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Abstract. In this paper we show the feasibility of template protect-
ing biometric authentication systems. In particular, we apply template
protection schemes to fingerprint data. Therefore we first make a fixed
length representation of the fingerprint data by applying Gabor filter-
ing. Next we introduce the reliable components scheme. In order to make
a binary representation of the fingerprint images we extract and then
quantize during the enrollment phase the reliable components with the
highest signal to noise ratio. Finally, error correction coding is applied to
the binary representation. It is shown that the scheme achieves an EER
of approximately 4.2% with secret length of 40 bits in experiments.

1 Introduction

Biometrics identify /authenticate people on what they are rather than on what
they have (tokens) or what they know (passwords). Since biometric properties
can not be lost or forgotten in contrast to tokens and passwords, they offer an
attractive and convenient alternative to identify and authenticate people.

When the reference information, captured during the enrollment phase, is
not, properly protected some privacy problems arise. The main risks are given
by: i) Biometrics contain sensitive information about people [Bolling, P65]. ii)
Once compromised, the templates are compromised forever and can not be reis-
sued [S99]. iii) Biometric data stored without protection can be used to perform
cross-matching between databases and track peoples behaviour. iv) Many bio-
metric identifiers can be forged based on template information [MMJ03]. This
problem received recently a lot of attention [JS02, TG04, LT03, DRS04, JW99,
Sou98.

Two equivalent approaches, Helper Data and Fuzzy Extractors, were pro-
posed to solve this privacy problem [TG04, DRS04]. In these papers the theory
of template protection has been developed and some algorithms were proposed.
In [TVI04] these algorithms were applied to ear identification and a satisfactory
performance (EER=3%, secret length=100) was achieved.
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In this paper, we present an implementation of template protection for fin-
gerprint based authentication. We present an algorithm based on helper data
consisting of two parts. The first part identifies the reliable components with a
high signal to noise ratio in the analog picture of a Gabor-filtered fingerprint. By
applying quantization, a binary representation is made of the fingerprint. The
second part of the helper data maps the binary representation onto a code word
of an error-correcting code which is further used to correct the noise remaining
after quantization.

2 Preliminaries
2.1 Biometric Verification

The biometric system that is considered in this paper is a wverification system.
As usual it consists of two phases. In the enrollment phase (executed at a Cer-
tification Authority (CA)), reference measurements are taken, the features are
extracted, and the template is stored in e.g. a database in a properly protected
way. During the verification phase, a live biometric measurement is compared to
the template that is retrieved from the database using a claimed identity. Due
to noise (caused by scratches, weather conditions, partial impressions, elastic
deformations, etc.) the measurements taken during the enrollment and verifica-
tion phase are different. This degrades the performance of a biometric verifica-
tion system. In order to measure the performance, two different error rates are
commonly used. The False Acceptance Rate (FAR) is the probability that an
impostor is falsely accepted as a genuine user. The False Rejection Rate (FRR)
is the probability that a genuine user is falsely rejected by the system. The Equal
Error Rate (EER) is the error rate at the point of operation where FAR is equal
to FRR.

2.2 Template Protection

Biometric data (and their extracted features) are modeled as k-dimensional ran-
dom variables with entries in R. The extracted features during the enrollment
phase are denoted by X and those extracted during the verification phase by
X'. The data during the verification phase are modeled as a noisy version from
those measured during the enrollment phase [TG04].

The core algorithm of a template protecting biometric system extracts a
secret from the biometric data. Generally speaking such an algorithm is built
on a Secret Extraction Code [TG04] or equivalently a Fuzzy Extractor [DRS04].
For the sake of simplicity we describe the algorithm in terms of a shielding
function [LT03], which generates a special set of secret extraction codes [TG04]
but has all necessary properties. A shielding function G : R¥ x {0, 1}* — {0,1}%
extracts a secret of length K from the biometric as follows. Given a randomly
chosen secret S € {0,1}% and a biometric X € R¥, helper data W € {0,1}* is
computed such that G(X,W) = S (equivalently the equation G(X,W) = S is
solved for W). A shielding function is called §-contracting if for all X’ that lie
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within a ball of radius ¢ of X we have G(X’, W) = G(X,W) = S. The function
G is called e-revealing if the helper data W leaks less than e bits on S (in the
information theoretic sense), i.e. I(W; S) < e. It is the goal to design the system
such that W leaks also a minimal amount of information on X; i.e. I(W; X)
has to be minimized. It was shown in [LT03] that for a shielding function G,
I(W; X) can not be made equal to zero.

