G2S3: Quantum Linear Algebra

August 11, 2023

Lecture 1: Classical Numerical Linear Algebra

Resources: Nick Higham's Blog (https://nhigham.com/blog/); *Matrix Computations*, Gene Golub, Charles Van Loan; *Numerical Linear Algebra*, Nick Trefethen; *Matrix Analysis*, Charles Johnson; *Matrix Algorithms: Volumes I & II*, G.W. Stewart

1.1 Review: Linear Algebra Basics

1.1.1 Vectors, Matrices, Norms

Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in a vector space \mathbb{V} , and let c be a scalar.

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

3.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

$$4. \quad (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

5.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

- $6. \quad \mathbf{u} + \mathbf{0} = \mathbf{u}$
- 7. 1**u**=**u**
- 8. u + (-u) = 0
- 9. 0**u**=**0**
- 10. $(-1)\mathbf{u} = -\mathbf{u}$

Matrices

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Vector Norms Let $\|\mathbf{v}\|$ denote the norm of vector \mathbf{v} .

- 1. $\|\mathbf{v}\| \ge 0$
- 2. $\|\mathbf{v}\| = 0 \iff \mathbf{v} = \mathbf{0}$
- 3. $||c\mathbf{v}|| = |c|||\mathbf{v}||$
- 4. $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$

Cauchy-Schwarz: For any vectors **u** and **v** in an inner product space, $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \cdot ||\mathbf{v}||$ where $\langle \mathbf{u}, \mathbf{v} \rangle$ represents the inner product of vectors **u** and **v**.

Matrix Norms An *induced matrix norm* is a norm defined for matrices based on a vector norm in a consistent way. Let A be a matrix and $\|\cdot\|$ be a vector norm. The induced matrix norm $\|A\|$ of matrix A is:

$$\|A\|_p = \max_{\mathbf{x}\neq\mathbf{0}} \frac{\|A\mathbf{x}\|_p}{\|\mathbf{x}\|_p}$$

Properties of Matrix Norms Let $\|\cdot\|_p$ be a matrix norm. Here are some key properties of matrix norms:

- 1. $||A||_p \ge 0$
- 2. $||A||_p = 0 \iff A \equiv 0$
- 3. $||cA||_p = |c|||A||_p$
- 4. $||A + B||_p \le ||A||_p + ||B||_p$
- 5. $||AB||_p \le ||A||_p \cdot ||B||_p$

1.1.1.1 Accuracy and Stability

Accuracy: $\frac{\|\tilde{\mathcal{F}}(x) - \mathcal{F}(x)\|}{\|\mathcal{F}(x)\|}$

Stability: $\frac{\|\tilde{\mathcal{F}}(x) - \mathcal{F}(\tilde{x})\|}{\|\mathcal{F}(\tilde{x})\|}$

1.1.1.2 Conditioning

The **condition number** of a matrix quantifies how sensitive the solution of a linear system is to small changes in the input data. Let A be a matrix and $\kappa(A)$ be its condition number.

$$\kappa(A) = \|A\| \|A^{-1}\|$$

1.2 Overview: Advanced Linear Algebra

1.2.1 Linear Systems of Equations

Direct Solvers

Nonsingular Matrix A matrix A is said to be *nonsingular* if A^{-1} exists. More carefully, A is nonsingular if all columns and rows of A are linearly independent. (Else, it is *singular*.)

Unitary Matrix A matrix U is said to be *unitary* if $UU^T = U^T U = I$ (or $UU^H = U^H U$). Unitary matrices preserve length, orthogonality, and eigenvalue modulus.

Normal Matrix A matrix A is said to be *normal* if $AA^T = A^T A$ (or $AA^H = A^H A$). Unitary matrices are a special case of normal matrices.

Symmetric Positive Definite Matrix A matrix A is said to be symmetric positive definite (SPD) if it is symmetric $(A = A^T)$ and for any $\mathbf{x} \neq 0$, $\mathbf{x}^T A \mathbf{x} > 0$.

Cholesky Factorization The Cholesky factorization decomposes a symmetric positive definite matrix A into the product of a lower triangular matrix L and its transpose:

$$A = LL^T$$

where L is a lower triangular matrix with positive diagonal entries.

 \mathbf{LDL}^T Factorization The \mathbf{LDL}^T factorization decomposes an SPD matrix A into the product of a lower triangular matrix L with unit diagonal entries, and a diagonal matrix D, and the transpose of L:

$$A = LDL^T$$

where L is lower triangular, D is diagonal with positive entries.

Sparse Matrices A matrix is said to be *sparse* if it contains a significant number of zero entries compared to its total number of entries.

