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Abstract

We discuss an automatic method for constructing high-perf orma nce prec lassifica -
tion tree s. The role of prec lassifier s is to prune the number of classe s to a fr action
of the total (by contrast, classifier s pick exac tly one class) . Dec ision tree s make
fast pre classifier s; if they also prune strongly, they ca n increa se speed of the over-
all system significantly when used with classifie rs whose runtime incre ase s with
the number of classes. It is an irre cover able err or if the true class is pruned: unfor-
tunately, such er ror s acc umulate ra pidly in decision tree s. We attack this problem
through massive simulation of prec isely defined classifica tion problems using a
pseudo-ra ndom gener ator of labeled samples. We first build a tree using gree dy
entropy minimization, using as many training samples (e.g. 1.1M) as computing
resour ces per mit. This tree is then ‘‘ populated’’ with many more samples (e.g.
180M), driving the err or ra te down to an ac ceptable level. We pre sent statisti cally
rigorous stopping rules for decision-tre e population to enf orce user -spec ified
upper bounds on err or, and illust rate their behavior in large -sc ale OCR exper i-
ments.

Keywords: decision tree , classifica tion, char acter rec ogniti on, image def ect mod-
els, lear ning, population

1. Introduct ion

Non-bac ktrac king decision tree s promise fast classifica tion. Inf err ing optimal tree s, under var ious
measur es, has been shown to be computationally infea sible [Bun87] in the worst case . Howeve r,
in pra ctice on OCR problems, exper iments show that suboptimal heuristics often build roughly bal-
ance d, strongly pruning tree s [CN84,WS87]. Many such heuristics — including the one we use —
have the serious prac tical draw back that err or ra pidly ac cumulates as the tree deepe ns, when using
a training set of fixed size.

In contrast with much prior work on classific ation tree s, we stress their role as pre classifier s
in a multi-stage decision strategy without backtra cking. Prec lassifica tion trees prune the set of
classes to a smaller number: that is, eac h leaf of the tree owns a subset of the classe s, not always
only one class. A prec lassification tree makes an er ror if it prunes the true class. For simplicit y of
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analysis, and somewhat pessimistically, we will assume that these er ror s cannot be cor rec ted by
later stages of classifica tion or contextual ana lysis. A more discriminating but slower classifie r,
exec uted downstream, will thus be prese nted with fe wer classe s to be distingui shed; often, it can
then run fa ster. In our case , runtime of the classifier is approximately linear in the number of
classes. In this context, a good prec lassifier is one that ra rely prunes the true class but otherwise
prunes as many classe s as possible.

It is often possible to construct shallow prec lassification tree s with an ac ceptably low proba-
bilit y of err or. Howeve r, tree s that ar e deepe r and more strongly pruning — and thus off er ing
grea ter speed- up — often exhibit unacc eptable err or. This suggests the possibili ty that the essen-
tial problem is not that the gree dy tree -building heuristic is sub-optimal: it is that the training data
is too spar se. In this view, tree -building ra pidly bec omes unreliable as the tree deepe ns beca use
the data surviving at the leaves ra pidly become s spar se.

This conjecture has motivated a serie s of exper iments in which sample- image gener ators are
used in a brute forc e manner to drive down the er ror rate of decision tree s. In an ear lier stage of
this rese ar ch [Bai93], we built pre classifica tion tree s for 100 typefac es of the 94 ASCII symbols,
achieving an er ror rate of less than 1.0% and a pruning fac tor of ×5.2, on type sizes 10 point and
higher at 300 pixels/inch (ppi).

We now desc ribe a method that achie ves almost an orde r of magnitude lower err or rate
(0.15% ) with about half the pruning fac tor (×2.7), on an OCR problem which is harde r in some
respe cts (the alphabet is over twice the size) and easie r in others (20 typefac es are used ra ther than
100). We used fe wer typefac es in this trial bec ause our new method re quires much more computa-
tion, in its prese nt stage of development. We hope eventually to expand these exper iments to at
least the sca le of the ea rlier trials.

