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Abstract. We would like to quantify the assurance contained in an authentica-
tion secret.  For instance, how much assurance does a customer convey to a 
bank by revealing that his Personal Identification Number (PIN) is 1111?  We 
review a number of previously proposed measures, such as Shannon Entropy 
and min-entropy.  Although each is appropriate under some assumptions, none 
is robust regarding the attacker’s knowledge about a nonuniform distribution.  
We therefore offer new measures that are more robust and useful.  Uniform dis-
tributions are easy to analyze, but are rare in human memory; we therefore in-
vestigate ways to “groom” nonuniform distributions to be uniform.  We de-
scribe experiments that apply the techniques to highly nonuniform distribu-
tions, such as English names.  

1   Introduction 

To gain access to a computer system, a user typically presents both a public name and 
a secret password.  When the user tells that secret correctly, the system gains assur-
ance that it really is that user, and not a lucky guesser.  How much assurance is in a 
password?  Very little if the password is “dog” (especially if a web search for the user 
reveals that he owns dogs), but much more if the password is “tbdam3CS@h”.  Can 
we quantify our intuitive notion of that assurance? 

Quantification would have important implications in security engineering.  Current 
password policies are based on rules such as insisting that a password must be eight 
characters long, include a mixture of upper and lower case and numerics, and contain 
no dictionary words.  We would like to quantify our intuition that “q#acwm!” is a 
better password than “Supercalifragilisticexpialidocious1”, even though the former 
violates all rules and the latter is five times longer.  Ideally, a security engineer would 
weigh assurance against cognitive effort to choose provably good password policies. 

Similar issues arise in most Human Interactive Proofs.  If the correct response to a 
CAPTCHA is “iw5r7Acq”, then we feel that we have more assurance than for the 
string “cat”.   To make a quantitative statement about that example, we would have to 
take into account how the CAPTCHA chooses text, how the text is transformed, how 
the attacker recognizes characters (and what mistakes it makes), the strategy the at-
tacker employs, and many other issues. 

Most of this paper will therefore be devoted to a problem that is relatively easy to 
state, yet still important: how much assurance is provided by a 4-digit Personal Identi-
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fication Number (PIN)?  Extensions to more subtle problems are examined in later 
sections. 

2   The Technical Question 

To use an Automated Teller Machine (ATM), a customer needs both a bank card and 
the corresponding 4-digit PIN. If the card is lost or stolen, the PIN provides some 
protection against its unauthorized use by an attacker.  How can we measure the 
amount of protection the PIN affords?    

We take as axiomatic that the degree of protection, which we call assurance, is 
measured by the probability p that an attacker can guess the PIN.  We find it conven-
ient to speak of the number of bits1 of assurance, which is -log2 p (all further loga-
rithms in this paper are base 2).  We write assurance(C|A) = -log P(C|A), where 
P(C|A) is the probability that an attacker A guesses the customer C's PIN correctly.  
The bank may feel that by implementing a 4-digit system, they have provided each 
customer with log 10000 ~ 13.3 bits of assurance.  But can a particular customer, who 
may have chosen as his PIN the easy-to-remember number 1111, have this degree of 
assurance?  And what about a sophisticated attacker, who has found a bank card, and 
knows a lot about how people choose PINs?2 

We do not have access to large sets of real PINs for real ATM cards, so we did 
several simple experiments to study the PINs that people use in other domains.  A 
web search for “passwords name pin cheats” gave a variety of web sites that list 
“cheat codes” for computer and video games, many of which require a 4-digit PIN.  
The web site www.gamefaqs.com/computer/doswin/code/25003.html, for instance, 
gives this set of 41 PINs, which we present in sorted order: 

0201 0310 0322 0425 0517 0526 0530 0604 0818 1029 1111 1111 
1111 1111 1111 1111 1112 1122 1221 1234 1836 2220 3141 3246 
3333 3333 3333 3691 4288 4393 4440 5158 5651 6000 6660 6765 
6969 7761 7777 8148 8337 

The authors feel confident in asserting that a uniform random process did not gener-
ate those 41 PINs.  Six of the numbers are 1111; an attacker who guesses that PIN has 
about a 15% chance of success, which indicates under 3 bits of assurance. Four other 
PINs also contain a single digit.  The PINs 1112, 2220, 4440, 6000 and 6660 deviate 
in just a single affix digit.  Of the numbers that begin with the digit pair 00 through 
12, all but 1234 have second digit pairs less than 31, which make us think of dates 
(birthdays seem particularly likely).  Excluding these PINs leaves us with less than a 
third of the original set: 
                                                           
1 Shannon [1948] begins by counting the number of messages, and quickly moves to the loga-

rithmic measure of bits.  We find the logarithmic measure more appropriate for assurance for 
the same three reasons that Shannon found the logarithmic measure more appropriate for in-
formation: it is more useful, nearer intuition, and more mathematically suitable. 

