Lecture 1: Classical Numerical Linear Algebra

Resources: Nick Higham's Blog (https://nhigham.com/blog/); Matrix Computations, Gene Golub, Charles Van Loan; Numerical Linear Algebra, Nick Trefethen; Matrix Analysis, Charles Johnson; Matrix Algorithms: Volumes I $\& I I$, G.W. Stewart

1.1 Review: Linear Algebra Basics

1.1.1 Vectors, Matrices, Norms

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in a vector space \mathbb{V}, and let c be a scalar.

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
3. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
4. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
5. $\quad c(d \mathbf{u})=(c d) \mathbf{u}$
6. $\mathbf{u}+\mathbf{0}=\mathbf{u}$
7. $\mathbf{u} \mathbf{u}=\mathbf{u}$
8. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
9. $0 \mathbf{u}=\mathbf{0}$
10. $(-1) \mathbf{u}=-\mathbf{u}$

Matrices

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Vector Norms Let $\|\mathbf{v}\|$ denote the norm of vector \mathbf{v}.

1. $\|\mathbf{v}\| \geq 0$
2. $\|\mathbf{v}\|=0 \Longleftrightarrow \mathbf{v}=\mathbf{0}$
3. $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$
4. $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$

Cauchy-Schwarz: For any vectors \mathbf{u} and \mathbf{v} in an inner product space, $|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\| \cdot\|\mathbf{v}\|$ where $\langle\mathbf{u}, \mathbf{v}\rangle$ represents the inner product of vectors \mathbf{u} and \mathbf{v}.

Matrix Norms An induced matrix norm is a norm defined for matrices based on a vector norm in a consistent way. Let A be a matrix and $\|\cdot\|$ be a vector norm. The induced matrix norm $\|A\|$ of matrix A is:

$$
\|A\|_{p}=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\|A \mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}}
$$

Properties of Matrix Norms Let $\|\cdot\|_{p}$ be a matrix norm. Here are some key properties of matrix norms:

1. $\|A\|_{p} \geq 0$
2. $\|A\|_{p}=0 \Longleftrightarrow A \equiv 0$
3. $\|c A\|_{p}=|c|\|A\|_{p}$
4. $\|A+B\|_{p} \leq\|A\|_{p}+\|B\|_{p}$
5. $\|A B\|_{p} \leq\|A\|_{p} \cdot\|B\|_{p}$

1.1.1.1 Accuracy and Stability

Accuracy: $\frac{\|\tilde{\mathcal{F}}(x)-\mathcal{F}(x)\|}{\|\mathcal{F}(x)\|}$

Stability: $\frac{\|\tilde{\mathcal{F}}(x)-\mathcal{F}(\tilde{x})\|}{\|\mathcal{F}(\tilde{x})\|}$

1.1.1.2 Conditioning

The condition number of a matrix quantifies how sensitive the solution of a linear system is to small changes in the input data. Let A be a matrix and $\kappa(A)$ be its condition number.

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

1.2 Overview: Advanced Linear Algebra

1.2.1 Linear Systems of Equations

Direct Solvers

Nonsingular Matrix A matrix A is said to be nonsingular if A^{-1} exists. More carefully, A is nonsingular if all columns and rows of A are linearly independent. (Else, it is singular.)

Unitary Matrix A matrix U is said to be unitary if $U U^{T}=U^{T} U=I$ (or $U U^{H}=U^{H} U$). Unitary matrices preserve length, orthogonality, and eigenvalue modulus.

Normal Matrix A matrix A is said to be normal if $A A^{T}=A^{T} A$ (or $A A^{H}=A^{H} A$). Unitary matrices are a special case of normal matrices.

Symmetric Positive Definite Matrix A matrix A is said to be symmetric positive definite (SPD) if it is $\operatorname{symmetric}\left(A=A^{T}\right)$ and for any $\mathbf{x} \neq 0, \mathbf{x}^{T} A \mathbf{x}>0$.

Cholesky Factorization The Cholesky factorization decomposes a symmetric positive definite matrix A into the product of a lower triangular matrix L and its transpose:

$$
A=L L^{T}
$$

where L is a lower triangular matrix with positive diagonal entries.
$\mathbf{L D L}{ }^{T}$ Factorization The LDL T factorization decomposes an SPD matrix A into the product of a lower triangular matrix L with unit diagonal entries, and a diagonal matrix D, and the transpose of L :

$$
A=L D L^{T}
$$

where L is lower triangular, D is diagonal with positive entries.
Sparse Matrices A matrix is said to be sparse if it contains a significant number of zero entries compared to its total number of entries.