Least Squares Approximation

Pseudoinverse: $A^+ = (A^T A)^{-1} A^T$

Given a linear system Ax = b where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, the least squares solution $x_{LS} \in \mathbb{R}^n$ minimizes the residual vector ||Ax - b||:

$$x_{LS} = \arg\min_{x} \|Ax - b\|_2^2$$

The solution can be expressed using the pseudoinverse and is given by:

$$x_{LS} = A^+ b$$

The **QR Factorization** decomposes a matrix A into the product of an orthogonal matrix Q and an upper triangular matrix R:

$$A = QR.$$

Singular Value Decomposition

The Singular Value Decomposition (SVD) is a fundamental matrix factorization that represents any $m \times n$ matrix as $A = U \Sigma V^T$.

• U is an $m \times m$ orthogonal matrix with columns as the left singular vectors of A:

$$U = \begin{bmatrix} | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_m \\ | & | & | \end{bmatrix}$$

• Σ is an $m \times n$ diagonal matrix with non-negative real numbers $\sigma_1, \sigma_2, \ldots, \sigma_{\min(m,n)}$ on its diagonal, called the singular values of A:

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{\min(m,n)} \end{bmatrix}$$

• V is an $n \times n$ orthogonal matrix with columns as the right singular vectors of A:

$$V = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & | & | \end{bmatrix}$$

- 1. Orthogonality: The matrices U and V in the SVD are orthogonal matrices, meaning their columns form orthonormal bases.
- 2. Rank Approximation: The SVD allows us to approximate a matrix by keeping only a subset of its singular values and corresponding singular vectors.
- 3. Solving Linear Systems: The SVD can be used to solve linear systems by expressing the solution in terms of the pseudoinverse.

- 4. **Principal Component Analysis (PCA)**: SVD is a fundamental step in PCA, a technique used for dimensionality reduction and feature extraction in data analysis.
- 5. **Image Compression**: The SVD can be employed for image compression, where a large image matrix is approximated using a small number of singular values and vectors.
- 6. Machine Learning: SVD is utilized in various machine learning algorithms, such as matrix factorization and collaborative filtering.
- 7. **Signal Processing**: SVD plays a role in signal processing tasks like noise reduction, signal enhancement, and channel equalization.
- 8. Numerical Stability: SVD is numerically stable, making it suitable for solving ill-conditioned or singular linear systems.

1.3 Iterative Methods for Linear Systems

1.3.1 Fixed Point Iterations

Matrix splitting: A = M - N

The **Jacobi Method** is a matrix splitting technique where the matrix A is decomposed into a diagonal matrix D, and the remaining entries are placed in matrix R: A = D - R

The Jacobi iteration equation is then given by:

$$Dx^{(k+1)} = Rx^{(k)} + b$$

Properties: Jacobi Method

- Sufficient Condition for Convergence:
- Rate of Convergence:

The **Gauss-Seidel Method** method is an improvement over the Jacobi method, where the entries of the lower triangular part of matrix A are included in matrix L, while the strictly upper triangular part is included in matrix U: A = L + D + U

The Gauss-Seidel iteration equation is:

$$(D+L)x^{(k+1)} = Ux^{(k)} + b$$

Properties: Gauss-Seidel Method

- Sufficient Condition for Convergence:
- Rate of Convergence:

1.3.2 Conjugate Gradient

Algorithm 1 Conjugate Gradient Method

Require: Symmetric positive definite matrix A, vector b, initial guess \mathbf{x}_0 , and tolerance tol. 1: Initialize:

2: $\mathbf{r}_0 \leftarrow \mathbf{b} - A\mathbf{x}_0 \{ \text{Compute initial residual} \}$ $\mathbf{p}_0 \leftarrow \mathbf{r}_0 \{ \text{Set initial search direction} \}$ 3: $k \leftarrow 0$ { Initialize iteration counter } 4: 5: while not converged do Compute $\mathbf{Ap}_k = A\mathbf{p}_k$ 6: $\alpha_k \leftarrow \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{p}_k^T \mathbf{A} \mathbf{p}_k} \{ \text{ Compute step size } \}$ 7: $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{p}_k$ { Update solution } 8: $\mathbf{r}_{k+1} \leftarrow \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{p}_k \ \{ \text{ Update residual } \}$ 9: $\beta_{k+1} \leftarrow \frac{\mathbf{r}_{k+1}^T \mathbf{r}_{k+1}}{\mathbf{r}_k^T \mathbf{r}_k} \ \{ \text{ Compute conjugate direction update } \}$ 10: $\mathbf{p}_{k+1} \leftarrow \mathbf{r}_{k+1} + \beta_{k+1} \mathbf{p}_k \ \{ \text{ Update search direction } \}$ 11: $k \leftarrow k+1$ { Increment iteration counter } 12:if $\|\mathbf{r}_{k+1}\| < \text{tol then}$ 13:14:break