During the enrollment phase the features X of Alice’s biometric are ex-
tracted, a secret S is randomly choosen and the helper data W is computed.
Then, a one-way hash function H is applied to S and the data (Alice, W, H(S))
is stored in a database.

During the verification phase, (at the sensor) a noisy version X’ of Alice’s
biometric X is measured. When Alice claims her identity the helper data W is
passed onto the sensor. The sensor computes S’ = G(X’, W) and H(S’). At the
database H(S’) is compared to H(S). If both are equal access is granted and if
they are unequal no access is granted. Note that in contrast to usual practice in
biometrics (”fuzzy matching”) an exact match is performed. We stress that the
helper data is sent over a public channel, i.e. W can be captured by an attacker.
The system is however designed such that the knowledge of W provides a minimal
amount of information on X and S [LT03, TG04, DRS04]. For basic examples of
template protecting biometric verification systems, we refer to [TG04, DRS04].

2.3 Fingerprint Feature Extraction

In this section we present a fixed length feature vector representation, of which
the elements can be compared one by one directly. The selected feature vector
describes the global shape of the fingerprint by means of the local orientations
of the ridge lines.

In order to allow for direct comparison of the feature vectors, without re-
quiring a registration stage during matching, the feature vectors have to be pre-
aligned during feature extraction. For this purpose, the core point (i.e. the up-
permost point of the innermost curving ridge) is used. These core points are au-
tomatically extracted using a likelihood ratio-based algorithm that is described
in [Baz04].

To describe the shape of the fingerprint, we extract two types of feature
vectors from the gray scale fingerprint images. The first feature vector is the
squared directional field that is defined in [Baz02]. It is evaluated at a regular
grid of 16 by 16 points with spacings of 8 pixels, which is centered at the core
point. At each of the 256 positions, the squared directional field is coded in
a vector of two elements, representing the z- and y-values, resulting in a 512-
dimensional feature vector. An example fingerprint and its directional field are
shown in Figures la and 1b respectively.

The second feature vector is the Gabor response of the fingerprint, which is
discussed in [BV04]. After substraction of the spatial local mean, the fingerprint
image is filtered by a set of four complex Gabor filters, which are given by:

x2+y2> -exp (527 f - (zsin @ + y cos)) (1)

hGabor(x7 y) = exp (_ 202
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Fig. 1. (a) Fingerprint image, (b) its directional field and (c)-(f) the smoothened ab-
solute values of Gabor responses for different orientations 6

The orientations 6 are set to 0, w/4, w/2, and 37 /4, the spatial frequency f is
tuned to the average spatial ridge-valley frequency (f = 0.11), and the width of
the filter o is set such that the entire orientation range is covered (¢ = 3.5). The
absolute values of the output images are taken, which are subsequently filtered
by a low-pass Gaussian window. The resulting images are shown in Figures 1c
to 1f.

Again, samples are taken at a regular grid of 16 by 16 points with spacings
of 8 pixels and centered at the core point. The resulting feature vector is of
length 1024. This feature vector is inspired by FingerCode [Jai00], but it can be
calculated more efficiently since a rectangular grid is used rather than a circular
one, and it performs better.

The resulting feature vector that is used for matching is a concatenation of
the squared directional field and the Gabor response. It describes the global
shape of the fingerprint in 1536 elements.

3 Integration of Template Protection
with Fingerprint Verification

From each user we use M measurements of his/her biometric for enrollment. The
enrollment phase comprises five steps: Feature Extraction, Statistical Analysis,
Quantization, Selecting Reliable Components and Creating Helper Data. These
steps are described in detail in Section 3.1.

