or before its deadline. This
is depicted in Figure 6.

l(j) ¥ 4N 2

#(j) #(0)

CHUNK1 CHUNK j CHUNKN

B[JOB j,TIME1,CHUNK j]

TIME1 TIME2 TIME l(j)

B[JOB j,TIME1]

B[JOB j] =

Figure 6: Template of a job block.

This completes the specification of both strings. All that remains is to give the cost
function, dist . This function returns 1 for all pairs of substrings with the following exception:

dist(s1, s2) = 0 if and only if there exist indices i1, i2, and j such that the fol-
lowing conditions hold:

1. s1 = A[Timei1] · · ·A[Timei2]

2. s2 = B[Jobj]

3. i2 − i1 + 1 = l(j)

4. r(j) ≤ i1 and d(j) ≥ i2

For the purposes of the reduction, we set cblock = 0 in Equation 1.
This particular cost function is formulated so that a zero-cost matching, if one exists,

yields a solution to the uniprocessor scheduling problem. The function checks to see whether
the two strings passed to it correspond to a block of time and a job, respectively. One might
worry that s1 and s2 could be identical to A[Timei1] · · ·A[Timei2] and B[Jobj], but come
from entirely different parts of A and B, or that their sources could violate the time-step
and job boundaries. We now show that this cannot happen: the distance function returns
0 for s1 and s2 if and only if they are actually drawn from the appropriate parts of A and
B.

Lemma 1 The substring #(j), j > 0, occurs in strings A and B only at 2N block bound-
aries.

9

Proof. Break both strings into blocks of length 2N . By their construction, each block
consists of #(i) for i ≥ 0. Any substring t of length 2N will overlap at most two such
blocks, say s1 and s2. Create s = s1 || s2. For t to equal #(j) for some j > 0, there
must exist a 1-0 transition in s that corresponds to positions N and N + 1 in t. But such
transitions occur in at most two places in s: at positions N and N + 1 (i.e., s1), and at
positions 3N and 3N + 1 (i.e., s2). That is, t can equal #(j) if and only if t = s1 or t = s2.

Thus, the substring #(j) occurs only at 2N block boundaries for j > 0. This completes
the proof of Lemma 1. 2

At this point we require some additional notation. Consider two substrings, s1 drawn
from A and s2 drawn from B. Let s0

i be the first 4N2 characters of si, and s1
i be the last

4N2 characters of si. Our goal is to show that the distance function defined earlier will
never return 0 for substrings that are not taken from appropriate locations in A and B. We
do so by presenting two sets of definitions and accompanying lemmas. The first defines a
syntactic property between two strings and shows that no other substrings can fulfill the
zero-cost conditions of dist . The second makes precise the notion of “appropriate location”
and relates it to the syntactic property.

Definition 1 Substrings s1 and s2 have the match property if the following conditions hold:

1. They both have length l(j) · 4N2 for some 1 ≤ j ≤ N .

2. The (2j − 1)th block of 2N characters in s0
1 and s0

2 are both #(j).

3. The 2jth block of 2N characters in s1
1 and s1

2 are both #(j).

We now show that any two substrings with distance 0 must have the match property.

Lemma 2 If dist(s1, s2) = 0, then substrings s1 and s2 have the match property.

Proof. By the definition of dist and the construction of strings A and B, the length con-
dition for the match property is clearly satisfied.

We now examine the (2j − 1)th block of 2N characters in s0
1 and s0

2. For the time-step
substring, s1, this will be the first 2N characters of A[Timei1 ,Chunkj], and assuming that
Jobj may start at time-step i1 (we know that r(j) ≤ i1 from the definition of dist), this
will be #(j). Likewise, for the job substring, s2, this will be the first 2N characters of
B[Jobj ,Time1,Chunkj], which by definition is also #(j).

Next, we examine the 2jth block of 2N characters in s1
1 and s1

2. For the time-step
substring, this corresponds to the last 2N characters of A[Timei2 ,Chunkj], which, as-
suming Jobj can terminate at time-step i2 (again, this is true from the definition of
dist), is #(j). For the job substring, this block corresponds to the last 2N characters
of B[Jobj ,Timel(j),Chunkj], which is also #(j).

