Bounded-Error Preclassification Trees

Henry S Baird
Colin L. Mallows

AT&T Bell Laboratories
600 Mountain Avenue, Room 2C-322
Murray Hill, NJU.SA.

Abstract

We discuss an automatic method for constructing high-performance preclassifica-
tion trees. The role of preclassifiers is to prune the number of classes to afraction
of the total (by contrast, classifiers pick exactly one class). Decision trees make
fast preclassifiers; if they also prune strongly, they can increase speed of the over-
al system significantly when used with classifiers whose runtime increases with
the number of classes. It isan irrecoverable error if the true class is pruned: unfor-
tunately, such errors accumulate rapidly in decision trees. We attack this problem
through massive simulation of precisely defined classification problems using a
pseudo-random generator of labeled samples. We first build a tree using greedy
entropy minimization, using as many training samples (e.g. 1.1M) as computing
resources permit. This tree is then *‘populated’” with many more samples (e.g.
180M), driving the error rate down to an acceptable level. We present statistically
rigorous stopping rules for decision-tree population to enforce user-specified
upper bounds on error, and illustrate their behavior in large-scale OCR experi-
ments.

Keywords. decision tree, classification, character recognition, image defect mod-
els, learning, population

1. Introduction

Non-backtracking decision trees promise fast classification. Inferring optimal trees, under various
measures, has been shown to be computationally infeasible [Bun87] in the worst case. However,
in practice on OCR problems, experiments show that suboptimal heuristics often build roughly bal-
anced, strongly pruning trees [CN84,WS87]. Many such heuristics — including the one we use —
have the serious practical drawback that error rapidly accumulates as the tree deepens, when using
atraining set of fixed size.

In contrast with much prior work on classification trees, we stress their role as preclassifiers
in a multi-stage decision strategy without backtracking. Preclassification trees prune the set of
classes to a smaller number: that is, each leaf of the tree owns a subset of the classes, not aways
only one class. A preclassification tree makes an error if it prunes the true class. For simplicity of

Submitted for publication in Proceedings, |APR Int’| Workshop on Syntactic and Structural Pattern Recog-
nition (SSPR'94), Nahariya, Israel, October 4-6, 1994,

Page 1

analysis, and somewhat pessimistically, we will assume that these errors cannot be corrected by
later stages of classification or contextual analysis. A more discriminating but slower classifier,
executed downstream, will thus be presented with fewer classes to be distinguished; often, it can
then run faster. In our case, runtime of the classifier is approximately linear in the number of
classes. In this context, a good preclassifier is one that rarely prunes the true class but otherwise
prunes as many classes as possible.

It is often possible to construct shallow preclassification trees with an acceptably low proba-
bility of error. However, trees that are deeper and more strongly pruning — and thus offering
greater speed-up — often exhibit unacceptable error. This suggests the possibility that the essen-
tial problem is not that the greedy tree-building heuristic is sub-optimal: it is that the training data
is too sparse. In this view, tree-building rapidly becomes unreliable as the tree deepens because
the data surviving at the leaves rapidly becomes sparse.

This conjecture has motivated a series of experiments in which sample-image generators are
used in a brute force manner to drive down the error rate of decision trees. In an earlier stage of
this research [Bai93], we built preclassification trees for 100 typefaces of the 94 ASCII symboals,
achieving an error rate of less than 1.0% and a pruning factor of x5.2, on type sizes 10 point and
higher at 300 pixels/inch (ppi).

We now describe a method that achieves ailmost an order of magnitude lower error rate
(0.15%) with about half the pruning factor (x2.7), on an OCR problem which is harder in some
respects (the alphabet is over twice the size) and easier in others (20 typefaces are used rather than
100). We used fewer typefaces in thistrial because our new method requires much more computa-
tion, in its present stage of development. We hope eventually to expand these experiments to at
least the scale of the earlier trials.

In both trials, we built trees using a greedy entropy-minimization heuristic, using as many
sample images as our computing resources comfortably admit (in this latest trial, 1,066,639 sam-
ples). In the earlier trial, we ‘*populated’’ the resulting tree with another sample set of fixed size,
and then measured the error rate. A drawback of this approach was that neither the error rate nor
the pruning factor could be confidently predicted in advance.

In the present trial, we populate the tree with a sequence of sample images generated on the
fly, as many as are required to drive the error rate below a user-specified target. Thus we can
guarantee an upper bound on the error rate, assuming of course that the training set is representa-
tive. The pruning factor, however, remains difficult to predict. The essential new technology is a
statistically motivated stopping rule for tree-population.

We describe the engineering context in Section 2, and the derivation of a stopping rule in
Section 3. The experimental trial is described in Section 4. Section 5 contains conclusions and
discussion.