In both trials, we built tree s using a gre edy entropy-minimization heuristic, using as many
sample images as our computing re source s comfor tably admit (in this latest trial, 1,066,639 sam-
ples). In the ea rlier trial, we ‘‘ populated’’ the re sulting tree with another sample set of fixed size,
and then measur ed the er ror rate . A draw back of this approa ch was that neither the er ror ra te nor
the pruning fac tor could be confidently predicted in advanc e.

In the prese nt trial, we populate the tree with a sequenc e of sample images gener ated on the
fly, as many as are require d to drive the err or rate below a user- specifie d targe t. Thus we can
guarantee an upper bound on the error rate, assuming of course that the training set is repr ese nta-
tive. The pruning fac tor, however , rema ins difficult to pre dict. The esse ntial new technology is a
statisti cally motivated stopping rule for tree -population.

We descr ibe the engineer ing context in Section 2, and the der ivation of a stopping rule in
Section 3. The exper imental trial is descr ibed in Section 4. Section 5 contains conclusions and
discussion.

2. The Engineering Context

We now briefly sketch the engineer ing context of this work, including the application, the source
of image samples, fe atures and classifier s, binary decision tree s, and buildi ng and testing the tree s.

2.1. The Application

The context of this ef fort was a projec t to build a classifie r subsystem for a fa mily of
machine- print page re ader s for ten Europea n languages [BGI94] . This require d distingui shing 209
char acte r symbols (a ll of ASCII and Latin-1, plus a few Turkish symbols), in 20 typefa ces, over
the range of type sizes 8-12 point (at 300 ppi).
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2.2. Image Samples

We used a quantitative model of imaging def ects [Bai92] with par ameter s for type size, spa-
tial sampling rate (digitizing re solutio n), blur, binariza tion threshold, pixel sensitivit y variations,
jitt er, skew, stretching, height above baseline, and kerning. Associated with it is a pseudo-r andom
defe ct gener ator that re ads one or more sample images of a symbol — in this trial, these are high-
resolution noiseless artwor k purcha sed fr om typefac e manufa cture rs — and writes an ar bitrarily
large number of distorted ver sions exhibiting a user- specifie d distribution over the model par ame-
ters. These distributi ons have been roughly calibra ted on image populations occur ring in printed
books and typewritten documents. During training, including tree -building, we use only synthetic
images. We test on both synthetic data (for consistency che cking and debugging) and on re al data
from printed and scanne d paper documents.

2.3. Feat ures and Classification

The classifier technology used here is descr ibed in [Bai88]. Brief ly, it extra cts local geomet-
ric shapes fr om the input image of an isolated symbol, maps this diverse collection of shapes into a
fea ture vector with binary components. This binary fe ature vector is designed to be insensitive to
location and type size; the prec lassifier will examine only this vector . From a training set labeled
with true class, type size, etc, we infer a single-stage Bayesian classifier under an assumption of
class-c onditi onal independenc e among the fe atures. This is the ‘‘ main’’ classifier for which we
need a prec lassifier . Its runtime is O( C (F + logC) ), wher e C is the number of classes to be dis-
tingui shed at runtime, and F the number of binary fe ature s.

In this trial, C = 4032 classes (one for eac h <typefac e, symbol> pair for which we have ar t-
work), and F = 704 fea tures.

2.4. Dec ision Tree s

At eac h node of our decision tree s, a single fe ature is tested. Thus these ar e binary decision
trees. Eac h leaf of the tree contains a subset of the classes. An input image, re prese nted by its fe a-
ture vector, is said to be corr ec tly prec lassified if the leaf it ar rives at contains its true class.