This completes the proof of Lemma 2. 2

Finally, we must guarantee that no spurious matches can occur.

10

Definition 2 A set of indices i1, i2, and j, and the substrings they induce,

s1 = A[Timei1] · · ·A[Timei2]

and
s2 = B[Jobj],

are valid if i2 − i1 + 1 = l(j), r(j) ≤ i1, and d(j) ≥ i2.

Note that s1 and s2 are not considered valid if either is taken from a different position
in A or B, even if the resulting substrings are identical. Validity is a property of the indices
into A and B.

Lemma 3 If substrings s1 and s2 have the match property, then they are valid.

Proof. We must show that substrings of A and B will match only if they represent a
particular job and a feasible time-slot for the job. The match property requires that the
string #(j) appear four times between the two substrings, for some j in the range [1, N]. By
Lemma 1, we can conclude that any erroneous matches could come about only as a result
of #(j)’s placed during the construction of A and B, and not from “random” patterns
appearing in the strings by coincidence.

Thus, s1 and s2 must begin and end on 2N block boundaries within A and B, respec-
tively. Further, since s1 and s2 have the match property, the string #(j) must appear as the
(2j−1)th block of 2N characters at the beginning of s1, and as the 2jth block of 2N charac-
ters in the last 4N2 characters. This forces substring s1 to be aligned on a 4N2 boundary,
so it must indeed represent a legal sequence of time-steps. In this case, the details of the
construction of A guarantee that job j can be scheduled during this time-slot and meet its
release and deadline constraints.

The proof for substring s2 is immediate, since #(j) must appear exactly twice, at specific
locations, by the match property. By the construction of B, this can only occur if s2

represents job j. This completes the proof of Lemma 3. 2

We can now prove the primary lemma that leads directly to our theorem.

Lemma 4 The uniprocessor scheduling problem has a solution if and only if the corre-
sponding string block edit problem has a matching that is a zero-cost disjoint cover.

Proof. If the scheduling problem is solvable, then by the definition of dist this will yield a
zero-cost block matching. That the matching must be disjoint is clear (otherwise two jobs
will have been scheduled for the same time-step). The fact that it is a cover follows from
our earlier assumption that the total duration of the jobs consumes all time-steps up to the
latest deadline.

Assume now that a matching exists that is a zero-cost disjoint cover. Since the cost
function returns only 0 or 1, by Equation 1 the cost for each pair of blocks must be 0.
Hence, by Lemma 2, all of the pairings have the match property. Applying Lemma 3, this

11

means they correspond to valid substrings and therefore represent an assignment of jobs to
time-slots that satisfies the constraints of the scheduling problem. By the construction of
string B, all of the jobs are scheduled. This completes the proof of the lemma. 2

With Lemma 4, we have completed the proof of Theorem 1, showing that CD-CD block
edit distance is NP-complete. 2

4 NP-completeness of Other Models

In this section, we show that essentially the same reduction works for the other hard models
listed in Table 1.

Theorem 2 The CD-CD, CD-CD, and CD-CD block edit distance problems are NP-com-
plete.

Proof. As before, membership in NP is obvious, so we need only demonstrate how the
reduction can be applied to these models.

Theorem 1 states that the problem is hard if both substring families must be disjoint
covers. The same proof can be used if one substring family need not be a cover. Recall
that string A represents time-steps. Clearly a block matching that does not use all of the
available time, but still schedules all of the jobs in a valid way, is just as difficult to achieve.
This shows that CD-CD is NP-complete.

Likewise, the problem remains difficult if one substring family need not be disjoint. For
this variant we use the same reduction, but do not require the substring family chosen from
B to be disjoint. Thus, all jobs must be matched (i.e., B must still be a cover) to distinct
units of time (i.e., A must be disjoint), but jobs can also be re-used to help cover all of the
time-steps. Again, the original reduction need not be changed. This shows that CD-CD is
NP-complete.

Combining these two observations, if the time string need not be covered, and the job
string need not be disjoint, the resulting schedule will still be valid, so the reduction holds.
This shows that CD-CD is NP-complete, completing the proof of the theorem. 2

To finish the last two hard entries in Table 1, we must make minor changes to the cost
function.

Theorem 3 The CD-CD and CD-CD block edit distance problems are NP-complete.