2 A bank may allow a customer several attempts at entering a PIN, to allow for mistyping and 
the like.  If the attacker fails on his first attempt, he should simply ignore that PIN and pro-
ceed with the next-best possibility.  For simplicity, we ignore this complication, and assume 
that only one attempt can be made. 



How Much Assurance Does a PIN Provide?           113 

1836 3141 3246 3691 4288 4393 5158 5651 6765 6969 7761 8148 8337 
Even this subset does not appear to have been chosen at random; only three of the 
thirteen PINs have four different digits, though more than half of the 10000 possible 
PINs have that property. 

This simple experiment is not atypical.  At another site, 14 of 34 players used the 
PIN 1111.  One of the authors is willing to admit that at one time, one of the three 
ATM cards in his wallet had the (default) PIN 1111 (that card is now discarded).  
Such experiments and decades of bitter experience (see Morris and Thompson 
[1979]) lead to our basic assumption: 
 Humans tend to choose secrets in nonrandom and repeated patterns. 

3   Assurance Is Not Entropy 

We might assume that a 4-decimal-digit keyspace of PINs means that an individual 
PIN yields about 13.3 bits of assurance.  But if many users choose the PIN 1111, then 
that particular PIN should carry fewer bits of assurance.  How can we quantify that 
intuition? Many information scientists (including the authors and several of their 
colleagues) jump to the answer, “Entropy, of course!”  That answer is wrong. 

One approach to authentication is to ask people questions that are easy to remem-
ber yet are hard for attackers to guess (see O’Gorman, Bagga and Bentley [2004]).  
Such a question with four answers can be viewed as a 2-bit PIN.  Our internal corpo-
rate web site offers a daily straw poll with questions such as “What is your favorite 
way to celebrate a holiday?”  The answers and their (rough) percentages are 
 Gather with family and friends 71%    
 Catch up on chores  17%    
 Attend a wild party  11%    
 Volunteer at a shelter    1% 
The maximum possible entropy for four answers is 2 bits (when each occurs uni-
formly, 25% of the time). Interpreting the percentages as probabilities gives an en-
tropy for these nonuniform answers of 1.2 bits.  On the other hand, an attacker who 
guesses “family and friends” has a 71% chance of being right on this question, and 
slightly more than a 50% chance of being right on two such questions in a row.  Our 
intuition says that such an answer should therefore be worth at most half a bit of as-
surance.  Evidently, assurance is not entropy. 

Shannon [1949] first examined related issues in terms of “secrecy systems”.  A 
great deal of work has been done since then in “authentication theory”.  Cachin 
[1997, Section 3.1] surveys information measures that have been used in cryptogra-
phy to characterize probability vector p = (p1, p2, ..., pN), where the probabilities have 
been ordered so that p1 ≥  p2 ≥ ... ≥ pN.  He starts by reviewing the classical Shannon 
entropy of -Σi pi log pi.  He also describes the min-entropy of –log p1, which charac-
terizes the probability of guessing the most likely element, and therefore the largest 
security hole (such as “family and friends” above).  The guessing entropy Σi i pi gives 
the expected cost of a sequential search (Knuth [1973, Section 6.1]) for a secret, start-
ing at the most likely guess and progressing until the answer is found.  This measure 
might describe the time required to guess a hashed password, given a dictionary of all 
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passwords ordered by frequency.  Other measures that Cachin describes include rela-
tive entropy, Renyi entropy of order α, collision probability, and variational distance.  
None of these measures, though, directly addresses the issue of concern to us: how 
much assurance is in a particular secret?  (Though we will see in the next section that 
many of these measures are very relevant in particular contexts.) 

In his “Unified and generalized treatment of authentication theory”, Mauer [1996] 
cautions us that “Compared to the theory of secrecy, authentication theory is more 
subtle and involved.”  Ellison, Hall, Milbert and Schneier [1999] point out that “Re-
search needs to be done on the actual entropy (from the attacker’s point of view) of a 
given class of answers….”  With that warning and challenge, we now address those 
issues. 

4   Three Views of Nonuniform Probabilities 

Three players are in the game.  The first is the Bank, B, which chooses N, the size of 
the key-space (N=10000 for a 4-digit PIN).  The second is the customer, C, who 
chooses a particular PIN x(C), and who is interested in the probability that this par-
ticular PIN can be guessed.  The third is the attacker, A, who (we assume) may know 
everything about the key system, except the value of the particular PIN that goes with 
the bank card he has found.3  In particular, we assume that the attacker may have 
access to statistical information regarding the frequencies of the various PINs. 