2. The Engineering Context

We now briefly sketch the engineering context of this work, including the application, the source
of image samples, features and classifiers, binary decision trees, and building and testing the trees.

2.1. The Application

The context of this effort was a project to build a classifier subsystem for a family of
machine-print page readers for ten European languages [BGI94]. Thisrequired distinguishing 209
character symbols (all of ASCII and Latin-1, plus a few Turkish symbols), in 20 typefaces, over
the range of type sizes 8-12 point (at 300 ppi).

Page 2

2.2. Image Samples

We used a quantitative model of imaging defects [Bai92] with parameters for type size, spa
tial sampling rate (digitizing resolution), blur, binarization threshold, pixel sensitivity variations,
jitter, skew, stretching, height above baseline, and kerning. Associated with it is a pseudo-random
defect generator that reads one or more sample images of a symbol — in thistrial, these are high-
resolution noiseless artwork purchased from typeface manufacturers — and writes an arbitrarily
large number of distorted versions exhibiting a user-specified distribution over the model parame-
ters. These distributions have been roughly calibrated on image populations occurring in printed
books and typewritten documents. During training, including tree-building, we use only synthetic
images. We test on both synthetic data (for consistency checking and debugging) and on real data
from printed and scanned paper documents.

2.3. Features and Classification

The classifier technology used here is described in [Bai88]. Briefly, it extracts local geomet-
ric shapes from the input image of an isolated symbol, maps this diverse collection of shapesinto a
feature vector with binary components. This binary feature vector is designed to be insensitive to
location and type size; the preclassifier will examine only this vector. From a training set |abeled
with true class, type size, etc, we infer a single-stage Bayesian classifier under an assumption of
class-conditional independence among the features. This is the ‘‘main’’ classifier for which we
need a preclassifier. Itsruntimeis O(C (F +1ogC)), where C is the number of classes to be dis-
tinguished at runtime, and F the number of binary features.

In thistrial, C = 4032 classes (one for each <typeface,symbol> pair for which we have art-
work), and F = 704 features.

2.4. Decision Trees

At each node of our decision trees, a single feature is tested. Thus these are binary decision
trees. Each leaf of the tree contains a subset of the classes. An input image, represented by itsfea
ture vector, is said to be correctly preclassified if the leaf it arrives at contains its true class.

2.5. BuildingaTree

The tree-growing heuristic is to execute a sequence of splits (<leaf feature> pairs) until a
stated pruning factor is reached. At each step, examine all possible next splits and choose the one
which most decreases the expected entropy of the tree. The tree’s expected entropy and pruning
factor are estimated on the assumption that the distribution of the training data is representative:
this depends on the validity of the image defect model. The method is greedy, with no look-ahead:
multiple splitsare not examined at each step.

Even with the short-cuts of this sub-optimal heuristic, the large scale of our problem strained
our computing resources. We use a Silicon Graphics Computer Systems Challenge XL, with
150MHz R4.4k processors, running time-shared UNIX. In order for the program to terminate in
reasonable time, it was necessary throughout the tree-building phase to hold in main memory all
training data and the growing tree itself. As a result, the number of training samples was effec-
tively limited to about a million: precisely, 1,066,639, or 3/4 of the number used to build the
Bayesian classifier. After 32.5 CPU hours of tree-growing, the pruning factor reached x9. The x9
tree contained 932 decision nodes and 933 leaves. Before the pruning factor could reach x10, the
size of the running process exceeded 512M bytes, a hard system limit, and the run terminated
abnormally.

Page 3

2.6. TestingtheTree

The trees are perfect on the training set by construction. Testing on a distinct set reveas, in
general, non-zero preclassification error and a pruning factor different from (but often very close
to) the one estimated during training.

Infact, a 15% error rate was revealed by atest on 1,030,000 synthetic test sasmples. 1000 for
each <typeface,size,symbol> triple for the single typeface Avant Garde-Book Oblique and the five
integer type sizes 8-12 point. In the same test, the pruning factor was measured as x9.3, dlightly
higher than on the training data.

2.7. Populatingthe Trees

In *“population’’ of the tree, we use a sample set distinct from the training set to correct the
contents of the leaves without changing the structure of the tree otherwise. Each sample is tested:
if the leaf does not contain the true class (the tree fails), then that class is added to the leaf. Every
time aleaf iscorrected, the error rate of the tree drops — but its pruning factor also drops.

In thistrial, we populate using a sequence of samples generated on the fly until the error rate
is driven down to a user-specified target.

3. A Stopping Rulefor Population

We wish to populate the tree until the target accuracy has been reached or exceeded, with high sta-
tistical confidence, and at the same time minimizing the number of samples generated. Choosing
such a stopping rule is complicated by our ignorance of the rate at which the accuracy is increas-
ing. We proceed to formalize the problem as follows.

