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Abstract 

Research has been active in the field offorgeiy detection, 
but relatively little work has been done on the detection of 
skilled forgeries. In this paper, we present an algorithm for  
detecting skilled forgeries based on a local correspondence 
between a questioned signature and a model obtained a pri- 
ori. Writer-dependent properties are measured at the sub- 
stroke level and a cost function is trained for  each writer. 
When a candidate signature is presented, the same features 
are extracted and matched against the model. We present a 
description of the features and experimental results. 

1 Introduction 

Research has been very active in the fields of on-line and 
off-line forgery detection. Most of the work in off-line de- 
tection, however, has been on random and/or simple forg- 
eries, in part because random forgeries are a large fraction of 
forgery cases [ 11, and because of the difficulties encountered 
in analyzing detailed information embedded at the stroke 
level necessary to detect skilled forgeries. A general survey 
of signature verification research is presented in [2, 31, but 
in this paper we focus on skilled forgeries. 

Skilled forgeries are often sub-classified into traced and 
simulated forgeries. Unlike random (signer uses own name 
and style) and simple (signer uses name of victim, but own 
style), skilled forgeries often differ only in subtle stroke and 
sub-stroke features that may require an experienced docu- 
ment examiner to identify. Often such forgeries have sig- 
nificant differences in line quality resulting from proper- 
ties of handwriting related to movement, including speed, 
continuity and uniformity, pen pressure, freedom or hesita- 
tion, rhythm and writing skill [I]. Although skilled forg- 
ers attempt to mimic the style of the author, making skilled 
forgeries difficult to detect based only on shape, the fact 
that the forger has to concentrate on mimicking the style 
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makes skilled forgeries very difficult to perform ballistically. 
Hence skilled forgeries often differ from genuine signatures 
in the rhythm and uniformity of the writing. These subtle 
differences can be compared locally on the stroke level and 
used for detection. 

In previous work [4], we presented algorithms that seg- 
ment a questioned signature and make a correspondence be- 
tween the signature and a model. This makes it possible to 
examine a questioned signature on the stroke level. We as- 
sume this correspondence has been established. 

2 Previous Work 

The task of detecting a skilled forgery requires one to dis- 
tinguish between natural variations among genuine signa- 
tures and unnatural variations between signatures and forg- 
eries. In the case of automatic signature verification, noise 
and degradation of the image introduced during the scanning 
and digitization process make this task even harder. Unlike 
random forgery detection, not much work has been done on 
skilled forgeries, and what work has been done has focused 
on global or regional stroke properties. 

As early as the SO’S,  Ammar et al. [5] did work on detec- 
tion of skilled forgeries. They calculated statistics of dark 
pixels and used them to identify changes in the global flow 
of the writing. This was also one of the first attempts to ex- 
tract “dynamic” information from a static image for signa- 
ture verification. 

Later work of Ammar [6] was based on reference pat- 
tems, namely the horizontal and vertical projections of the 
signature image. The projection of the questioned signature 
and the reference are compared using Euclidean distance. 
Using the leave-one-out method, the best result achieved 
was a 10.25% error rate. 

The work we present in this paper is different from the re- 
search discussed above in that we focus on information em- 
bedded at the stroke and sub-stroke level. Instead of obtain- 
ing global statistics, we try to measure stroke properties that 
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are writer-dependent. 
Many of the features are used for descrimination can be 

linked back to properites of the writing process. For exam- 
ple, the pressure on the pen tip varies as a stroke is generated. 
We can observe that a person who writes normally does so 
ballistically, so changes in pressure are continuous and occur 
in a unique rhythmic fashion. In a forgery, the forger typi- 
cally writes with great precision, so the pen pressure changes 
less, or in an unconventional way. 

Since the pressure put on the pen tip changes along a 
stroke, the width of the stroke also changes. When trying 
to forge a signature, however, due to the careful study of 
the signature or the careful action involved in tracing the 
signature, the pressure is more evenly distributed along the 
stroke, making the stroke width more uniform, or change 
in ways that are not consistent with the genuine signature. 
Similarly, we observe that for genuine signatures, horizon- 
tal strokes usually taper off whereas forgeries, may tend to 
end abruptly. Although such differences are difficult to de- 
tect on a case by case basis, they are reflected in the types of 
features we extract. 