In the verification phase the biometric of a user is measured. Then, feature
extraction and quantization are performed and using the helper data the noise
is removed and the secret reconstructed. The details are explained in section 3.2.
The complete scheme is shown in Fig. 2.
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Fig. 2. Overview of the reliable components scheme

3.1 Enrollment

Feature Extraction. At the input of the scheme, we consider a set of biometric
enrollment measurements 7 = {F; ;},_, n._; 5, where a subscript i, j denotes
the j-th enrollment measurement of the i-th user. Thus NNV is the number of users
and M the number of enrollment measurements per user such that F consists
of NM digital images of fingerprints. In the Feature Extraction block (depicted
as 'Feat. Extr.” in Fig. 2) feature vectors X are extracted from these images,
according to the method described in Section 2.3. The set of N M feature vectors
is denoted as X = {Xi7j}i:1'.N7j:1”M, where X ; ; € R¥ denotes the j-th feature
vector of the i-th person with components (X; ;); where t =1...k.

Statistical Analysis. Firstly, we compute the estimated mean feature vector
p; of person ¢ and the mean p of all enrollment feature vectors as follows,

1 M 1 N
i== ) Xij, = i 2
p M; i B N;u (2)

Secondly, we compute estimates of the within-class covariance matrix X% and
the between-class covariance matrix X°?,

N M N
1

2= ﬁ ZZ(Xi,j_Ni)(Xi,j_Hi)T , »b = N Z(:“i_.“)(,ui—,u)T. 3)
i=1 j=1 pt
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Quantization. In Fig. 2, the quantization block is denoted by ‘Q’. In this block
a binary representation (bit string) is derived from the input feature vectors of
person i denoted as &3 = { X ;},_; - The ‘Select User i’ block in Fig. 2 selects
these feature vectors from the total set X'. The quantization of X; is based on the
mean g ! determined in the ‘Statistical Analysis’ block. A binary string Q(X ;)
is constructed from the feature vector X; ; where each bit (Q(X; ;)); is defined
as (for t € {1,...,k})

(4)

Selecting Reliable Components. In this step we look for the reliable com-
ponents in the M bit strings Q(Xi) = {Q(Xi,;)},_, , of user i. The block
‘Reliable Bits’ of Fig. 2 determines the K most reliable components (or bits) for
user ¢ and creates a first set of helper data W1;. K is a fixed parameter? that
matches the length of the codewords that are going to be used in the ‘Creating
Helper Data’ step. The reliable components are defined as follows.

The t-th component of Q(X; ;) for a fixed user i = 1,..., N is called reliable,
if the values (Q(X, ;)¢ for j = 1...M are all equal. The boolean vector B; €
{0,1}* denotes the reliable bits. Its t-th entry equals one if the ¢-th component of
Q(X,;) is reliable otherwise the ¢-th entry is zero. For user that have less than
K reliable components, we additionally define soft reliable components. Define
p-soft reliable components of user ¢ as the values t for which M — p of the values
(Q(X, )¢ for j =1...M are equal. The boolean vector ng) € {0, 1}* denotes
these p-soft reliable bits.

Creating Helper Data. The helper data of our scheme consists of two parts.
The first part, denoted by the vector W1 is determined as follows. We define
the Signal-to-Noise Ratio vector & € R* by the following equation,

(2%
(Z)e

&) = te{l,... k}. (5)

1. For each user ¢ we determine the K most reliable components with the
highest Signal-to-Noise Ratio based on the vectors &, B; and ng ). first
the reliable components (indicated by B;) with the highest &; value are
chosen. If the chosen amount of components is less than K, the p-soft reliable
components with the highest &; value are added (for successively p = 1,2,...)
until a total amount of K components is chosen. The positions of these chosen
components are stored in the vector W1; € N,

! Instead of the mean, the median can be used too. This leads to the same results
2 The value of K is chosen in such a way that the vast majority of users have more
than K reliable components
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2. For each user 7, we select the bits indicated by helper data W1, and combine
these bits into a new vector Z;. More precisely, (Z;): = (Q(Xi;)) (w1, -
(This step corresponds to the ‘Select’ box in Fig. 2).

3. Let C be an ECC ? with parameters (K, s,d) where K denotes the length of
the code words, s the number of information symbols and d the number of
errors that can be corrected. For each user 4, a secret S; € {0,1}* is randomly
choosen 4 and encoded into the codeword C; € C. The second part of the
helper data W2; is then given by W2; = C; ® Z; (where @ stands for bitwise
XOR).

Finally the secret S; is hashed using a cryptographic (one-way) hash function
H and the values W1,;, W2, and H(S;) are stored in the database (indicated
with ‘DB’ in Fig. 2), linked to user i. Note that the secret size equals the number
of information symbols s in the (K, s,d) code C.