Proof. For the CD-CD model, we can adapt the reduction fairly simply. In this case,
neither string must be disjoint, so time-steps and jobs can be used more than once. We
change the distance measure so that a valid match between Jobj and a particular sequence
of time-steps has cost 1, and all other substring pairings have cost ∞. Then if a schedule
exists, a string matching can be constructed with total distance N , otherwise no such match
can be found.

12

The proof for the CD-CD model is similar. If neither string must be covered, the problem
makes sense only if negative distances are allowed (otherwise the best match would always
return empty substring families for both strings). We modify the distance measure so that
a valid match has cost −1. Since both substring families must be disjoint, no time-step or
job can be re-used. In other words, each Jobj can be matched at most once, so the minimal
attainable distance is −N . Hence, if a matching with distance −N can be found, it must
correspond to a schedule. If there is no such match, then no schedule exists. This completes
the proof of the theorem. 2

We have shown that, for certain models, block edit distance is hard to compute. Our
proofs relied on a carefully chosen underlying distance measure. It seems likely, however,
that block editing would be most often used in conjunction with standard string edit dis-
tance. One might hope that, while the problem is hard as formulated above, it becomes
tractable when restricted in this way. Unfortunately, this is not the case:

Theorem 4 The CD-CD block edit distance problem is NP-complete when dist is standard
string edit distance.

Proof. See Appendix A. 2

We describe extensions for the other hard versions of the problem in the appendix as well.

5 Polynomial-Time Algorithms for Block Editing

We now present a family of polynomial-time algorithms to compute block edit distance
when at least one of the substring families is unconstrained.

Say that B is the string whose substring family need not be disjoint or a cover. For
the discussion that follows, it will be convenient to assume we have an array W 1 defined as
below for 1 ≤ i ≤ j ≤ m:

W 1(i, j) ≡ cblock + min
k≤l
{dist(ai . . . aj , bk . . . bl)} (5)

That is, W 1(i, j) gives the value of the best possible match between ai . . . aj and any sub-
string of B, plus the per-block cost cblock . Since portions of B can be re-used, and it need
not be covered, the information in W 1 is sufficient to perform the needed calculations for the
CD-CD problem; we will define similar matrices W for the other problems in their respec-
tive subsections. We write T (W) to mean the time required to compute a matrix W , and
shall discuss later how W can be computed more efficiently than the naive implementation
when dist is standard edit distance.

Consider the diagram shown in Figure 7. Each of the intervals ai . . . aj in the figure
represents a substring of A, and is labelled with W 1(i, j). Note that W 1(i, i) represents the
best match between the single character ai and any interval of B. As before, a substring
family of A is a multiset of substrings (i.e., intervals). If the intervals do not overlap,
the family is disjoint; if the union of the intervals is the entire line, the family is a cover.

13

Enforcing or relaxing these constraints (all relative to string A) results in different versions
of the block edit distance problem.

It is clear from Figure 7 that W 1 induces a complete interval graph, a well-studied class
for which most known problems have efficient solutions [Rob78, Gol80]. We now present a
series of dynamic programming recurrences for the variants of block edit distance that admit
poly-time solutions, based on choosing intervals in a way that satisfies certain constraints.

a1 am

String A

3

7

-2

15

4

a3 a8

W1(3,8) = cost of best match between a3...a8 and any substring of B

10 13

76

4

5

1 2 1 -1 2

Figure 7: Possible string matches viewed as intervals.

We define M(i) to be the best block match between a1 . . . ai and B for the particular
model we are interested in. Once we have computed M for i = 1, 2, . . . ,m (recall that
|A| = m), our final answer is B(A,B) =M(m).

5.1 CD-CD Block Edit Distance

We begin with the CD-CD block edit distance problem, in which the substring family of A
must be both disjoint and a cover. We can compute M using the following recurrence:

Algorithm CD-CD M(i) = min
j<i

{
M(j) +W 1(j + 1, i)

}
(6)

In this recurrence, M(i) allows the best match in B corresponding to aj+1 . . . ai to be
added to the optimal solution for a1 . . . aj for all possible “cuts” in the string, j. It is easy to
show this satisfies the requirement that the substring family for A be a disjoint cover. Since
each addition of an element from W 1 corresponds to a new block pairing, the t · cblock term
in the definition of block edit distance (Equation 1) is incorporated in the recurrence. By
dynamic programming, the value of M(i) can be computed in time O(i) given all previous
M(j < i). Thus, the total time to compute M(m) is O(m2) + T (W 1).