Properties: Conjugate Gradient Method

- Sufficient Condition for Convergence:
- Rate of Convergence:
- Optimal Solution in A-Norm:

1.3.3 Krylov Methods

The Krylov subspace $\mathcal{K}_m(A, v)$ is a vector space spanned by powers of the matrix A applied to a vector v. It is defined as:

 $\mathcal{K}_m(A, v) = \operatorname{span}\{v, Av, A^2v, \dots, A^{m-1}v\}$

Arnoldi Iteration

Algorithm 2 Arnoldi Algorithm **Require:** Matrix $A \in \mathbb{R}^{n \times n}$, vector $v \in \mathbb{R}^n$, and the desired subspace size m 1: Initialize: $\mathbf{V} = [\mathbf{v}], \, \mathbf{H} = \mathbf{0} \in \mathbb{R}^{(m+1) \times m}$ 2: for j = 1 to m do $\mathbf{w} = A\mathbf{v}_j$ 3: for i = 1 to j do 4: $h_{ij} = \mathbf{w}^T \mathbf{v}_i$ 5: $\mathbf{w} = \mathbf{w} - h_{ij}\mathbf{v}_i$ 6: $h_{j+1,j} = \|\mathbf{w}\|$ 7:if $h_{j+1,j} = 0$ then 8: break 9: 10: $\mathbf{v}_{j+1} = \mathbf{w}/h_{j+1,j}$ 11: Update **H** and **V** with new column \mathbf{v}_{j+1}

GMRES (Generalized Minimal Residual)

Algorithm 3 GMRES Algorithm

Require: Matrix $A \in \mathbb{R}^{n \times n}$, vector $b \in \mathbb{R}^n$, initial guess $x_0 \in \mathbb{R}^n$, and the desired subspace size m

- 1: Initialize: Compute initial residual $r_0 = b Ax_0$
- 2: Apply Arnoldi process to generate \mathbf{V}_m and \mathbf{H}_m for $\mathcal{K}_m(A, r_0)$
- 3: Solve the least squares problem $\min_{y} \|\mathbf{H}_{m}y \|r_{0}\|e_{1}\|_{2}$ for y
- 4: Update solution: $x_{new} = x_0 + \mathbf{V}_m y$

1.3.4 Preconditioning

Left Preconditioning

Right Preconditioning

Symmetric Preconditioning

1.4 Eigenvalue Decomposition

Properties:

- Every matrix with n linearly independent eigenvectors has an eigenvalue decomposition.
- If A has n linearly independent eigenvectors, it can be diagonalized as $A = V\Lambda V^{-1}$, where columns of V are eigenvectors of A and Λ contains eigenvalues.
- Eigenvalues of a real matrix can be complex, even if the matrix is real.
- Symmetric matrices have real eigenvalues and orthogonal eigenvectors.
- Positive definite matrices have positive real eigenvalues and orthogonal eigenvectors.
- Algebraic multiplicity counts how many times an eigenvalue appears in the characteristic polynomial.
- Geometric multiplicity counts how many linearly independent eigenvectors correspond to an eigenvalue.
- Small perturbations in a matrix can cause small or large changes in its eigenvalues and eigenvectors.
- The eigenvalues of a matrix lie within the numerical range, or field of values.
- Matrix powers can be computed using the eigenvalue decomposition: $A^k = V \Lambda^k V^{-1}$.
- The matrix exponential can be computed using the eigenvalue decomposition: $e^A = V e^{\Lambda} V^{-1}$.

Iterative Methods for Computing Eigenpairs:

- 1. Power Iteration: Computes the dominant eigenvalue and corresponding eigenvector of a matrix A, by computing repeated matrix-vector multiplications and normalization.
- 2. Inverse Power Iteration: Used to find the eigenvalue closest to a specified value and requires solving linear systems in each iteration.
- 3. Rayleigh Quotient Iteration: Improves the convergence of power iteration by using the Rayleigh quotient as an estimate of the desired eigenvalue.
- 4. QR Algorithm: Uses QR factorizations to compute all eigenvalues of a matrix A and can handle both symmetric and non-symmetric matrices.
- 5. Arnoldi Iteration: Used for finding a few eigenvalues and corresponding eigenvectors of a large matrix by constructing an orthogonal basis for the Krylov subspace.
- 6. Subspace Iteration: A generalization of power iteration that computes a basis for a subspace containing the desired eigenvectors.
- 7. Shifted Inverse Iteration: Combines inverse iteration with shifting to find eigenvalues near a given value.
- 8. Implicitly Restarted Arnoldi Method: An enhancement of Arnoldi iteration that improves convergence and stability by using deflation and restarting techniques.
- 9. Krylov-Schur: Avoids the numerical stability of IRAM and does not restrict the decomposition (IRAM: Arnoldi decomp, KS: Schur decomp).