2.5. Build ing a Tree

The tree -grow ing heuristic is to exec ute a sequence of splits (<leaf, fea ture> pairs) until a
stated pruning fa ctor is re ache d. At eac h step, exa mine all possible next splits and choose the one
which most dec rea ses the expec ted entropy of the tree . The tree ’s expec ted entropy and pruning
fac tor are estimated on the assumption that the distributio n of the training data is re prese ntative:
this depends on the validity of the image defe ct model. The method is gree dy, with no look-ahea d:
multip le splits are not examined at ea ch step.

Even with the short-c uts of this sub-optimal heuristic, the large sca le of our problem strained
our computing resour ces. We use a Silicon Gra phics Computer Systems Challenge XL, with
150MHz R4.4k proce ssors, running time-shar ed UNIX . In order for the progra m to terminate in
rea sonable time, it was nec essar y throughout the tree -building phase to hold in main memory all
training data and the growing tree itself. As a re sult, the number of training samples was ef fec -
tively limit ed to about a milli on: prec isely, 1,066,639, or 3/4 of the number used to build the
Bayesian classifier . After 32.5 CPU hours of tree -gr owing, the pruning fa ctor re ache d ×9. The ×9
tree contained 932 decision nodes and 933 leaves. Befor e the pruning fa ctor could rea ch ×10, the
size of the running proce ss exce eded 512M bytes, a hard system limit, and the run terminated
abnormally.
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2.6. Testing the Tree

The tree s are perf ec t on the training set by construction. Testing on a distinct set reve als, in
gener al, non-ze ro prec lassification er ror and a pruning fac tor diffe rent fr om (but often very close
to) the one estimated during training.

In fac t, a 15% err or rate was re vealed by a test on 1,030,000 synthetic test samples: 1000 for
eac h <typefac e, size,symbol> triple for the single typefac e Avant Gar de-Book Oblique and the five
integer type sizes 8-12 point. In the same test, the pruning fa ctor was measur ed as ×9.3, slightl y
higher than on the training data.

2.7. Populating the Trees

In ‘‘population’’ of the tree , we use a sample set distinct fr om the training set to cor rec t the
contents of the leaves without changing the structure of the tree otherwise. Eac h sample is tested:
if the leaf does not contain the true class (the tree fails), then that class is added to the leaf . Ever y
time a leaf is corr ecte d, the err or rate of the tree drops — but its pruning fa ctor also drops.

In this trial, we populate using a sequence of samples gener ated on the fly until the er ror rate
is driven down to a user -spec ified target.

3. A Stopping Rule for Population

We wish to populate the tree until the target ac cura cy has been re ache d or exce eded, with high sta-
tisti cal confidenc e, and at the same time minimizing the number of samples gener ated. Choosing
such a stopping rule is complicated by our ignorance of the rate at which the ac cura cy is incre as-
ing. We proce ed to forma lize the problem as follows.

Let us model the exec ution of the population algorithm as a stochastic source S 0 that writes a
sequence {0,1}*, e.g. :

1111011111110 1111...

where ‘1’ s occur ra ndomly independently with initi al probability p 0 . The ra ndomness is provided
by the pseudo-r andom image gener ator; ‘1’s re prese nt the event that the true class is found at the
leaf, and ‘0’ s repr esent tree failure s. This is a sequenc e of Bernoulli trials as long as p 0 is con-
stant.

However , in our ca se the probability of succe ss is not constant. Whene ver a failure occur s,
the source is modified so that the succe ss ra te incre ases. Thus, afte r the first ‘0’ is seen, S 0 is
modified, giving a new stochastic source S 1 whose probability of succe ss is p 1 > p 0 . This
occur s at ever y fa ilure, so that {S 0 , S 1 , ... , S i , ... } runs a sequenc e of trials in which the succe ss
rate incre ases monotonically wheneve r i increme nts.

In our case the probability of succe ss rises asymptotically to 1, and will eventually attain 1,
since the number of err ors that can occur is bounded above by a constant (the number of leaves in
the tree times the number of classe s). Other than this, however , we know nothing about the ra te of
growth of p i .