Least Squares Approximation

Pseudoinverse: $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$
Given a linear system $A x=b$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, the least squares solution $x_{L S} \in \mathbb{R}^{n}$ minimizes the residual vector $\|A x-b\|$:

$$
x_{L S}=\arg \min _{x}\|A x-b\|_{2}^{2}
$$

The solution can be expressed using the pseudoinverse and is given by:

$$
x_{L S}=A^{+} b
$$

The QR Factorization decomposes a matrix A into the product of an orthogonal matrix Q and an upper triangular matrix R :

$$
A=Q R
$$

Singular Value Decomposition

The Singular Value Decomposition (SVD) is a fundamental matrix factorization that represents any $m \times n$ matrix as $A=U \Sigma V^{T}$.

- U is an $m \times m$ orthogonal matrix with columns as the left singular vectors of A :

$$
U=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{m} \\
\mid & \mid & & \mid
\end{array}\right]
$$

- Σ is an $m \times n$ diagonal matrix with non-negative real numbers $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\min (m, n)}$ on its diagonal, called the singular values of A :

$$
\Sigma=\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{\min (m, n)}
\end{array}\right]
$$

- V is an $n \times n$ orthogonal matrix with columns as the right singular vectors of A :

$$
V=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

1. Orthogonality: The matrices U and V in the SVD are orthogonal matrices, meaning their columns form orthonormal bases.
2. Rank Approximation: The SVD allows us to approximate a matrix by keeping only a subset of its singular values and corresponding singular vectors.
3. Solving Linear Systems: The SVD can be used to solve linear systems by expressing the solution in terms of the pseudoinverse.
4. Principal Component Analysis (PCA): SVD is a fundamental step in PCA, a technique used for dimensionality reduction and feature extraction in data analysis.
5. Image Compression: The SVD can be employed for image compression, where a large image matrix is approximated using a small number of singular values and vectors.
6. Machine Learning: SVD is utilized in various machine learning algorithms, such as matrix factorization and collaborative filtering.
7. Signal Processing: SVD plays a role in signal processing tasks like noise reduction, signal enhancement, and channel equalization.
8. Numerical Stability: SVD is numerically stable, making it suitable for solving ill-conditioned or singular linear systems.

1.3 Iterative Methods for Linear Systems

1.3.1 Fixed Point Iterations

Matrix splitting: $A=M-N$

The Jacobi Method is a matrix splitting technique where the matrix A is decomposed into a diagonal matrix D, and the remaining entries are placed in matrix R : $A=D-R$

The Jacobi iteration equation is then given by:

$$
D x^{(k+1)}=R x^{(k)}+b
$$

Properties: Jacobi Method

- Sufficient Condition for Convergence:
- Rate of Convergence:

The Gauss-Seidel Method method is an improvement over the Jacobi method, where the entries of the lower triangular part of matrix A are included in matrix L, while the strictly upper triangular part is included in matrix $U: A=L+D+U$

The Gauss-Seidel iteration equation is:

$$
(D+L) x^{(k+1)}=U x^{(k)}+b
$$

Properties: Gauss-Seidel Method

- Sufficient Condition for Convergence:
- Rate of Convergence:

1.3.2 Conjugate Gradient

```
Algorithm 1 Conjugate Gradient Method
Require: Symmetric positive definite matrix \(A\), vector \(b\), initial guess \(\mathbf{x}_{0}\), and tolerance tol.
    Initialize:
        \(\mathbf{r}_{0} \leftarrow \mathbf{b}-A \mathbf{x}_{0} \quad\{\) Compute initial residual \(\}\)
        \(\mathbf{p}_{0} \leftarrow \mathbf{r}_{0} \quad\{\) Set initial search direction \(\}\)
        \(k \leftarrow 0 \quad\) \{ Initialize iteration counter \}
    while not converged do
        Compute \(\mathbf{A} \mathbf{p}_{k}=A \mathbf{p}_{k}\)
        \(\alpha_{k} \leftarrow \frac{\mathbf{r}_{k}^{T} \mathbf{r}_{k}}{\mathbf{p}_{k}^{T} \mathbf{A} \mathbf{p}_{k}}\{\) Compute step size \(\}\)
        \(\mathbf{x}_{k+1} \leftarrow \mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \quad\{\) Update solution \}
        \(\mathbf{r}_{k+1} \leftarrow \mathbf{r}_{k}-\alpha_{k} \mathbf{A} \mathbf{p}_{k} \quad\{\) Update residual \(\}\)
        \(\beta_{k+1} \leftarrow \frac{\mathbf{r}_{k+1}^{T} \mathbf{r}_{k+1}}{\mathbf{r}_{k}^{T} \mathbf{r}_{k}} \quad\) \{ Compute conjugate direction update \}
        \(\mathbf{p}_{k+1} \leftarrow \mathbf{r}_{k+1}+\beta_{k+1} \mathbf{p}_{k} \quad\{\) Update search direction \(\}\)
        \(k \leftarrow k+1 \quad\) \{Increment iteration counter \}
        if \(\left\|\mathbf{r}_{k+1}\right\|<\) tol then
                break
```


Properties: Conjugate Gradient Method

- Sufficient Condition for Convergence:
- Rate of Convergence:
- Optimal Solution in A-Norm:

