G2S3: Quantum Linear Algebra August 11, 2023

Lecture 1: Classical Numerical Linear Algebra

Resources: Nick Higham’s Blog (https://nhigham.com/blog/); Matriz Computations, Gene Golub, Charles
Van Loan; Numerical Linear Algebra, Nick Trefethen; Matriz Analysis, Charles Johnson; Matrixz Algorithms:
Volumes I & II, G.W. Stewart

1.1 Review: Linear Algebra Basics

1.1.1 Vectors, Matrices, Norms

Let u, v, and w be vectors in a vector space V, and let ¢ be a scalar.
1. u+v=v+u

2. (u+v)+w=u+(v+w)
3. clut+v)=cu+ev

4. (c+d)u=cu+du

5. ¢(du) = (cd)u

6. u+0=u

7. lu=u

8 u+(-u)=0

9. Ou=0

10. (-l)u=—u

Matrices
ail ai12 e A1n
a1 a2 . agn
A =
Am1 Am2 N Amn

1-1


https://nhigham.com/blog/

1-2 Lecture 1: Classical Numerical Linear Algebra

Vector Norms Let ||v]| denote the norm of vector v.

[v][ =0
V[ =0 < v=0
vl = lell[v]l

[u+ vl < fluf| +[Iv]

= W o

Cauchy-Schwarz: For any vectors u and v in an inner product space, [{(u,v)| < |lul| - [|[v| where (u,v)
represents the inner product of vectors u and v.

Matrix Norms An induced matriz norm is a norm defined for matrices based on a vector norm in a

consistent way. Let A be a matrix and || - || be a vector norm. The induced matrix norm || A|| of matrix A is:
A
PUR——
x#0 |x[|,
Properties of Matrix Norms Let || - ||, be a matrix norm. Here are some key properties of matrix norms:

[All, =0
A, =0 < A=0
leAllp = lelllAllp

A+ Bll, < [ Allp + [|Bll»
IABl, < [|Allp - 1Bl

RANE IR S

1.1.1.1 Accuracy and Stability

IF(2)~F ()]

Accuracy: ol

Stability: 1700l

1.1.1.2 Conditioning

The condition number of a matrix quantifies how sensitive the solution of a linear system is to small
changes in the input data. Let A be a matrix and x(A) be its condition number.

K(A) = AllA7
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1.2 Overview: Advanced Linear Algebra

1.2.1 Linear Systems of Equations

Direct Solvers

Nonsingular Matrix A matrix A is said to be nonsingular if A~! exists. More carefully, A is nonsingular
if all columns and rows of A are linearly independent. (Else, it is singular.)

Unitary Matrix A matrix U is said to be unitary if UUT = UTU = I (or UU® = UHU). Unitary matrices
preserve length, orthogonality, and eigenvalue modulus.

Normal Matrix A matrix A is said to be normal if AAT = AT A (or AA” = AH A). Unitary matrices are
a special case of normal matrices.

Symmetric Positive Definite Matrix A matrix A is said to be symmetric positive definite (SPD) if it is
symmetric (A = A7) and for any x # 0, xT Ax > 0.

Cholesky Factorization The Cholesky factorization decomposes a symmetric positive definite matrix A
into the product of a lower triangular matrix L and its transpose:

A=LL"
where L is a lower triangular matrix with positive diagonal entries.

LDL” Factorization The LDL” factorization decomposes an SPD matrix A into the product of a lower
triangular matrix L with unit diagonal entries, and a diagonal matrix D, and the transpose of L:

A=LDLT

where L is lower triangular, D is diagonal with positive entries.

Sparse Matrices A matrix is said to be sparse if it contains a significant number of zero entries compared
to its total number of entries.
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Least Squares Approximation

Pseudoinverse: At = (AT A)~1AT

Given a linear system Ax = b where A € R™*™ and b € R™, the least squares solution xps € R"
minimizes the residual vector ||Az — bl

rps = argmin || Az — b||3
€T
The solution can be expressed using the pseudoinverse and is given by:
rrLs = A+b

The QR Factorization decomposes a matrix A into the product of an orthogonal matrix () and an upper
triangular matrix R:

A=QR.
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Singular Value Decomposition

The Singular Value Decomposition (SVD) is a fundamental matrix factorization that represents any m x n
matrix as A = UXVT.

e U is an m x m orthogonal matrix with columns as the left singular vectors of A:

U= |u u - u,
o |
e X is an m X n diagonal matrix with non-negative real numbers 01,02, ..., Onin(m,n) On its diagonal,
called the singular values of A:
g1 0 0
0 g9 0
2 =
0 0o - Omin(m,n)

e V is an n X n orthogonal matrix with columns as the right singular vectors of A:

. |
V=|vi va -+ v,
o

1. Orthogonality: The matrices U and V in the SVD are orthogonal matrices, meaning their columns
form orthonormal bases.

2. Rank Approximation: The SVD allows us to approximate a matrix by keeping only a subset of its
singular values and corresponding singular vectors.

3. Solving Linear Systems: The SVD can be used to solve linear systems by expressing the solution
in terms of the pseudoinverse.
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4. Principal Component Analysis (PCA): SVD is a fundamental step in PCA, a technique used for
dimensionality reduction and feature extraction in data analysis.

5. Image Compression: The SVD can be employed for image compression, where a large image matrix
is approximated using a small number of singular values and vectors.

6. Machine Learning: SVD is utilized in various machine learning algorithms, such as matrix factor-
ization and collaborative filtering.

7. Signal Processing: SVD plays a role in signal processing tasks like noise reduction, signal enhance-
ment, and channel equalization.