Let us model the execution of the population algorithm as a stochastic source Sy that writes a
sequence {0,1}*, e.q.:

11110111111101111...

where ‘1’ s occur randomly independently with initial probability pg. The randomness is provided
by the pseudo-random image generator; ‘1's represent the event that the true class is found at the
leaf, and ‘O’ s represent tree failures. This is a sequence of Bernoulli trials as long as pg is con-
Stant.

However, in our case the probability of success is not constant. Whenever a failure occurs,
the source is modified so that the success rate increases. Thus, after the first ‘0" is seen, Sy is
modified, giving a new stochastic source S; whose probability of success is p; > pgo. This
occurs at every failure, so that {Sp, Sy, ..., S, ...} runs a sequence of trials in which the success
rate increases monotonically whenever i increments.

In our case the probability of success rises asymptotically to 1, and will eventually attain 1,
since the number of errors that can occur is bounded above by a constant (the number of leaves in
the tree times the number of classes). Other than this, however, we know nothing about the rate of
growth of p;.

We want to stop the trials as soon as possible after the success rate exceeds a specified target
t < 1 (say 0.99). Since we can never be sure that the target has been reached, we ask for a stop-
ping rule that makes an error only 5% of the time, so that with 95% confidence we can assert that
the target has been reached.

A naive rule is to choose some number k and to stop as soon as a success-run of length k is
seen, asserting that the current value of pisat least t. The worst case for thisrule is when there are
avery large number of p’'sthat are increasing very slowly, and al just less than the target t. In this
case, no matter how k is chosen, at each stage there is a probability of just less than tX that a
success-run as long as k will occur, and eventually one of these events will indeed occur; thus with
very high probability we will stop with p still less than t, and the assertion will be false every time.
Thus the naive rule does not have the desired 95% confidence.

Page 4

One way to achieve a proper confidence procedure, i.e. one where the probability of stop-
ping with p < tisat most a, is to ensure that in the limit of the situation described above, i.e.
where there are infinitely many p’s all just less than t, we have probability 1 - a of never stopping
at al.t Can we construct a stopping rule with the property that when there are infinitely many p's
just less than t, we stop with probability at most a? We can do this by letting the required lengths
of the success-runsincrease. Suppose we stop as soon as one of the following events happens:

nig= k]_
ng< kl and n2=k2

ni<kq; and ny<k, and n3=Kks

where n; isthe length of the j th success-run. Then if we take

kj=(2*log(j)+c)/log(1/t) (1)
we will have
P(neverstop Cp1=po=---=t) = []P(nj<k;) = |'|(1—th')
i=1 ji=1

and this product is convergent by the standard test:

[[-C

st = 5%,

j=1 i=1 |

which is convergent. By changing ¢ we can make the product anything we like between 0 and 1,
e.g. taking c = 3, for t =.99 the k; are (rounding up):

298, 436, 517, 574, 619, 655 . ..

and

Ma- tk") = 0.950, 0.938, 0.933, 0.930, 0.928, 0.927 ...

j=1

These values converge to 0.92. So this gives a procedure with the property that if we stop, and
assert that p = t, we will make a mistake with probability at most 0.08. If the p’s never got above
t, we would keep on sampling indefinitely (but, as we have noted above, this will not happen in
practice since in reality there are only a finite number of p’s).

We implement this rule by allowing the user to specify at runtime the target probability of
success t and the confidence 1- a. From these, the program determines ¢ by solving numerically
for

M-t = 1-a @
i=1

Then, at each failure, j isincremented, k; is computed using Egn. (1), and population is stopped if
the j th unbroken run of successes exceeds k; in length.

Note that we have not made use of any assumption about the initial success rate pg or the
rate of increase of the p's. If we knew something more, the stopping rule could perhaps be made
more efficient. For example, if we knew somehow that at most kg p’swere < t, we could simply
go on until we see kg O's, but this procedure would be invalid if the assumption were wrong.

Tt There are some papers by Robbins et al. relating to *‘tests of power one,”’ that have a similar flavor, but

they are concerned with i.i.d. observations and a single parameter, and do not seem to have anything to do
with our problem.

Page 5

4. Experimental Trials
Inourtrids, t = 0.99, (1-a) = 0.95,¢ = 3.472, and the k; s are:

346, 484, 565, 622, 666, 702, 733, 760, 783, 804 . ..

We apply the stopping rule independently to each <typeface,symbol> pair letting type size vary
randomly uniformly in the interval [7.5,12.5]. Thus we expect that the error rate of the tree will be
< 1% for at least 95% of the <typeface,symbol> cases. Of course the error rate may be lower, per-
haps by a large margin, and perhaps more often. The pruning factor is unpredictable, at our cur-
rent level of understanding.