1.3.3 Krylov Methods

The Krylov subspace $\mathcal{K}_{m}(A, v)$ is a vector space spanned by powers of the matrix A applied to a vector v. It is defined as:

$$
\mathcal{K}_{m}(A, v)=\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{m-1} v\right\}
$$

Arnoldi Iteration

```
Algorithm 2 Arnoldi Algorithm
Require: Matrix \(A \in \mathbb{R}^{n \times n}\), vector \(v \in \mathbb{R}^{n}\), and the desired subspace size \(m\)
    Initialize: \(\mathbf{V}=[\mathbf{v}], \mathbf{H}=\mathbf{0} \in \mathbb{R}^{(m+1) \times m}\)
    for \(j=1\) to \(m\) do
        \(\mathbf{w}=A \mathbf{v}_{j}\)
        for \(i=1\) to \(j\) do
            \(h_{i j}=\mathbf{w}^{T} \mathbf{v}_{i}\)
            \(\mathbf{w}=\mathbf{w}-h_{i j} \mathbf{v}_{i}\)
        \(h_{j+1, j}=\|\mathbf{w}\|\)
        if \(h_{j+1, j}=0\) then
            break
        \(\mathbf{v}_{j+1}=\mathbf{w} / h_{j+1, j}\)
        Update \(\mathbf{H}\) and \(\mathbf{V}\) with new column \(\mathbf{v}_{j+1}\)
```


GMRES (Generalized Minimal Residual)

```
Algorithm 3 GMRES Algorithm
Require: Matrix \(A \in \mathbb{R}^{n \times n}\), vector \(b \in \mathbb{R}^{n}\), initial guess \(x_{0} \in \mathbb{R}^{n}\), and the desired subspace size \(m\)
    Initialize: Compute initial residual \(r_{0}=b-A x_{0}\)
    Apply Arnoldi process to generate \(\mathbf{V}_{m}\) and \(\mathbf{H}_{m}\) for \(\mathcal{K}_{m}\left(A, r_{0}\right)\)
    Solve the least squares problem \(\min _{y}\left\|\mathbf{H}_{m} y-\right\| r_{0}\left\|e_{1}\right\|_{2}\) for \(y\)
    Update solution: \(x_{\text {new }}=x_{0}+\mathbf{V}_{m} y\)
```


1.3.4 Preconditioning

Left Preconditioning

Right Preconditioning

Symmetric Preconditioning

1.4 Eigenvalue Decomposition

Properties:

- Every matrix with n linearly independent eigenvectors has an eigenvalue decomposition.
- If A has n linearly independent eigenvectors, it can be diagonalized as $A=V \Lambda V^{-1}$, where columns of V are eigenvectors of A and Λ contains eigenvalues.
- Eigenvalues of a real matrix can be complex, even if the matrix is real.
- Symmetric matrices have real eigenvalues and orthogonal eigenvectors.
- Positive definite matrices have positive real eigenvalues and orthogonal eigenvectors.
- Algebraic multiplicity counts how many times an eigenvalue appears in the characteristic polynomial.
- Geometric multiplicity counts how many linearly independent eigenvectors correspond to an eigenvalue.
- Small perturbations in a matrix can cause small or large changes in its eigenvalues and eigenvectors.
- The eigenvalues of a matrix lie within the numerical range, or field of values.
- Matrix powers can be computed using the eigenvalue decomposition: $A^{k}=V \Lambda^{k} V^{-1}$.
- The matrix exponential can be computed using the eigenvalue decomposition: $e^{A}=V e^{\Lambda} V^{-1}$.

Iterative Methods for Computing Eigenpairs:

1. Power Iteration: Computes the dominant eigenvalue and corresponding eigenvector of a matrix A, by computing repeated matrix-vector multiplications and normalization.
2. Inverse Power Iteration: Used to find the eigenvalue closest to a specified value and requires solving linear systems in each iteration.
3. Rayleigh Quotient Iteration: Improves the convergence of power iteration by using the Rayleigh quotient as an estimate of the desired eigenvalue.
4. QR Algorithm: Uses QR factorizations to compute all eigenvalues of a matrix A and can handle both symmetric and non-symmetric matrices.
5. Arnoldi Iteration: Used for finding a few eigenvalues and corresponding eigenvectors of a large matrix by constructing an orthogonal basis for the Krylov subspace.
6. Subspace Iteration: A generalization of power iteration that computes a basis for a subspace containing the desired eigenvectors.
7. Shifted Inverse Iteration: Combines inverse iteration with shifting to find eigenvalues near a given value.
8. Implicitly Restarted Arnoldi Method: An enhancement of Arnoldi iteration that improves convergence and stability by using deflation and restarting techniques.
9. Krylov-Schur: Avoids the numerical stability of IRAM and does not restrict the decomposition (IRAM: Arnoldi decomp, KS: Schur decomp).