5.2 CD-CD Block Edit Distance

We now address the problem where the substring family must be disjoint, but need not
cover A. For this case we define another W matrix:

W 0,1(i, j) ≡ min{W 1(i, j), 0} (7)

14

Used in place of W 1 in Equation 6, W 0,1 allows sections of A to be “skipped” whenever it
is advantageous to do so. The recurrence is:

Algorithm CD-CD M(i) = min
j<i

{
M(j) +W 0,1(j + 1, i)

}
(8)

The time bound is exactly the same as for Equation 6, namely O(m2) + T (W 1).

5.3 CD-CD Block Edit Distance

Next, we consider the variant in which the substring family of A must be a cover, but need
not be disjoint. Recall that block edit distance as defined in Equation 1 does not allow the
same block pairing to be used more than once. Here we see why this should be so; otherwise
the block edit distance between two strings A and B could be −∞ (if a negative-cost pairing
exists). We require a version of W that allows the substring in A to match one or more
intervals in B:

W+(i, j) ≡
{
W 1(i, j) if W 1(i, j) > 0∑
k≤l min {cblock + dist(ai . . . aj , bk . . . bl), 0} otherwise

(9)

Similarly, we define W ∗ to represent the cost of zero or more matches:

W ∗(i, j) ≡ min
{
W+(i, j), 0

}
(10)

We can now use the following recurrence to allow overlapping intervals:

Algorithm CD-CD M(i) = min
j<i




M(j) + min

k∈[0,j+1]
W+(k, i) +

∑

a∈[0,i]
b∈[j+1,i]

W ∗(a, b)





(11)

Intuitively, the recurrence can be understood as follows: we must cover the string A
through ai. We choose optimally some intermediate point aj and cover through it (theM(j)
term). Then we cover the region between j + 1 and i, possibly overlapping some previous
blocks (the W+ term). Finally, we may add additional matchings that end between j + 1
and i if they lower the overall cost (the W ∗ term).

Note that this can be computed in O(m2) + T (W+) time, despite the additional mini-
mization and summation. First, we build a table T1(b) =

∑
0≤a≤bW

∗(a, b). This takes time
O(m2), as each element of W ∗ is added to an element of T1 exactly once, and there are
O(m2) such elements. We then create another table, T2, containing mink∈[0,j+1]W

+(k, i)
for all j ∈ [0, i− 1]. This can be done in time O(m), since given the value T2(j), the value
T2(j + 1) can be determined in constant time. Finally, we construct a third table, T3, for
the sum

∑
W ∗(a, b) over all values of j beginning at i − 1 and working backwards to 0,

adding subsequent elements of T1 at each step. Using T2 and T3,M(i) can be computed in
O(m) time for each i. Hence, the running time is O(m2) + T (W+).

15

5.4 CD-CD Block Edit Distance

Finally, we give a recurrence to solve the problem when neither substring family is con-
strained. In this case, every negative-cost pairing between blocks of A and B is added to
the matching; these are exactly the non-zero elements of W ∗, so the equation is:

Algorithm CD-CD M(i) =
∑

j≤i
W ∗(j, i) (12)

Again, the recurrence can be evaluated in time O(m2) + T (W+).

5.5 Time Complexity

As we indicated, each of the recurrences requires O(m2) time, where m = |A|. However,
they all depend on having a matrix W , so the full time bound is O(m2) + T (W). If we
build W 1 according to its definition (i.e., Equation 5), for example, we must fill in O(m2)
entries by comparing O(n2) values, each of which can take time O(mn) to compute when
dist is standard string edit distance. Thus, naively, T (W 1) = O(m3n3).