Each of these players has different concerns.  The customer is interested in the de-
gree of protection afforded by his own PIN.  The bank is interested in one or more 
summary statistics regarding its customers, for example the average degree of protec-
tion they have, or the protection given to the least-protected customer.   The attacker 
is interested in the probability that he will be able to guess the PIN associated with the 
particular bank card he has found, which we assume is randomly chosen from all the 
bank customers. 

4.1   The Attacker 

It is convenient to start with the attacker.  A naïve attacker will guess all possible 
values of x(C) equally often, with the chance of success of precisely 1/N.  The bank 
therefore achieves log N bits of assurance against that attacker, which we will refer to 
as the max-entropy (by analogy with min-entropy).  At the other extreme, a well-
informed attacker might know the probability vector p = (p1, p2, ..., pN), which gives 
the probabilities with which each of the N possible PINs is used.  We suppose the 
possible PINs have been ordered so that p1 ≥  p2 ≥ ... ≥ pN.  Now suppose that p1 =  p2 
=... =  pk > pk+1.  Then the attacker's optimal strategy is to guess one of x1, x2, ... , xk, 
and (whether or not he randomizes among these possibilities) P(C|A) is just p1.  Any 

                                                           
3 The Attacker (A), Bank (B) and Customer (C) of authentication collectively apologize to 

Alice (A), Bob (B), and Carol (C) of cryptography for unintentional identity theft. 
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other strategy will decrease P(C|A).  In this case, the min-entropy accurately charac-
terizes the weakest link in the chain. 

In the first case, the attacker has information about no PINs, while in the second 
case, he knows the distribution of all PINs.  To define a state of knowledge interme-
diate between these two, we consider an attacker who has access to a single random 
PIN, say y, chosen from all the PINs of the bank's customers.  The optimal strategy 
for this “single-peek” attacker is to guess x(C) = y, and his chance of success on this 
occasion is py.  The overall chance of success for an attacker of this type is PA = ∑y 
(py)2  (because it is the probability that the customer's choice of PIN matches the one 
the attacker has seen).  We have 1/N ≤ PA ≤ p1, so the assurance is between the max-
entropy and the min-entropy.  Furthermore, the weighted average assurance of a cus-
tomer with respect to this single-peek attack is the Shannon entropy -∑i pi

 log pi. 
One can consider the more general case of an attacker who has a sample of size m 

of the PINs; the previous results are special cases for m = 0, 1, and ∞.  Bentley and 
Mallows [2005] prove that PA is in fact a non-decreasing function of the size of the 
sample. 

4.2   The Customer 

Now consider a customer C with a particular PIN, x(C).  This customer wants to 
know the probability that an attacker will guess exactly this PIN.  If the correspond-
ing px is not equal to p1, we could argue that this customer is perfectly protected, since 
an optimal attacker with complete knowledge will never guess this PIN.  But what 
about an attacker who chooses a different strategy?  To measure the degree of assur-
ance the customer has, we need to be specific as to what attacks are considered.  
Clearly, there is no protection against an attacker who has inside information as to 
this particular PIN.  We assume that the most an attacker can know is statistical in-
formation as to the distribution of PINs over the bank's customers, that is, the com-
plete vector p.  We cannot allow the possibility that an attacker may have any possi-
ble (mistaken) value of p, since this would allow the possibility that he believes that 
the particular PIN x(C) is very likely.  We need to specify the information the attacker 
may have, ranging from none to complete (accurate) knowledge of p. 

A naive attacker will guess x(C) correctly with probability 1/N, no matter what px 
is.  An attacker who has seen a single PIN, say y, and who guesses that value for x(C) 
will succeed with probability py.   An attacker who knows p completely, and who 
therefore guesses some y with py = p1, can succeed (in guessing x(C)) only when px = 
p1 and otherwise is sure to fail.  We suggest that an appropriate measure of the assur-
ance that a customer C has is the minimum of these three values, so that 

assurance(x)  =  - log max(1/N,  px)          (1) 

Note that this conservative formula is correct both when px = p1 and when px ≠ p1. 
The formula (1) is not completely satisfactory.   Consider a key-space with N=5, 

and two alternative p-vectors:  pa = (.4, .3, .1, .1, .1) and pb = (.3, .2, .2, .2, .1).  Ac-
cording to (1), the PINs with p = .3 are equally secure in these two cases, but this 
seems wrong since an attacker who knows p (or even an approximate value of p) will 
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guess this PIN correctly in case (b) but will never do so in case (a).  More appropriate 
measures of assurance might take rank into account. 