3.2 Verification

During the verification phase a noisy biometric F; of user i is measured. On
F/ the following computations are performed. i) Features are extracted from F
and a feature vector X’; is obtained. ii) In the quantization block a bit string is
derived by comparing the value of each component (X’;); with the mean value
(p)¢ according to Eq. 4 (where X; ; is replaced by X’; and Q(X; ;) is replaced
by Q(X’;)). iii) The first helper data vector W1, from the database is used
to select K components from Q(X’;) which yields a bit string Z/. iv) Then,
ZIo W2, =C; @ (Z; ® Z]) is computed and the errors are corrected such that
C! is obtained. v) Finally S} is obtained by decoding C} and H(S}) is compared
to H(S;) stored in the database. If both values match, user ¢ is authenticated.

4 Results

4.1 Fingerprint Databases

To compare the performance of the matching algorithms with and without
template protection, we applied the recognition algorithms to two fingerprint
databases.

i) The first fingerprint database we used is the second FVC2000 [Mai00]
database. This database contains 8 images of 110 different fingers. The 8-bit
gray scale fingerprint images were captured using a capacitive sensor with a
resolution of 500 dpi. The image size is 256 by 364 pixels. We use six fingerprints
per person during enrollment, two fingerprints per person during verification.

ii) The second fingerprint database is collected at the University of Twente
using an optical digitalPersona U.are.U sensor. This database contains 5 images
of 500 different fingers. The resolution of the images is 500 dpi, the bit-depth is
8 bit, and the image size is 452 by 492 pixels. We used 4 fingerprints per person
during enrollment, and one fingerprint per person for verification.

3 ECC stands for Error Correcting Code
4 This is indicated by the Random Number Generator (RNG) block in Fig. 2
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4.2 Classification Without Template Protection

For comparison we implemented a likelihood ratio-based verification scheme. For
the first database this yields an EER = 1.4% and for the second database an
EER = 1.6% ® The results are shown in Fig. 3.

nPCA =100, nLDA = 60, A, = 0.6 nPCA =100, nLDA = 50, 4, = 0.5

- FAR v
: — FRR feel

I I 1 1 1 L L L L hiLE P
-60 -50 -40 -30 -20 -10 -60 -50 -40 -30 -20 -10 0
matching score matching score

Fig. 3. Likelihood ratio-based results on databases 1 (left) and 2 (right)

4.3 Classification Results of the Reliable Component Scheme

In this section we give the results of the proposed Reliable Components Scheme
for the databases described in Section 4.1.

The ECC we use is a binary BCH code described by the triplet (K, s,d).
Since BCH codes do not exist for all triplets (K, s,d) we choose from the list
of possible BCH codes the one that maximizes the performance. This choice is
made as follows. For a set of test users, we investigate how the performance
depends on the used BCH code. Fix K as explained in the enrollment procedure
according to a valid BCH code. For our fingerprint databases, K = 511 is a good
choice since the vast majority of users have more than 511 reliable components®.
For this value of K consider the set of possible BCH codes B corresponding to
all possible values of d (see also Figure 2).

i) For each possible value of d (according to K) choose a code B(d) from B.
ii) Perform enrollment i.e. determine S, W1, W2.
iii) Perform the verification phase and compute the FAR(d) and the FRR(d) for
that value of d.

5 For database 1, we used npca = 100, npa = 60, Aw = 0.5 and threshold of —36.
For database 2, we used npca = 100, nr,pa = 50, A, = 0.5 and a threshold of —35.
(npca,npa = 50 stand for the dimension after the PCA and LDA transformation
respectively and A\, is a regularization constant)

5 On average a user has ~ 800 reliable components. When selecting K = 511, on
average 13 users will have less than 511 reliable bits (in both databases) and hence
their helper data vector W'1; also contains 1-soft reliable bits
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As mentioned in section 4.1, we split the fingerprint database in a set of en-
rollment measurements and a set of verification measurements. The dependence
of the FAR and the FRR on d is shown in Fig. 4 for one particular split. Clearly,
when d is small the FAR will be small but the FRR will be rather high because
the system is sensitive to noise. The results that we present here, are calculated
by averaging over all possible splits: (2) = 28 different splits for database 1 and
(?) = 5 splits for database 2. On average, the EER is achieved for d ~ 86 and
d =~ 102 for database 1 and 2 respectively.