3 Our Approach 

Our approach is based on building a set of detailed ob- 
servations using the correspondence between the model and 
the candidate signature. We first identify edge pixels of cor- 
responding strokes, then extract features corresponding to 
gradient magnitude, gradient direction, gray level and stroke 
width. We then use these features to compute the cost of 
matching the model to the signature. 

3.1 Finding the edges 

The contour edges contain edge points on both sides of 
the strokes. When moving along a stroke, the contour edge 
points on the left form a curved line, defined here to be the 
left edge of the stroke, while the contour edge points on the 
right form a curved line, defined here to be the right edge. 

First, each traced stroke point is compared with its previ- 
ous point and a stroke direction is calculated for each point. 
Each quadrant is divided into four angular regions, each rep- 
resenting an angular range of 22.5O. For each pair (current 
point p ,  previous point p o ) ,  dx and dy are defined by 

= p ,  - ( P o ) ,  

dY = Py - (P0)Y 
A direction value is assigned to each stroke point depending 
upon which range its dx and dy fall into. 

All the left edge points are grouped into left edge seg- 
ments according to the order of their associated stroke 
points, and all right edge points are grouped into right edge 

segments in the same order. However, because the stroke 
segments may not be smooth, the left and right edges may 
not be correctly ordered. 

When we obtain the left and right edge points of a stroke 
segment, we obtain an ordered set of labels(i, p ) .  i is the 
contour segment number and p is the the index number, i.e., 
the point number on that contour. We then examine these 
ordered sets. We break up a contour segment into sections 
called edge segments. For each edge segment, the minimum 
index number pmin and maximum index number p,,, on 
the same contour segment are obtained. The portion of con- 
tour segment i between points pmin and p,,, is the edge 
segment. This edge segment is guaranteed to be smooth and 
continuous. 

3.2 Feature Extraction 

To compare the model and the questioned signature, we 
compute average feature values for each stroke segment. We 
use the gradient magnitude feature as an example, but we 
also compute features based on gradient direction, gray level 
and changes in stroke width. As in [4], we segment the 
strokes at the local vertical minima and maxima. Averag- 
ing the gradient magnitude in each stroke segment greatly 
reduces the effect of noise. 

Let E,(i,j), j = 0 , 1 , .  . . , M - 1 denote the gradient 
magnitude along one of the edges of the model stroke seg- 
men t i .Le tE , ( i , j ) , j  = 0 , 1 ,  . . . ,  N-ldenotethegradient 
magnitude along the corresponding edge of the correspond- 
ing signature stroke segment. Then 

are the average of the gradient magnitude of segment i for 
the model and signature, respectively. 

To compare the gradient magnitude of the questioned sig- 
nature with that of the model, we compute 

Cmag = c ( ~ m ( i )  - ~ s ( i ) )  * ( ~ m ( i )  - ~ s ( i ) )  
i 

for both edges. 
Similarly, we compare the gray levels by computing the 

sum of the squared differences of the average gray levels of 
the stroke segments for the model and the questioned signa- 
ture. The same method is used to compare the stroke widths. 

To compare the gradient directions we proceed as fol- 
lows. We first define a 16-component vector, where the 
components are the numbers of steps in the segment, from 
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I 

features used Type I error 
grad. magnitude 7/50(14%) 
grad. direction 6/50(12%) 

gray level 9/50 (18%) 

? 

Type II error 
30/200(15%) 
34/200(17%) 
44/200(22%) 

Figure 1. Cost distributions: a) gradient mag- 
nitude, b) gradient direction, c) gray level, d) 
width. The first five samples are genuine 

- -  
width j 10/50 (20%) 

combined 1 3/50(6%) 

sample point to sample point, in each of the 16 directions. 
These numbers are normalized by the total number of sam- 
ple points in the segment, so that each component of the vec- 
tor represents the fraction of moves that the segment makes 
in a specific direction. The difference between the two vec- 
tors is defined as the sum of the squares of the differences 
between corresponding components. We compare these gra- 
dient directions by computing the sum of the squares of 
the differences between corresponding components in the 
model and the questioned signature. 

