
G2S3: Quantum Linear Algebra August 11, 2023

Lecture 1: Classical Numerical Linear Algebra

Resources: Nick Higham’s Blog (https://nhigham.com/blog/); Matrix Computations, Gene Golub, Charles
Van Loan; Numerical Linear Algebra, Nick Trefethen; Matrix Analysis, Charles Johnson; Matrix Algorithms:
Volumes I & II, G.W. Stewart

1.1 Review: Linear Algebra Basics

1.1.1 Vectors, Matrices, Norms

Let u, v, and w be vectors in a vector space V, and let c be a scalar.

1. u+ v = v + u

2. (u+ v) +w = u+ (v +w)

3. c(u+ v) = cu+ cv

4. (c+ d)u = cu+ du

5. c(du) = (cd)u

6. u+ 0 = u

7. 1u = u

8. u+ (−u) = 0

9. 0u = 0

10. (−1)u = −u

Matrices

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn
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Vector Norms Let ∥v∥ denote the norm of vector v.

1. ∥v∥ ≥ 0

2. ∥v∥ = 0 ⇐⇒ v = 0

3. ∥cv∥ = |c|∥v∥
4. ∥u+ v∥ ≤ ∥u∥+ ∥v∥

Cauchy-Schwarz: For any vectors u and v in an inner product space, |⟨u,v⟩| ≤ ∥u∥ · ∥v∥ where ⟨u,v⟩
represents the inner product of vectors u and v.

Matrix Norms An induced matrix norm is a norm defined for matrices based on a vector norm in a
consistent way. Let A be a matrix and ∥ · ∥ be a vector norm. The induced matrix norm ∥A∥ of matrix A is:

∥A∥p = max
x̸=0

∥Ax∥p
∥x∥p

Properties of Matrix Norms Let ∥ · ∥p be a matrix norm. Here are some key properties of matrix norms:

1. ∥A∥p ≥ 0

2. ∥A∥p = 0 ⇐⇒ A ≡ 0

3. ∥cA∥p = |c|∥A∥p
4. ∥A+B∥p ≤ ∥A∥p + ∥B∥p
5. ∥AB∥p ≤ ∥A∥p · ∥B∥p

1.1.1.1 Accuracy and Stability

Accuracy: ∥F̃(x)−F(x)∥
∥F(x)∥

Stability: ∥F̃(x)−F(x̃)∥
∥F(x̃)∥

1.1.1.2 Conditioning

The condition number of a matrix quantifies how sensitive the solution of a linear system is to small
changes in the input data. Let A be a matrix and κ(A) be its condition number.

κ(A) = ∥A∥∥A−1∥
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1.2 Overview: Advanced Linear Algebra

1.2.1 Linear Systems of Equations

Direct Solvers

Nonsingular Matrix A matrix A is said to be nonsingular if A−1 exists. More carefully, A is nonsingular
if all columns and rows of A are linearly independent. (Else, it is singular.)

Unitary Matrix A matrix U is said to be unitary if UUT = UTU = I (or UUH = UHU). Unitary matrices
preserve length, orthogonality, and eigenvalue modulus.

Normal Matrix A matrix A is said to be normal if AAT = ATA (or AAH = AHA). Unitary matrices are
a special case of normal matrices.

Symmetric Positive Definite Matrix A matrix A is said to be symmetric positive definite (SPD) if it is
symmetric (A = AT ) and for any x ̸= 0, xTAx > 0.

Cholesky Factorization The Cholesky factorization decomposes a symmetric positive definite matrix A
into the product of a lower triangular matrix L and its transpose:

A = LLT

where L is a lower triangular matrix with positive diagonal entries.

LDLT Factorization The LDLT factorization decomposes an SPD matrix A into the product of a lower
triangular matrix L with unit diagonal entries, and a diagonal matrix D, and the transpose of L:

A = LDLT

where L is lower triangular, D is diagonal with positive entries.