We want to stop the trials as soon as possible afte r the succe ss rate exc eeds a specif ied target
t < 1 (sa y 0.99). Since we can never be sure that the target has been re ache d, we ask for a stop-
ping rule that makes an err or only 5% of the time, so that with 95% confidenc e we can asser t that
the target has been re ache d.

A naive rule is to choose some number k and to stop as soon as a succ ess-r un of length k is
seen, asser ting that the curr ent value of p is at least t. The worst case for this rule is when there ar e
a very large number of p’s that ar e incre asing ver y slowly, and all just less than the targe t t. In this
case , no matter how k is chosen, at eac h stage there is a probability of just less than t k that a
succe ss-r un as long as k will occur , and eve ntually one of these events will indeed occur ; thus with
very high probability we will stop with p still less than t, and the asser tion will be false ever y time.
Thus the naive rule does not have the desire d 95% conf idence.
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One way to achieve a proper confidenc e proce dure, i.e. one wher e the probability of stop-
ping with p < t is at most α, is to ensure that in the limit of the situation descr ibed above, i.e.
where there ar e infinitely many p’s all just less than t, we have probability 1 − α of never stopping
at all.† Can we construct a stopping rule with the proper ty that when there are infinitely many p’s
just less than t, we stop with probability at most α? We can do this by letting the re quired lengths
of the succe ss-r uns incre ase. Suppose we stop as soon as one of the following events happens:

n 1 = k 1

n 1 < k 1 and n 2 = k 2

n 1 < k 1 and n 2 < k 2 and n 3 = k 3

. . .

where n j is the length of the j th succe ss-run. Then if we take

k j = ( 2* log( j) + c) / log( 1 / t) (1)

we will have

P( never stop  p 1 = p 2 = . . . = t ) =
j = 1
Π
∞

P(n j < k j ) =
j = 1
Π
∞

( 1 − t k j )

and this product is conver gent by the standard test:

j = 1
Σ
∞

t k j =
j = 1
Σ
∞

j 2
e − c

which is conver gent. By changing c we can make the product anything we like betwee n 0 and 1;
e.g. taking c = 3, for t = . 99 the k j are (r ounding up):

298 , 436 , 517 , 574 , 619 , 655 . . .

and

j = 1
Π
. . .

( 1 − t k j ) = 0. 950 , 0. 938 , 0. 933 , 0. 930 , 0. 928 , 0. 927 . . .

These values conver ge to 0.92. So this gives a proce dure with the proper ty that if we stop, and
asser t that p ≥ t, we will make a mistake with probability at most 0.08. If the p’s never got above
t, we would keep on sampling indefinitely (but, as we have noted above, this will not happen in
prac tice since in rea lity there are only a finite number of p’s).

We implement this rule by allowing the user to specif y at runtime the targe t probability of
succe ss t and the confidenc e 1 − α. From these, the progra m determines c by solving numeric ally
for

j = 1
Π
∞

( 1 − t k j ) = 1 − α (2)

Then, at ea ch failure , j is increme nted, k j is computed using Eqn. (1), and population is stopped if
the j th unbroken run of succe sses exce eds k j in length.

Note that we have not made use of any assumption about the initi al succe ss ra te p 0 or the
rate of increa se of the p’s. If we knew something more, the stopping rule could per haps be made
more eff icient. For example, if we knew somehow that at most k 0 p’s wer e < t, we could simply
go on until we see k 0 0’s, but this proc edure would be invalid if the assumption wer e wrong.

† There are some papers by Robbins et al. relating to ‘‘tests of power one,’’ that have a similar flavor, but
they are concerned with i.i. d. observations and a single parameter, and do not seem to have anything to do
with our problem.
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4. Experiment al Trials

In our trials, t = 0. 99, ( 1 − α ) = 0. 95, c = 3. 472, and the k j’s are :

346 , 484 , 565 , 622 , 666 , 702 , 733 , 760 , 783 , 804 . . .