There is, however, a well-known modification of the basic dynamic programming al-
gorithm that allows the best match in B for a fixed substring in A to be found in time
O(mn). Let di,j = dist(a1 . . . ai, b1 . . . bj) be standard string edit distance [NW70, WF74].
The initial conditions are:

d0,0 = 0
di,0 = di−1,0 + cdel(ai) 1 ≤ i ≤ m
d0,j = d0,j−1 + cins(bj) 1 ≤ j ≤ n

(13)

and the main dynamic programming recurrence is:

di,j = min





di−1,j + cdel(ai)
di,j−1 + cins(bj)
di−1,j−1 + csub(ai, bj)

1 ≤ i ≤ m, 1 ≤ j ≤ n (14)

The time required to evaluate the recurrence is O(mn).
For the modification, the initial edit distance along the entire length of B is made 0

(allowing the match to start anywhere), and the final row of the table is searched for its
smallest value (allowing the match to end anywhere). The initial conditions become:

d0,0 = 0
di,0 = di−1,0 + cdel(ai) 1 ≤ i ≤ m
d0,j = 0

(15)

The inner-loop recurrence (i.e., Equation 14) remains the same. Using this formulation, we
obviate the need to try all possible starting and ending positions for the block in B, saving
a factor of O(n2) over the naive approach.

16

Furthermore, a property of this computation is that the table generated for matching
ai . . . an to B contains information about the best substring matches for ai . . . ak for i ≤
k < n as well, since these correspond to intermediate rows. Hence, only O(m) such tables
need be built to compute W 1, saving another O(m). The cblock term can be added to all
the entries in the final table in O(m2) time once these values have been determined. Thus,
T (W 1) = O(m2n).

The case for W+ is only somewhat more complicated. The construction above allows us
to find the best match in B for a fixed substring in A; to compute W+, however, we require
not only this but also the sum of all other negative-cost matchings. To do this, we apply
the same “trick” as before with B in place of A: instead of building a table comparing B
to a suffix of A, we build a series of n tables comparing each suffix of B to the suffix of
A. This allows us to look up the cost of the matching between the substrings ai . . . aj and
bk . . . bl by locating the table comparing ai . . . am to bk . . . bn and reading the (j − i, l− k)th

entry. The time required to construct the tables (and hence W+) is O(m2n2).
Finally, we note that it is possible to extend the computations in other interesting ways

by changing the definitions of the various W matrices appropriately. For instance, since each
element in W 1 represents a specific block pairing, we could incorporate an additional cost
that depends on the distance between the two blocks in their respective strings (favoring
pairings that come from the same general locations in A and B, for example).

6 Conclusions

In this paper we have examined the concept of string block edit distance, in which two
strings A and B are compared by extracting collections of substrings and placing them
into correspondence. This model seems to account for certain phenomena encountered in
important real-world applications, including pen computing and molecular biology. Exper-
imentally, we have confirmed that such a framework does indeed facilitate the matching of
hand-drawn sketches – these results are described elsewhere [LT95, LTZ].

As we demonstrated, the basic problem admits a family of variations depending on
whether the strings must be matched in their entireties, and whether overlap is permitted.
The problem is NP-complete if both substring families are constrained in any way, and
solvable in time O(m2)+T (W) otherwise. We gave algorithms for computing W in O(m2n)
or O(m2n2) time according to the specific variant – it would be interesting to know whether
these results can be improved.

Another open question concerns the existence of approximation algorithms for the more
difficult versions of the problem (especially if such algorithms also overcome the bottleneck
of having to compute W exactly). While the recurrences presented in Section 5 for the poly-
time cases are not guaranteed to return a disjoint cover for string B, this does not exclude
the possibility under some scenarios. It may be instructive to attempt to characterize just
when these additional constraints can be satisfied.

Finally, although we have given polynomial algorithms for some of the problems, the
order of growth is sufficiently large that pruning of the search space is required for all but the

17

smallest instances. In many cases, it should be possible to incorporate application-specific
knowledge to improve run-time performance.

7 Acknowledgements

The genetic sequence dot matrix plot (Figure 2) was generated using “Dotty Plotter,” a
program written by Don Gilbert. The authors would like to thank Professors Ricardo Baeza-
Yates and Udi Manber as well as the anonymous referees for their many helpful comments
on an earlier draft of this paper.

References

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

[CL90] W. I. Chang and E. L. Lawler. Approximate string matching in sublinear ex-
pected time. In Proceedings of the Symposium on Foundations of Computer
Science, pages 116–124, 1990.