4.3   The Bank 

While a naive view is that a 4-digit PIN affords the max-entropy of log 10000 ~ 13.3 
bits of assurance, the bank cannot claim that each individual customer has this degree 
of assurance.  More relevant measures include the mean assurance (the Shannon en-
tropy, for a single-peek attacker) and the assurance given the most vulnerable cus-
tomer (the min-entropy).  The bank can improve these measures in several ways.  One 
way, which is done by few banks and resented by many customers, is to issue random 
PINs to customers instead of allowing customers to choose their own PINs.  But even 
this approach raises difficult questions: What if current customers have typical PINs, 
and a random process issues a new customer the common PIN 1111? 

Alternatively, the bank can urge its customers to avoid “common” PINs, but how 
can this be done without giving away information as to which PINs are common?  
One possibility is for the bank to urge its customers to choose PINs that contain four 
different digits.  This reduces the key-space to N = 5040, and so surrenders about one 
bit of assurance relative to the full N=10000.  Yan, Blackwell, Anderson and Grant 
[2000] apply such an approach to computer passwords. 

4.4   Who Knows What When? 

We have seen that assurance depends strongly on what the attacker knows about the 
distribution of the PINs.  If the attacker assumes that each element is equally likely, 
then the assurance is the max-entropy of log N bits; if the attacker knows the most 
likely key, then the assurance is the min-entropy of – log p1 bits; if the attacker sam-
ples a single key, then the weighted average assurance is the Shannon entropy. 

The attacker’s strategy can also change as a function of what he knows (or as-
sumes) about the assurance that the bank assigns to each guess. If an attacker knows 
the complete probability distribution, and also knows that the bank assigns the same 
assurance to every correct answer, then his optimal strategy is to choose the most 
likely PIN.  But if the bank knows that that attacker will behave in exactly that way, 
then the bank should assign small assurance to the most likely answer.  In fact, if the 
bank assumes that the knowledgeable, rational attacker makes that choice with prob-
ability 1, then it must associate –log 1 = 0 bits of assurance with that answer, and 
infinite assurance with every other answer. 

But if the attacker in turn knows that the bank employs that modified policy, then 
the attacker’s revised optimal strategy is to choose the second most frequent PIN.  
And so it goes, depending on who knows what when.  After wandering through a 
game-theoretic analysis reminiscent of “Rock-Paper-Scissors”, we soon arrive at 
“The Paradox of the Surprise Examination” (see Wischik [1996]). 4 

                                                           
4 In that paradox, the teacher announces to a class that there will be an exam one day next week 

(Monday through Friday) on a day when the students do not expect it.  But the exam cannot 
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Many analyses show such a lack of stability.  The bank posits a set of probabilities 
and assurances, and analyzes the attacker’s strategy, which results in a new and dis-
tinct set of assurances.  A stable strategy always exists in a two-person, zero-sum 
game.  Unfortunately, we do not see how to formulate the present problem as such a 
game.  We will study an alternate approach to stability in the next section. 

5   Inducing Uniformity 

Analysis of uniform probabilities is straightforward.  Unfortunately, few events in 
human memory are truly uniform; humans tend to know obscure but nonuniform 
facts.  In this section we will study ways in which we can induce uniformity. 

5.1   Accumulating Assurance 

So far we have considered the assurance of a single transaction: how much does one 
answer yield?  In many contexts, though, we are interested in accumulating the assur-
ance of a sequence of questions.  To gain access to personal financial information, for 
instance, one has to give correct answers to a series of questions such as “what is 
your birth date?” and “what are the last four digits of your Social Security number?”  
We now turn our attention to systems that collect a large number of questions and 
answers from a user at registration, and at login ask a subset of the questions to au-
thenticate the user in the presence of potential attackers. 

The probability that an attacker correctly guesses one of 16 items chosen uni-
formly is 1/16, which corresponds to 4 bits of assurance. If the bank presents a sec-
ond independent question of 16 choices, then the probability and bits are the same.  
The probability of correctly guessing both answers multiplies to 1/256, and the bits 
correctly sum to 8.  Straightforward accumulation of assurance is indeed straightfor-
ward. 

Accumulation becomes subtle when the attacker knows more about the bank’s 
mechanism.  If the attacker has guessed enough correct answers to need just one more 
bit of assurance to break in to an account, for instance, then he might take a very 
different approach than when he still needs to accumulate many bits, and this can 
substantially change the attacker’s optimal strategy.  The change in strategy can 
change probabilities, which also changes bits of assurance.  Henceforth we will ig-
nore this complication, and assume that the attacker’s goal is to act for the long run. 