We apply the stopping rule independently to eac h <typefac e, symbol> pair letting type size vary
randomly uniformly in the interval [7.5, 12.5]. Thus we expec t that the er ror rate of the tree will be
< 1% for at least 95% of the <typefac e, symbol> case s. Of course the er ror ra te may be lower, per -
haps by a large margin, and perha ps more often. The pruning fa ctor is unpredicta ble, at our cur-
rent level of understanding.

We populated tree s for eac h symbol of nine of the 20 typefac es: eac h of these tree s is spe-
cific to a <typefac e, symbol> pair. Then for eac h typefa ce, we merge d their symbols’ tree s into
one by computing the set union of their leaf contents, giving a tree populated for the entire type-
fac e. Eac h of these tree s wer e tested using both synthetic and rea l data.

The re sults for a typical typefac e, Avant Gar de-Book Oblique, are as follows. Populatin g the
tree re quired 8,161,999 samples. On 47,511 (0.58% ) of these, the tree fa iled when they wer e first
seen. When tested using a distinct set of 1,005,000 synthetic samples (1000 for eac h
<typefac e, size,symbol> triple for the five sizes 8-12), the er ror ra te was 0.15% over all. The eff ec-
tive pruning fa ctor on the same test data is ×2.58 (the mea sured pruning fa ctor was ×8.2, which is
artificia lly high since the other typefac es had not yet been populated). Simil ar re sults were
achieve d for ea ch of the other eight typefa ces, when tested separ ately on synthetic data.

In another test, we used ‘‘r eal’ ’ data: 600 pages printed and then sca nned (a t 400ppi) with
text in eac h of ten Europe an languages, twenty typefac es, and three type sizes (8, 10, and 12
point). For this test, the nine populated tree s wer e combined into a single tree in the fashion
descr ibed above. The test exer cised not only the classifier , but also other stages of a complete
page re ader including geometric layout ana lysis, shape- direc ted rese gmentation, and contextual
analysis (both typographic and lingui stic). On the nine typefa ces for which the tree had been pop-
ulated, the er ror ra te decre ased by 5.3%, surprisingly. Unsurprisingly, on the eleven typefa ces
which had not been populated, the er ror ra te incre ased, by 25.6%. The speed- up of the entire page
rea der was ×2.5, on aver age ; this can be expec ted to drop somewhat when all of the typefac es ar e
populated.

It is gratifying but unexpec ted that use of the decision tree re sulted in a lower err or rate of the
page re ader overa ll, on those typefac es which wer e populated. We don’t fully understand why: it
may be an ar tifact re sulting fr om mixing populated and unpopulated typefa ces in the same tree . In
any ca se, it suggests that our estimates of the extra err ors due to the dec ision tree , which we mea -
sured using synthetic data, may be biased high: perha ps the synthetic data is har der than the re al
data used in the tests.

We project that populating all 20 typefac es in this way will re quire about 180 millio n sam-
ples.

5. Discussion

We have descr ibed a method for building fa st prec lassification decision tree s which guara ntee an
upper bound on the extra er ror that they contribute to a multi-stage decision proce dure. The essen-
tial technica l device is a statistically motivated stopping rule for tree -population. Our exper imental
trials show that this rule can ef fec tively enfor ce a 1% upper bound on err or. In fa ct it went fur ther,
achieving an aver age er ror ra te of 0.15%, 1/7th of the targe t. The tree sped up the exec ution of the
classifier by a fa ctor of ×2.5.

This stopping rule is conser vative, re quiring the population progra m to gener ate more than
the minimum number of samples re quired to achieve the er ror bound. In future investigations
along these lines, we will look for stopping rules that guara ntee er ror bounds more tightly , if possi-
ble while maximizing pruning fa ctor and minimizing the number of image samples re quired.
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