FAR and FAR curves, Database 1 FRR and FAR curves, Database 2
T T T T T T

P
Error Rates
.

— FRR
L= Fan

200 180 160 140

— FRR
L[l=-Far

60 40 20 0 200 180 160 140

20 100 80 120 100 80 60 40 20 o
Errors corrected by the ECC Errors corrected by the ECC

Fig. 4. Left: FAR and FRR as a function of d for database 1, where the training
set consists of measurements {2,3,4,5,6,7} and the verification set of measurements
{1,8}. Right: FAR and FRR as a function of d for database 2, where the training set
consists of measurements {1, 2, 3,4} and the verification set of measurement {5}

The BCH code that is closest to our (on average) required error correcting ca-
pability has parameters (511, 76, 85) for database 1 and parameters (511,40, 95)
for database 2. Fig. 5 summarizes the resulting FRR and FAR that can be
achieved using these codes in columns 3 and 4. Furthermore the results for a
few other codes (with error correcting capability close to the required average)
are displayed. The figure shows that the average EER that can be achieved for
database 1 is close to 5.3% and for database 2 around 4.5%. It turns out that
many false acceptances and false rejections occur for certain people that have
some low quality pictures in the original fingerprint database. For example, some

ECC (K,s,d) FRR| FAR| FRR* FAR*
Database 1 |(511,85,63) 0.099| 0.025 0.069| 0.029
(511,76,85) 0.054| 0.052 0.035| 0.058
(511,67,87) 0.052| 0.055 0.034| 0.061
Database 2 |(511,49,93) 0.054| 0.032 0.048| 0.033
(511,40,95) 0.054| 0.035 0.048| 0.036
(511,31,109) 0.041] 0.055 0.035| 0.056

Fig. 5. Summary of the results for the two databases, for several selections of ECCs.
(*): The columns FRR* and FAR* show the results if badly enrolled users are not
taken into account
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users have measurements where the core is on the edge of the picture or where no
ridges can be distinguished. Users with such pictures amongst their enrollment
data, will often have less than 511 reliable bits (and soft reliable bits are added).
In a practical situation, these low quality pictures can easily be avoided during
enrollment by visually checking the image quality of each enrollment measure-
ment and repeating a measurement if the quality is too low. We tested this idea
by leaving out users for which W1; contains also soft reliable bits (see section
3.1). The results in terms of FAR and FRR are printed in the last two columns
of Fig. 5. The performance for database 1 has improved, achieving an EER of
about 4.5%. For database 2 the result is only slightly better with an EER of
about 4.2%.

It follows from the results that the Reliable Components Scheme degrades the
classification performance when compared to the likelihood ratio based scheme
but performance is still of the same order (from a security point of view).

5 Security Analysis

The helper data consists of two parts (W1 and W2) which are used for re-
liable feature extraction and noise correction on discrete data respectively, we
discuss the information leakage by both parts. We present the analysis under
the assumption that the quantized strings Q(X) are randomly distributed over
{0,1}°1 7. It follows from results in [TGO04], that H(S|W2) = H(S), i.e. W2
leaks no information on S. It follows from the assumption on the distribution
of Q(X) that W1 does not provide information on S. Hence, the scheme is
O-revealing. It follows from the results in [TGO04] that for the discrete case
HQ(X)|IW) > H(Q(X)) — (K — s) when a (K,s,d) BCH code is used. For
database 1 using a (511,76,85) code, this implies that the helper data W2 re-
veals 435 bits and for database 2 using a (511,40,95) code it reveals 471 bits.
We note however that given the helper data W2, the space of quantized finger-
prints Q(X) is still sufficiently large (276 and 24° respectively) to make an attack
exploiting the helper data infeasible. Again from the assumption on the distri-
bution of Q(X) it follows that W1 does not increase the information leakage
substantially.

6 Conclusions

We showed in this paper, that template protecting biometric authentication
techniques can be efficiently implemented with a performance of EER ~ 4.2%
and secret size ~ 40 bits on fingerprints. The main idea consist of splitting the
helper data in two parts, one part determines the reliable components and the
other part allows for noise correction on the quantized representations.

7 We can not prove this at the moment and need more data to compute the distribution
of the strings Q(X). The presented analysis gives however a good idea of how the
security of the system has to be analyzed
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