5.2   Grooming a Single Question 

Perfectly uniform distributions are hard to attack, easy to analyze, and, unfortunately, 
relatively uncommon in human memories.  Even gender is not determined by a fair 
                                                                                                                                           

take place on Friday, because after Thursday had passed with no exam, the students would 
expect it on Friday.  For the same reason, the exam could not take place on Thursday, and so 
on. 
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coin toss -- the CIA World Factbook (at www.cia.gov/cia/publications/factbook/) 
reports that at birth the male/female ratio in the USA is 1.05.  But just as dieters hope 
that “inside every fat person is a thin person trying to get out”, so we observe that 
“inside every skewed distribution is a uniform distribution trying to get out”. 

To induce uniformity into a nonuniform binary question, for instance, we can ran-
domly exclude some members of the larger set.  For example, assume that 1000 regis-
trants report that their gender is female, and 1050 report male.  An attacker might 
gain a slight advantage by guessing male more often than female.  We can remove 
that advantage by randomly selecting 50 of the males to exclude from that question; 
we instead use other questions to verify their identity.  The result is a perfectly bal-
anced question, which provides precisely one bit of assurance. 

For a multiple-choice question, assume that 1000 responses to a four-answer ques-
tion occur with these nonuniform frequencies: 
   A   B   C  D     
 350 325 300 25 
We can groom this into a perfectly uniform question for 900 of the respondents by 
excluding all 25 Ds and randomly excluding 50 As and 25Bs: 
   A   B   C      
 300 300 300 
We have chosen answer C as the grooming point.  We will no longer ask this ques-
tion of the 100 excluded respondents (50 As, 25 Bs and 25 Ds), and instead ask other 
authentication questions of them.  (In this single-question grooming, it is important to 
exclude the respondents before any login attempts; if we randomize at each login, an 
attacker might observe that a certain question is asked rarely, and thereby deduce that 
the particular respondent gave a common answer.)  We have induced perfect uniform-
ity by trimming ten percent of the responses, at the cost of reducing the number of 
bits of assurance per response from the maximum possible of 2 to just log 3 ~ 1.585.  
If a knowledgeable attacker does not know that the distribution has been groomed, he 
might still tend to answer A; his probability of success is exactly 1/3, which is accu-
rately reflected in the bits of assurance. 

The grooming process divides a distribution into three parts: 
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is G.  It is not coincidental that after grooming, we have the condition p1 =  p2 =... =  
pG > pG+1 ≥ ... ≥ pN that we analyzed in Section 4.1.  

We have extended the basic idea of grooming in several ways.  We can admit the 
elements in the Tail (the 25 people who answered D above, for instance) without 
compromise by still assigning just log G bits for each answer.  This conservative 
policy provides a lower bound on the number of assurance bits and therefore an upper 
bound on the probability of an attacker successfully guessing. 

In the example above, answer C was an obvious grooming point.  Grooming to an-
swer D would have reduced all counts to 25, and therefore excluded too many an-
swers.  Grooming only to answer B would have raised one count from 300 to 325, but 
at the cost of reducing the bits of assurance from log 3 to log 2.  A linear-time pro-
gram can scan a sorted sequence of frequencies (or probabilities).  If registration time 
is critical, then one might choose the grooming point as the item that maximizes the 
number of bits per response times the number of non-excluded responses, which is 
the bits per original response.  If login time is critical, then one might choose a larger 
grooming point to collect more bits at each authentication attempt. 

The table below shows the effect of grooming point.  The first four columns give 
the percentages of a population (in nonincreasing order), and the last three columns 
present the bits per original response for the three grooming points.  The first three 
rows give uniform distributions (over 4, 3 and 2 answers), the fourth row gives the 
example we used earlier in this section, and the next seven rows give real distribu-
tions from the straw poll referred to in Section 3.  Because the first row describes a 
uniform distribution, the right entries give the max-entropy. The 8th line in the table 
shows that bits per original response is not unimodal in the grooming point. Section 
6.1 describes grooming larger data sets.  

  
Percentages Grooming Point 
    2 3 4 
25 25 25 25 1 1.58 2 
33.3 33.3 33.3  1 1.58  
50 50   1   
35 32.5 30 2.5 0.98 1.47 0.20 
31.3 30.9 20.6 17.2 1.00 1.25 1.37 
34.5 34.4 16.0 15.1 1.00 1.00 1.21 
38.6 32.7 20.5 8.3 0.94 1.10 0.66 
40.7 35.4 12.7 11.2 0.95 0.78 0.89 
63.2 26.1 6.6 4.2 0.63 0.38 0.33 
63.6 18.3 10.8 7.3 0.55 0.63 0.58 
65.7 17.0 9.8 7.5 0.51 0.59 0.60 

 
Some pairs of questions that are singly well suited for authentication have the dis-

advantage of being statistically correlated.  At an extreme, the questions of state of 
birth (with the answers Hawaii and Minnesota) and favorite childhood sport (with the 
answers surfing and ice hockey) likely show a strong correlation.  Once an attacker 
guesses one answer to a question, he should be constrained about further guesses.  
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We can incorporate this fact into the analyses of Section 4 by using conditional prob-
abilities. 