Sparse Matrices A matrix is said to be sparse if it contains a significant number of zero entries compared
to its total number of entries.
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Least Squares Approximation

Pseudoinverse: A+ = (ATA)−1AT

Given a linear system Ax = b where A ∈ Rm×n and b ∈ Rm, the least squares solution xLS ∈ Rn

minimizes the residual vector ∥Ax− b∥:

xLS = argmin
x
∥Ax− b∥22

The solution can be expressed using the pseudoinverse and is given by:

xLS = A+b

The QR Factorization decomposes a matrix A into the product of an orthogonal matrix Q and an upper
triangular matrix R:

A = QR.
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Singular Value Decomposition

The Singular Value Decomposition (SVD) is a fundamental matrix factorization that represents any m× n
matrix as A = UΣV T .

• U is an m×m orthogonal matrix with columns as the left singular vectors of A:

U =

 | | |
u1 u2 · · · um

| | |


• Σ is an m × n diagonal matrix with non-negative real numbers σ1, σ2, . . . , σmin(m,n) on its diagonal,
called the singular values of A:

Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σmin(m,n)


• V is an n× n orthogonal matrix with columns as the right singular vectors of A:

V =

 | | |
v1 v2 · · · vn

| | |


1. Orthogonality: The matrices U and V in the SVD are orthogonal matrices, meaning their columns

form orthonormal bases.

2. Rank Approximation: The SVD allows us to approximate a matrix by keeping only a subset of its
singular values and corresponding singular vectors.

3. Solving Linear Systems: The SVD can be used to solve linear systems by expressing the solution
in terms of the pseudoinverse.
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4. Principal Component Analysis (PCA): SVD is a fundamental step in PCA, a technique used for
dimensionality reduction and feature extraction in data analysis.

5. Image Compression: The SVD can be employed for image compression, where a large image matrix
is approximated using a small number of singular values and vectors.

6. Machine Learning: SVD is utilized in various machine learning algorithms, such as matrix factor-
ization and collaborative filtering.

7. Signal Processing: SVD plays a role in signal processing tasks like noise reduction, signal enhance-
ment, and channel equalization.

8. Numerical Stability: SVD is numerically stable, making it suitable for solving ill-conditioned or
singular linear systems.

1.3 Iterative Methods for Linear Systems

1.3.1 Fixed Point Iterations

Matrix splitting: A = M −N

The Jacobi Method is a matrix splitting technique where the matrix A is decomposed into a diagonal
matrix D, and the remaining entries are placed in matrix R: A = D −R

The Jacobi iteration equation is then given by:

Dx(k+1) = Rx(k) + b

Properties: Jacobi Method

• Sufficient Condition for Convergence:

• Rate of Convergence:
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The Gauss-Seidel Method method is an improvement over the Jacobi method, where the entries of the
lower triangular part of matrix A are included in matrix L, while the strictly upper triangular part is included
in matrix U : A = L+D + U

The Gauss-Seidel iteration equation is:

(D + L)x(k+1) = Ux(k) + b

Properties: Gauss-Seidel Method

• Sufficient Condition for Convergence:

• Rate of Convergence:

1.3.2 Conjugate Gradient

Algorithm 1 Conjugate Gradient Method

Require: Symmetric positive definite matrix A, vector b, initial guess x0, and tolerance tol.
1: Initialize:
2: r0 ← b−Ax0 { Compute initial residual }
3: p0 ← r0 { Set initial search direction }
4: k ← 0 { Initialize iteration counter }
5: while not converged do
6: Compute Apk = Apk

7: αk ← rTk rk
pT

k Apk
{ Compute step size }

8: xk+1 ← xk + αkpk { Update solution }
9: rk+1 ← rk − αkApk { Update residual }

10: βk+1 ←
rTk+1rk+1

rTk rk
{ Compute conjugate direction update }

11: pk+1 ← rk+1 + βk+1pk { Update search direction }
12: k ← k + 1 { Increment iteration counter }
13: if ∥rk+1∥ < tol then
14: break