8. Numerical Stability: SVD is numerically stable, making it suitable for solving ill-conditioned or
singular linear systems.

1.3 Iterative Methods for Linear Systems

1.3.1 Fixed Point Iterations

Matrix splitting: A= M — N

The Jacobi Method is a matrix splitting technique where the matrix A is decomposed into a diagonal
matrix D, and the remaining entries are placed in matrix R: A=D — R

The Jacobi iteration equation is then given by:

Dz 1) = Ra®) 1 p
Properties: Jacobi Method

e Sufficient Condition for Convergence:

¢ Rate of Convergence:
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The Gauss-Seidel Method method is an improvement over the Jacobi method, where the entries of the
lower triangular part of matrix A are included in matrix L, while the strictly upper triangular part is included
inmatrix U: A=L+D+U

The Gauss-Seidel iteration equation is:

(D + L)z = yz® +p

Properties: Gauss-Seidel Method

e Sufficient Condition for Convergence:

e Rate of Convergence:

1.3.2 Conjugate Gradient

Algorithm 1 Conjugate Gradient Method

Require: Symmetric positive definite matrix A, vector b, initial guess xg, and tolerance tol.
1:

10:

11:
12:
13:
14:

2
3
4
5
6:
7
8
9

Initialize:

ro + b — Axy { Compute initial residual }
po < ro { Set initial search direction }
k < 0 { Initialize iteration counter }
: while not converged do
Compute Ap;, = Apk
Qg p%g;;k { Compute step size }

Xp+1 ¢ Xi + agpr  { Update solution }
rp+1 < ry — apAp, { Update residual }

T
Brt1 LH?Z“ { Compute conjugate direction update }
k

Pk+1 < Tit+1 + Bk+1Pe { Update search direction }
k«+ k+1 { Increment iteration counter }
if |lri41]| < tol then

break

Properties: Conjugate Gradient Method

e Sufficient Condition for Convergence:

¢ Rate of Convergence:

e Optimal Solution in A-Norm:
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1.3.3 Krylov Methods

The Krylov subspace K, (A, v) is a vector space spanned by powers of the matrix A applied to a vector v.
It is defined as:
K (A, v) = span{v, Av, A%v,..., A" Ty}

Arnoldi Iteration

Algorithm 2 Arnoldi Algorithm

Require: Matrix A € R"*", vector v € R™, and the desired subspace size m
1: Initialize: V = [v], H = 0 € R(m+h)xm
2: for j =1 tom do
3: w = Av;
4 for i=1to j do
5 hij = WTVZ'
6: W =W — hijvi
7
8
9

hjp1; = |lwl]
if thrl,j =0 then
break
10: Vipr =w/hjt,
11: Update H and V with new column v;;

GMRES (Generalized Minimal Residual)

Algorithm 3 GMRES Algorithm

Require: Matrix A € R"*" vector b € R", initial guess zy € R™, and the desired subspace size m
1: Initialize: Compute initial residual rq = b — Axg
2: Apply Arnoldi process to generate V,,, and H,, for K,,,(4, ro)
3: Solve the least squares problem min, |H,,y — ||7olle1]|2 for y
4: Update solution: Tpew = Tg + Vi y
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1.3.4 Preconditioning

Left Preconditioning

Right Preconditioning

Symmetric Preconditioning

1.4 Eigenvalue Decomposition

1-9
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Properties:

e Every matrix with n linearly independent eigenvectors has an eigenvalue decomposition.

e If A has n linearly independent eigenvectors, it can be diagonalized as A = VAV ~!, where columns of
V' are eigenvectors of A and A contains eigenvalues.

e Eigenvalues of a real matrix can be complex, even if the matrix is real.

e Symmetric matrices have real eigenvalues and orthogonal eigenvectors.

e Positive definite matrices have positive real eigenvalues and orthogonal eigenvectors.

e Algebraic multiplicity counts how many times an eigenvalue appears in the characteristic polynomial.
e Geometric multiplicity counts how many linearly independent eigenvectors correspond to an eigenvalue.
e Small perturbations in a matrix can cause small or large changes in its eigenvalues and eigenvectors.
e The eigenvalues of a matrix lie within the numerical range, or field of values.

e Matrix powers can be computed using the eigenvalue decomposition: A¥ = VA*YV 1,

e The matrix exponential can be computed using the eigenvalue decomposition: e4 = VerV 1,
Iterative Methods for Computing Eigenpairs:
1. Power Iteration: Computes the dominant eigenvalue and corresponding eigenvector of a matrix A, by

computing repeated matrix-vector multiplications and normalization.

2. Inverse Power Iteration: Used to find the eigenvalue closest to a specified value and requires solving
linear systems in each iteration.

3. Rayleigh Quotient Iteration: Improves the convergence of power iteration by using the Rayleigh quo-
tient as an estimate of the desired eigenvalue.

4. QR Algorithm: Uses QR factorizations to compute all eigenvalues of a matrix A and can handle both
symmetric and non-symmetric matrices.

5. Arnoldi Iteration: Used for finding a few eigenvalues and corresponding eigenvectors of a large matrix
by constructing an orthogonal basis for the Krylov subspace.

6. Subspace Iteration: A generalization of power iteration that computes a basis for a subspace containing
the desired eigenvectors.

7. Shifted Inverse Iteration: Combines inverse iteration with shifting to find eigenvalues near a given
value.

8. Implicitly Restarted Arnoldi Method: An enhancement of Arnoldi iteration that improves convergence
and stability by using deflation and restarting techniques.

9. Krylov-Schur: Avoids the numerical stability of IRAM and does not restrict the decomposition (IRAM:
Arnoldi decomp, KS: Schur decomp).
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