Alternatively, we can remove the need for conditional probabilities by pairwise 
grooming to induce independence. Suppose that two potential authentication ques-
tions ask of voters in the 2004 USA presidential election “With what party are your 
registered?” and “For whom did you vote for president?”  Further assume that in one 
(illustrative, not typical) community, 1000 respondents had this matrix of answers: 
  Republican Democrat 
 Bush       300       200 
 Kerry        200       300 
That is, 300 Republicans voted for Bush and 200 Republicans voted for Kerry, while 
the Democrats voted in exactly the opposite numbers.  We can replace that matrix 
with the uniform 2×2 matrix that consists of four entries of 200 by randomly groom-
ing out 100 of the 300 Republican Bush voters and 100 of the 300 Democratic Kerry 
voters. 

5.3   Grooming a Series of Questions 
 
Suppose that the bank has recorded the answers that each customer has given to a 
large set of questions.  We assume that an attacker knows the frequency with which 
each answer is given in the population of customers, but does not know anything 
about the particular customer he is attacking.  To assess an attack, the bank needs to 
choose some set of questions to ask, such that the probability that the attacker suc-
ceeds in answering all these questions correctly is less than some preassigned value. 

This objective can be achieved in the following way, at least when all questions 
have the same number of answers.  Suppose the responses to each question have been 
ordered from most popular to least popular. The bank chooses a sequence of M de-
sired responses as a sequence of independent random variables having some common 
distribution F, which the bank chooses; the attacker may know F.  The bank then asks 
questions that this particular customer has answered in the desired way.   From the 
attacker's point of view, he is trying to guess a sequence of independent random vari-
ables, distributed according to F, so his optimal strategy is to give the most likely 
response (according to F) every time.  The fact that he can observe which questions 
are being asked does not help him.  (This remark is not entirely trivial.)  The prob-
ability that the attack succeeds is just f1

M where f1 is the largest probability in F.  
This scheme cannot be applied to protect a customer who has not given a suffi-

ciently diverse set of responses.  
While this scheme does provide the customer with the desired measure of assur-

ance, a customer who is successfully attacked may feel cheated because although he 
answered many questions with responses other than the most popular one, on this 
occasion the (incompetent) bank asked only questions that were easy to guess.  To 
avoid this outcome, let us change the bank's strategy.  The bank can work out how 
many realizations of each possible response can be expected in M questions; it con-
strains the sequence of desired responses so that it is a random permutation of these 
numbers of each response.  The bank announces this information, so an attacker who 
has been paying attention will now choose his guesses in the same way: as a random 
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permutation of these numbers of each type of response.  The probability that the at-
tacker succeeds is now the reciprocal of a multinomial coefficient.   Any other attack 
has a smaller chance of succeeding.   The bank can therefore design the scheme to 
provide any desired degree of assurance. 

6   Applications 

So far we have described our techniques in straightforward contexts.  In this section, 
we will see how the methods can be applied in more substantial domains. 

6.1   Names 

Many humans are able to remember the names of childhood friends, and that informa-
tion is often difficult for attackers to learn (at least it was before membership in youth 
clubs was posted on the Web).  How much assurance is contained in a name such as 
Mary or Ardelia or Smith or Aalderink?  We will study data from the U.S. Census 
Bureau’s web site at www.census.gov/genealogy/www/freqnames.html.  A file of 
88,799 last (family) names accounts for 90% of the sample population and begins 
with these three lines: 

SMITH          1.006  1.006      1 
JOHNSON        0.810  1.816      2 
WILLIAMS       0.699  2.515      3 

The names appear in decreasing order by frequency.  The second line says that the 
name Johnson accounts for 0.810 percent of the sample population, that the names so 
far in the file account for 1.816 percent, and that Johnson is the second most frequent 
name in the sample.  The min-entropy is –log 0.01006 = 6.635 bits for Smith.  The 
Shannon entropy of that file is 9.969 bits, which is the weighted average assurance 
(over all customers) against a single-peek attacker. 

We wrote a linear-time program to groom the set of names, and found that the 
grooming point that maximizes total assurance bits was at Adkins, the 394th name in 
the file, which accounts for 0.029 percent of the names.  All names are therefore 
assigned log 394 = 8.622 bits of assurance.  The 394 names account for 32.478% of 
all names, but we must exclude some fraction of those (that occur above the threshold 
of 0.029%).  For instance, we exclude the unlucky 0.670% of the population that had 
the last name of Williams and was chosen to be excluded by grooming; we also ex-
clude half of the people named Dunn (the 160th most common name, with 0.058% of 
the sample).  Altogether, grooming excludes 21.448% of the population, but assigns 
8.622 bits of assurance to the remaining 78.552% of the population.  That gives an 
average of 6.807 bits per (original) name. 