35)200(18%) 
23/200(13%0) 

4 Experiments 

We studied the differences between genuine signatures, 
simple forgeries, simulated forgeries and traced forgeries us- 
ing a database of 350 signatures that we collected. There 
were ten authors: each was asked to produce five genuine 
signatures, as well as ten simple forgeries, ten simulated 
forgeries and ten traced forgeries of other authors in the 
group. 

4.1 Results 

Simple forgeries can be easily detected using the struc- 

Figure 2. Example of total cost distribution 

Table 1. Skilled Forgery Error Rates 

turd cost function we used in [4] for random forgery de- 
tection. The error rates for simple forgery detection on 
our database were 1/50 (2%) for false rejection and 5/150 
(3.33%) for false acceptance. 

For each model, edge profiles are obtained using the 
method described in Section 3. We compare the average val- 
ues of gradient magnitude and gradient direction over each 
stroke segment and compute the cost for each feature as the 
sum of the costs over all the segments. The stroke width 
is also calculated using the gradient direction information 
along each stroke segment. 

In Figure l a  we show an example of the costs for gradient 
magnitude. In this Figure, the genuine signatures are labeled 
“g”, the simulated forgeries are labeled “s” and the traced 
forgeries are labeled “t”. Similar results for gradient direc- 
tion, grey level and stroke width are shown in Figures lb, 
c and d. The costs do in fact tend to be lower for the gen- 
uine signatures. The total costs are plotted in Figure 2; they 
show a good separation between the genuine signatures and 
the forgeries. 

Table 1 shows the the error rates obtained using each fea- 
ture separately and together. 

Different features reflect different aspects of the changes 
along strokes. All four features contribute to the distinctive- 
ness of a person’s writing. Among them, which one is the 
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dominant feature depends on the individual. 
In most of the cases, the gray level cost for traced forg- 

eries seems to be higher than that for freehand forgeries. 
When tracing a signature, the differences between different 
portions of a stroke will not be as obvious as in natural writ- 
ing. Similar arguments hold for gradient magnitude, and 
here too we find that the costs are usually higher for traced 
forgeries than for freehand forgeries. 

5 Discussion of Results 

In summary, the production of a signature is affected by 
a combination of many factors. As discussed above, traced 
forgeries may have high costs for gradient magnitude, gray 
level and stroke width, but the direction feature cost for 
traced forgeries is likely to be smaller than that for freehand 
forgeries. This is because a traced forgery closely follows a 
genuine signature, which determines the direction histogram 
of the stroke segment. Another observation is that traced 
forgeries have a bigger standard deviation of costs because 
tracing is almost never done ballistically, and drawing can be 
more inconsistent from instance to instance compared with 
writing. 

The four features together have considerable distinguish- 
ing power. Since the four feature values in the cost are not 
in the same numerical ranges and the feature that works best 
for a given writer varies from person to person, intuitively, 
we should weight each feature by the standard deviation of 
that feature for the available genuine signatures. 

An advantage of having a sub-stroke-wise correspon- 
dence between the model and the questioned signature is 
that it provides us with an opportunity to prioritize the 
strokes. Expert document examiners know which strokes to 
pay more attention to. Different stroke segments play dif- 
ferent roles in a signature. If we can pick only stroke seg- 
ments that are characteristic of each model, or weight differ- 
ent stroke segments differently according to their discrimi- 
nating power, we should be able to improve our results. 

In Figure 3, about 1/3 of the stroke segments that are rel- 
atively long are used to compute the costs of gradient mag- 
nitude to illustrate the concept of using selected stroke seg- 
ments for verification. We see that when this is done, the 
difference between the average costs of genuine signatures 
and forgeries becomes larger. 

6 Conclusion 

Making a correspondence between a model and a ques- 
tioned signature [4] enables us to do a local comparison be- 
tween them on a stroke or sub-stroke level. In this paper, we 
describe the use of local features to detect skilled forgeries. 
The features studied are gradient magnitude, gradient direc- 
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Figure 3. An example of the cost of gradient 
magnitude using a selected set of stroke seg- 
ments (log scale). 

tion, gray level, and stroke width. These features directly re- 
late to the position and angle at which a person holds a pen 
while writing. 

We have shown that these features can be used for skilled 
forgery detection. Future research could involve introduc- 
ing weights for the different features for each writer. An- 
other topic for future research is how to more effectively 
measure the features. 
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