We populated trees for each symbal of nine of the 20 typefaces: each of these trees is spe-
cific to a <typeface,symbol> pair. Then for each typeface, we merged their symbols' trees into
one by computing the set union of their leaf contents, giving a tree populated for the entire type-
face. Each of these trees were tested using both synthetic and real data.

Theresultsfor atypical typeface, Avant Garde-Book Oblique, are as follows. Populating the
tree required 8,161,999 samples. On 47,511 (0.58%) of these, the tree failed when they were first
seen. When tested using a distinct set of 1,005,000 synthetic samples (1000 for each
<typeface,size,symbol> triple for the five sizes 8-12), the error rate was 0.15% overall. The effec-
tive pruning factor on the same test data is x2.58 (the measured pruning factor was x8.2, which is
artificially high since the other typefaces had not yet been populated). Similar results were
achieved for each of the other eight typefaces, when tested separately on synthetic data.

In another test, we used ‘‘real’” data: 600 pages printed and then scanned (at 400ppi) with
text in each of ten European languages, twenty typefaces, and three type sizes (8, 10, and 12
point). For this test, the nine populated trees were combined into a single tree in the fashion
described above. The test exercised not only the classifier, but also other stages of a complete
page reader including geometric layout analysis, shape-directed resegmentation, and contextual
analysis (both typographic and linguistic). On the nine typefaces for which the tree had been pop-
ulated, the error rate decreased by 5.3%, surprisingly. Unsurprisingly, on the eleven typefaces
which had not been populated, the error rate increased, by 25.6%. The speed-up of the entire page
reader was x2.5, on average; this can be expected to drop somewhat when all of the typefaces are
populated.

It is gratifying but unexpected that use of the decision tree resulted in a lower error rate of the
page reader overall, on those typefaces which were populated. We don't fully understand why: it
may be an artifact resulting from mixing populated and unpopul ated typefaces in the same tree. In
any case, it suggests that our estimates of the extra errors due to the decision tree, which we mea-
sured using synthetic data, may be biased high: perhaps the synthetic data is harder than the real
data used in the tests.

We project that populating all 20 typefaces in this way will require about 180 million sam-
ples.

5. Discussion

We have described a method for building fast preclassification decision trees which guarantee an
upper bound on the extra error that they contribute to a multi-stage decision procedure. The essen-
tial technical device is a statistically motivated stopping rule for tree-population. Our experimental
trials show that this rule can effectively enforce a 1% upper bound on error. In fact it went further,
achieving an average error rate of 0.15%, 1/7th of the target. The tree sped up the execution of the
classifier by afactor of x2.5.

This stopping rule is conservative, requiring the population program to generate more than
the minimum number of samples required to achieve the error bound. In future investigations
along these lines, we will ook for stopping rules that guarantee error bounds more tightly, if possi-
ble while maximizing pruning factor and minimizing the number of image samples required.

Page 6

6. Acknowledgement
Stimulating conversations with Tin Ho and David Ittner are much appreciated.

7. References

[Baiss]

[Bai92]

[Bai93]
[BGI94]
[Bung7,
[CN84]

[WS87]

H. S. Baird, ‘‘Feature Identification for Hybrid Structural/Statistical Pattern Classifica-
tion,”” Computer Vision, Graphics, and Image Processing, Vol. 42, No. 3, June 1988,
pp. 318-333.

H. S. Baird, ‘‘Document Image Defect Models,”’ in H. S. Baird, H. Bunke, and K.
Yamamoto (Eds.), Sructured Document Image Analysis, Springer-Verlag: New York,
1992, pp. 546-556.

H. S. Baird, ‘‘Document Image Defect Models and Their Uses,’”” Proc., IAPR 2nd
ICDAR, Tsukuba, Japan, October 20-22, 1993.

H. S. Baird, D. Gilbert, D. J. Ittner, ** A Family of Eurpoean Page Readers,”’ [submitted
for publicationin] Proc., IAPR 12th ICPR, Jerusalem, Israel, October 9-13, 1994.

W. Buntine, ‘‘Learning Classification Trees,”” SRatistics and Computing, vol. 2, 1992,
pp. 63-73.

R. G. Casey and G. Nagy, ‘‘Decision Tree Design Using a Probabilistic Model,”” 1EEE
Trans. Information Theory, Vol. IT-30, No. 1, Jan. 1984, pp. 94-99.

Q. R.Wang and C. Y. Suen, ‘‘Large Tree Classifier with Heuristic Search and Global
Training,”” |EEE Trans. PAMI, PAMI-9, No. 1, Jan. 1987, pp. 91-102.

Page 7