The probability of success of any attacker against a randomly chosen name is at 
most 1/394.  Still, the few Smiths lucky enough to survive grooming might feel that 
they are particularly vulnerable against an attacker who is knowledgeable about the 
distribution of last names yet ignorant of the fact of grooming.  The Bank could 
soothe those fears by announcing to all potential Attackers that the data had been 
groomed. 
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We applied similar analyses to files of male and female first names from the same 
web site.  (Since the popularity of first names changes quickly over the years, a clever 
attacker should take birth date into account, and use names popular at the time.)  The 
1219 male names accounted for 90% of the population, with James the most popular 
at 3.318%.  The optimal grooming point was at the 77th name (Aaron, which ac-
counted for 0.240% of all names).  This assigned log 77 = 6.267 bits of assurance to 
the non-excluded 63.77% of the population, for an average of 3.997 bits per (original) 
name.  The 4275 female names accounted for 90% of the population, with Mary the 
most popular at 2.629%.  The optimal grooming point was at the 112th name (Rosa, 
which accounted for 0.194% of all names).  This assigned log 112 = 6.807 bits of 
assurance to the non-excluded 76.24% of the population, for an average of 5.190 bits 
per (original) name.  Our experiments are summarized in this table. 

 
 

 Total 
Names 

Shan-
non 

Entropy 

Min- 
Entropy 

Groom-
ing 

Point 

Bits Per 
Name 

Names 
Ex-

cluded 

Bits Per 
Origi-

nal 
Name 

Last 88,799 9.969 6.635 394 8.622 21.45% 6.807 
Female 4275 8.591 5.249 112 6.807 23.76% 5.190 
Male 1219 7.386 4.914 77 6.267 36.23% 3.997 

 

6.2   Grooming PINs 

Grooming is straightforward to apply to multiple-choice questions in which there are 
a handful of options.  Grooming is also useful for four-digit PINs. Suppose, for in-
stance, that of the 10,000 possible four-digit PINs, 8000 were rarely chosen, while 
2000 were chosen frequently.  We would choose a grooming point of 2000 in the 
descending-frequency list of PINs, and therefore conservatively assign just log 2000 
(or about 11) bits of assurance to each PIN.  We would still ask about the 8000 PINs 
in the Tail, but we would not use them to compute assurance. 

Let us further suppose that of the 2000 frequent PINs, most were chosen relatively 
uniformly, while a popular few were chosen often (such as 1111, 1234, 9876 and the 
like).   We might coerce the users to change them those particularly common PINs, or 
insist on some additional information at authentication.  Alternatively, we could as-
sign less assurance, using formula (1) from Section 4.2.  The small assurance might 
be enough to inquire about account balance, for example, but not enough to drain 
money from an account. 

6.3   How Much Assurance Does a CAPTCHA Provide? 

In a Completely Automated Public Test to tell Computers and Humans Apart 
(CAPTCHA), the Bank wishes to distinguish a human Customer from a robotic At-
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tacker.  Rather than providing each human a distinct secret password, the bank gives 
a test that is easy for humans yet hard for computers.  A typical test is to read a se-
quence of distorted letters.  The test should provide little inconvenience to a human, 
but enough difficulty so that an attacker usually fails the test.  Assurance is an appro-
priate measure of that difficulty. 

How well does a blind Attacker do against a CAPTCHA of visual letters?  If the 
challenge text is chosen uniformly from a dictionary of 1024 common words, it car-
ries 10 bits of assurance (the randomly guessing Attacker has probability 1/1024 of 
success).  If 8 characters are chosen uniformly from a set of 32 characters (start with 
26 upper-case letters and 10 digits, and throw out near misses like “I” and “1” and 
“2” and “Z”), then the text will have 8´5 = 40 bits of assurance.  When Chew and 
Baird [2003] generate a pronounceable 8-character challenge from an order-3 Markov 
chain, how many bits of assurance does it carry?  While the exact probability of the 
process selecting the given challenge is straightforward to compute, we conjecture 
that the inherent nonuniformity will make the probability of a clever attacker succeed-
ing in guessing very hard to determine.  We also conjecture that a “groomed” Markov 
chain would be easy to analyze yet still yield challenges that “look like” English text. 

Smart attackers of CAPTCHAs use Optical Character Recognition systems that are 
far from blind.  How do we analyze their probability of success?  We conjecture that 
a misrecognition matrix showing how often each character is mistaken for another 
(“C” might be mistaken for “O” more frequently than it is for “X”) will be key for 
such analysis. 