Properties: Conjugate Gradient Method

• Sufficient Condition for Convergence:

• Rate of Convergence:

• Optimal Solution in A-Norm:
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1.3.3 Krylov Methods

The Krylov subspace Km(A, v) is a vector space spanned by powers of the matrix A applied to a vector v.
It is defined as:

Km(A, v) = span{v,Av,A2v, . . . , Am−1v}

Arnoldi Iteration

Algorithm 2 Arnoldi Algorithm

Require: Matrix A ∈ Rn×n, vector v ∈ Rn, and the desired subspace size m
1: Initialize: V = [v], H = 0 ∈ R(m+1)×m

2: for j = 1 to m do
3: w = Avj

4: for i = 1 to j do
5: hij = wTvi

6: w = w − hijvi

7: hj+1,j = ∥w∥
8: if hj+1,j = 0 then
9: break

10: vj+1 = w/hj+1,j

11: Update H and V with new column vj+1

GMRES (Generalized Minimal Residual)

Algorithm 3 GMRES Algorithm

Require: Matrix A ∈ Rn×n, vector b ∈ Rn, initial guess x0 ∈ Rn, and the desired subspace size m
1: Initialize: Compute initial residual r0 = b−Ax0

2: Apply Arnoldi process to generate Vm and Hm for Km(A, r0)
3: Solve the least squares problem miny ∥Hmy − ∥r0∥e1∥2 for y
4: Update solution: xnew = x0 +Vmy
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1.3.4 Preconditioning

Left Preconditioning

Right Preconditioning

Symmetric Preconditioning

1.4 Eigenvalue Decomposition
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Properties:

• Every matrix with n linearly independent eigenvectors has an eigenvalue decomposition.

• If A has n linearly independent eigenvectors, it can be diagonalized as A = V ΛV −1, where columns of
V are eigenvectors of A and Λ contains eigenvalues.

• Eigenvalues of a real matrix can be complex, even if the matrix is real.

• Symmetric matrices have real eigenvalues and orthogonal eigenvectors.

• Positive definite matrices have positive real eigenvalues and orthogonal eigenvectors.

• Algebraic multiplicity counts how many times an eigenvalue appears in the characteristic polynomial.

• Geometric multiplicity counts how many linearly independent eigenvectors correspond to an eigenvalue.

• Small perturbations in a matrix can cause small or large changes in its eigenvalues and eigenvectors.

• The eigenvalues of a matrix lie within the numerical range, or field of values.

• Matrix powers can be computed using the eigenvalue decomposition: Ak = V ΛkV −1.

• The matrix exponential can be computed using the eigenvalue decomposition: eA = V eΛV −1.

Iterative Methods for Computing Eigenpairs:

1. Power Iteration: Computes the dominant eigenvalue and corresponding eigenvector of a matrix A, by
computing repeated matrix-vector multiplications and normalization.

2. Inverse Power Iteration: Used to find the eigenvalue closest to a specified value and requires solving
linear systems in each iteration.

3. Rayleigh Quotient Iteration: Improves the convergence of power iteration by using the Rayleigh quo-
tient as an estimate of the desired eigenvalue.

4. QR Algorithm: Uses QR factorizations to compute all eigenvalues of a matrix A and can handle both
symmetric and non-symmetric matrices.

5. Arnoldi Iteration: Used for finding a few eigenvalues and corresponding eigenvectors of a large matrix
by constructing an orthogonal basis for the Krylov subspace.

6. Subspace Iteration: A generalization of power iteration that computes a basis for a subspace containing
the desired eigenvectors.

7. Shifted Inverse Iteration: Combines inverse iteration with shifting to find eigenvalues near a given
value.

8. Implicitly Restarted Arnoldi Method: An enhancement of Arnoldi iteration that improves convergence
and stability by using deflation and restarting techniques.

9. Krylov-Schur: Avoids the numerical stability of IRAM and does not restrict the decomposition (IRAM:
Arnoldi decomp, KS: Schur decomp).
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