[GD91] M. Gribskov and J. Devereux. Sequence Analysis Primer. Stockton Press, 1991.

[GG88] Z. Galil and R. Giancarlo. Data structures and algorithms for approximate
string matching. Journal of Complexity, 4:33–72, 1988.

[GJ79] M. R. Garey and D. S. Johnson. A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, 1979.

[GK82] W. B. Goad and M. I. Kanehisa. Pattern recognition in nucleic acid sequences
I: A general method for finding local homologies and symmetries. Nucleic Acids
Research, 10:247–263, 1982.

[Gol80] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[GP90] Z. Galil and K. Park. An improved algorithm for approximate string matching.
SIAM Journal on Computing, 19(6):989–999, 1990.

[HHM90] X. Huang, R. C. Hardison, and W. Miller. A space-efficient algorithm for local
similarities. CABIOS, 6:373–381, 1990.

[HM88] J. D. Hall and E. W. Myers. A software tool for finding locally optimal align-
ments in protein and nucleic acid sequence. CABIOS, 4:35–40, 1988.

[HM91] X. Huang and W. Miller. A time-efficient, linear-space local similarity algorithm.
Advances in Applied Mathematics, 12:337–357, 1991.

18

[Lev66] V. I. Levenshtein. Binay codes capable of correcting deletions, insertions, and
reversals. Cybernetics and Control Theory, 10(8):707–710, 1966.

[LL85] R. J. Lipton and D. P. Lopresti. A systolic array for rapid string comparison. In
H. Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on Very Large
Scale Integration, pages 363–376. Computer Science Press, 1985.

[LT94] D. Lopresti and A. Tomkins. On the searchability of electronic ink. In Proceed-
ings of the Fourth International Workshop on Frontiers in Handwriting Recog-
nition, pages 156–165, Taipei, Taiwan, 1994.

[LT95] D. Lopresti and A. Tomkins. Temporal domain matching of hand-drawn pic-
torial queries. In Proceedings of the Seventh Biennial Conference of the Inter-
national Graphonomics Society, pages 98–99, London, Ontario, 1995. Chapter-
length version submitted for publication.

[LTZ] D. Lopresti, A. Tomkins, and J. Zhou. Algorithms for matching hand-drawn
sketches. Submitted for publication.

[LV89] G. M. Landau and U. Vishkin. Fast parallel and serial approximate string
matching. Journal of Algorithms, 10:157–169, 1989.

[NW70] S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino-acid sequences of two proteins. Journal of Molecular
Biology, 48:443–453, 1970.

[Rob78] F. S. Roberts. Graph Theory and Its Applications to Problems of Society. SIAM,
Philadelphia, PA, 1978.

[Sel84] P. H. Sellers. Pattern recognition in genetic sequences by mismatch density.
Bulletin of Mathematical Biology, 46:652–686, 1984.

[SK83] D. Sankoff and J. B. Kruskal, editors. Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-Wesley,
Reading, MA, 1983.

[Ste94] G. A. Stephen. String Searching Algorithms. World Scientific, Singapore, 1994.

[SW81] T. F. Smith and M. S. Waterman. Identification of common molecular sequences.
Journal of Molecular Biology, 147:195–197, 1981.

[Tic84] W. F. Tichy. The string-to-string correction problem with block moves. ACM
Transactions on Computer Systems, 2(4):309–321, 1984.

[Ukk85] E. Ukkonen. Algorithms for approximate string matching. Information and
Control, 64:100–118, 1985.

19

[WE87] M. S. Waterman and M. Eggert. A new algorithm for best subsequence align-
ments with application to tRNA-rRNA comparisons. Journal of Molecular Bi-
ology, 197:723–728, 1987.

[WF74] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Jour-
nal of the Association for Computing Machinery, 21:168–173, 1974.

20

A Block Editing Under Standard String Edit Distance

The algorithms presented in Section 5 will work regardless of the choice of cost functions.
We need to show, however, that the same hardness results hold when the underlying distance
dist is restricted to be standard string edit distance. We begin by restating the theorem:

Theorem 4 The CD-CD block edit distance problem is NP-complete when dist is standard
string edit distance.