6.4   Lotteries 

Consider a lottery where patrons choose a key (from some known finite set) and win-
ners are decided by a random draw (perhaps on TV using a physical randomizing 
mechanism).    This is an instance of a special case of our problem where the Attack-
ers are the patrons, and the secret password is the randomly selected winning key.  It 
differs from our general case in that there is no analog of the particular Customer, 
who owns an individual password and has an interest in its security.   For such a uni-
form lottery, both the bank and the patrons can agree that the security of the key is 
properly measured by the size of the key-space (or the logarithm of this).  

Now suppose that the randomizing mechanism does not produce keys uniformly. 
(This happened in the early days of the US draft lottery.)  We assume that successive 
draws are independent, but not uniformly distributed.  If the true distribution is not 
known by the patrons, they will still measure security by log N, and will have no 
reason to prefer one key over another.  If they do know the distribution, however, or 
if they get an estimate of it by accumulating data over time, then they will need to 
reassess.  The system becomes all the more interesting if the winnings are divided 
equally among fellow successful attackers, so attackers benefit from selecting an 
answer that is guessed by few other attackers.  Becker, Chambers and Wilks [1988, 
Section 1.2] describe how this happened early in the New Jersey Pick-It Lottery. 
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7   Conclusions 

Dictionaries define assurance as a statement that inspires confidence.  The goal of this 
paper is to quantify the amount of assurance contained in a particular message.  In 
Human Interactive Proofs, that message might be the answer to a multiple-choice 
question, a PIN, the text in a visual CAPTCHA, or a password.  

Section 2 phrases the problem in terms of PINs, and gives anecdotal evidence to 
show that human secrets tend to be nonrandom.  Section 3 shows that neither the 
classical Shannon entropy nor other more recent entropic proposals completely cap-
tures assurance.  

Section 4 surveys ways of quantifying assurance from various viewpoints.  Many 
of the modifications of entropy are in fact relevant in various contexts.  For nonuni-
form distributions, though, the assurance varies greatly with assumptions regarding 
the knowledge of the attacker and regarding “who knows what when”.  Section 5 
therefore proposes methods to “groom” nonuniform distributions to induce uniform-
ity.  By guaranteeing uniformity we ensure that we can employ the straightforward 
measure of max-entropy.  Section 6 shows how the methods can be applied to prob-
lems in and beyond human authentication. 

This paper has taken steps towards a theory of assurance.  Our long-term goal, 
though, is assurance engineering, which would allow authentication engineers to 
quantify the assurance of various schemes.  In designing a CAPTCHA, for instance, 
we might want to know how much assurance is contained in 10-characters of order-4 
Markov text versus 6 characters of order-1 Markov text.  We could use such numbers 
together with analyses of readability, pronouncability, familiarity and so forth to 
achieve a provably good design.  We consider the following problems particularly 
ripe for further work. 

Improvements to Grooming.  Section 5 described straightforward grooming algo-
rithms, and Section 6 showed that they are fairly efficient in some applications.  We 
conjecture that more advanced grooming algorithms might be even more efficient. 

Authentication Contexts.  We blithely assumed that an attacker is allowed a single 
guess to produce an absolutely correct answer.  Many systems give a user a few tries 
to allow for mistyping or misremembering before taking draconian measures (such as 
seizing an ATM card).  We conjecture that in many contexts, allowing success on the 
Kth guess increases the probability of success by a factor of at most K, so log K bits 
should be subtracted from assurance thus attained.  We suspect that similarly simple 
expressions could be found to quantify the assurance of schemes that allow “near” 
answers, such as one wrong multiple-choice question or missing a character or two in 
a visual CAPTCHA. 

Real Distributions.  Section 6.1 applied grooming to English names.  People also 
tend to remember a variety of other “personal facts” that could be used for authentica-
tion, such as telephone numbers, street names and street numbers, postal codes and 
the like.  It would be useful to collect and to analyze such distributions.  Dates are 
particularly interesting.  Barring insider information, it seems that the response to the 
question “my sister’s birthday” might have about log 365.25 bits of assurance, even if 
the attacker could guess the year.  The response to “James and Mary’s wedding anni-
versary” might carry far fewer bits, because of cultural propensities towards “June 
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brides” and weekend weddings (assuming that an attacker could guess the year in 
question). 

Structure of Passwords.  Humans tend to compose passwords in predictable fash-
ions.  A user might combine a name, a punctuation mark, and a month into the pass-
word “ophelia-april”.  A dog fancier might memorize the personally significant 
phrase “the best dogs are my 3 Cocker Spaniels at home” and from it derive the 
password “tbdam3CS@h”.  It would be interesting to characterize the assurance in 
such well-defined password schemes. 
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