Proof. We extend the reduction given in Section 3 by introducing a new character ω into
the alphabet. The original proof converted an instance of uniprocessor scheduling into
an instance of block edit distance with two strings A,B ∈ Σ∗. We will post-process these
strings to yield two new strings A′ ∈ Σ∗ and B′ ∈ (Σ∪{ω})∗ such that the distance function
on underlying blocks can be replaced by standard string edit distance.

In the original reduction, the nature of the distance function required that blocks be of
a particular size, so the per-block cost cblock was not important (and hence set equal to 0).
Here, however, we assume that we may choose a particular positive value for cblock . This
assumption is a reasonable one, because when cblock = 0 the problem becomes trivial,4 and
when cblock =∞ it becomes standard string edit distance. For the single-character editing
operations, we assume that deletions, insertions, and substitutions all have cost cchar, while
the cost of a perfect match (substituting a character for itself) is 0.

Assume we are given an instance of the uniprocessor scheduling problem. As in Section 3,
we convert this into a block matching problem. We then use a “trick” to guarantee that the
algorithm cannot leave two adjacent jobs (i.e., substrings of B) together as a single block,
thereby saving cblock in the total cost.

First, we slightly more than double the number of jobs so that our new string B′ consists
of 2n + 1 jobs, the even-numbered ones corresponding to the original jobs and the odd-
numbered ones having the constraint that they must be scheduled in order, before any
even-numbered job, for their deadlines to be met. Each odd-numbered job takes one time
unit, and the ith odd-numbered job must be finished by time i. The deadlines of all the
original jobs are delayed by n+ 1 time units.

Thus, B′ starts with the form B′[Job1]B′[Job2] . . . B′[Job2n+1], and any valid schedule
must rearrange B′ into the form B′[Job1] B′[Job3] . . . B′[Job2n+1] B′[Job2σ(1)] B

′[Job2σ(2)]
. . . B′[Job2σ(n)] for some permutation, σ. We assert that it is impossible to find a satisfying
schedule that saves cblock by keeping two adjacent jobs together. Let i be even. If jobs i and
i + 1 are adjacent in the final schedule, then an even-numbered job is scheduled before an
odd-numbered job. If jobs i − 1 and i are adjacent, then either i is scheduled before some
other odd-numbered job, or the last odd-numbered job is numbered less than 2n+ 1.

We now consider the structure of the strings generated in the original reduction. As Fig-
ure 6 illustrates, the only non-zero elements in string B occur at specific locations; namely,
the first half of B[Jobj ,Time1,Chunkj] and the last half of B[Jobj ,Timel(j),Chunkj].

4In the absence of a per-block penalty, when the underlying distance measure is string edit distance, the
algorithm could simply make each individual character a “block” and place all matching characters in both
strings into correspondence.

21

Hence, for each job in string B there are only two non-zero half-chunks (where a half-chunk
is a string of length 2N), so B contains 2(2n+ 1) non-zero half-chunks and all the rest are
zero-filled. For B′, we replace every zero in the zero-filled half-chunks with ω.

String A′ is identical to string A from the original reduction. Note that ω does not
appear anywhere in A′.

We now replace the original distance function with string edit distance and demonstrate
that the reduction still works. If a schedule exists satisfying the constraints, it will be
possible to place every non-ω character in B′ into correspondence with the same character
in A′. Since ω is equally distant from all characters in A′, it does not matter which ones
it is mapped to. Thus, if an optimal schedule exists, the block edit distance will be cchar

times the number of ω’s in B′ (note that any block matching must pay at least this amount
because each ω must either be deleted or aligned with some character in A′) plus cblock

times the number of blocks.
We choose cblock to be smaller than cchar/(2n+ 1). Assume an optimal schedule exists.

Then any matching that does not break B′ into 2n+ 1 or more blocks must place at least
one pair of non-distinct non-ω characters into correspondence (by the analysis of Section 3),
or must delete some ω and therefore perform at least one compensating insertion. It must
therefore pay at least cchar plus cchar times the number of ω’s in B′, which is strictly greater
than the block edit distance of the optimal schedule.

Therefore we can solve the scheduling decision problem by determining whether the
block edit distance is equal to (2n+ 1)cblock plus cchar times the number of ω’s in B. 2

Extensions for the other hard models of Section 4 follow directly.

22

