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Abstract

We give an analysis of relationships between expected
retrieval performance and classification recognition accu-
racy in the context of document image content extraction
and inventory. By content extraction we mean location and
measurement of regions containing handwriting, machine-
printed text, photographs, blank space, etc, in documents
represented as bilevel, grey-level, or color images. Recent
experiments have shown that even modest per-pixel content
classification accuracies can support usefully high recall
and precision rates (of, e.g., 80–90%) for retrieval queries
within document collections seeking pages that contain a
given minimum fraction of a certain type of content. In
an effort to elucidate this interesting empirical result, we
have analyzed the interdependency of classification and re-
trieval under a variety of assumptions about the distribution
of content types in document image collections. We show
that under general conditions we cannot derive precision
and recall measures from per-pixel classification measures
alone, but we can estimate the expected values of these mea-
sures. If however the distribution of content and error rates
are uniform across the entire collection, our results suggest,
it is possible to predict precision and recall measures from
classification accuracy and vice versa.

Keywords: document image analysis, document layout under-
standing, document content extraction, document content inven-
tory, document content retrieval, document content frequency

1 Introduction

We have developed a family of algorithms for document image
content extraction, able to find regions containing machine-printed
text, handwriting, photographs, etc [5, 4]. These algorithms must
cope with a rich diversity of document, image, and content types—
we have selected for our test set (B): machine-print, handwriting,
photographs, and of course blank regions; color (unfortunately not
visible in this Proceedings), grey-level, and bilevel (black-and-

white) images; English, Chinese, and Arabic languages; maga-
zine articles, newspapers, envelopes, letters, notes; modern and
historical documents; rectilinear and complex non-rectilinear lay-
outs; and clean and degraded images. The vast and rapidly grow-
ing scale of document image collections has been compellingly
documented[11]. Information extraction[8] and retrieval[9] from
document images is an increasingly important R&D field at the in-
terface between document image analysis (DIA) and information
retrieval (IR).

Following a suggestion by Breuel [10], we classify individual
pixels, not regions, and so avoid imposing arbitrary restrictions on
region shape, such as the widely used Manhattan assumption [6].
This approach, in practice, respects and adapts to a wide variety
of arbitrary region shapes, as illustrated in detail in [1] in this Pro-
ceedings. This policy has yielded, to date, modest per-pixel classi-
fication accuracies (of, e.g., 60–70%) which already support use-
fully high recall and precision rates (of, e.g., 80–90%) for queries
on collections of documents[3]. This flexibility also allows greater
accuracy in inventory statistics, by which we mean summaries of
each page estimating, for each content class, the fraction of page
area dominated by that class. And, further, it supports a broad
family of information retrieval queries, which we will describe in
detail here.

In our experimental protocol, both training and test datasets
consist of pixels labeled with their ground-truth class: one of
machine-print (MP), handwriting (HW), photographs (PH), blank
(BL), etc. Each pixel datum is represented by scalar features ex-
tracted by image processing of a small region centered on that
pixel; these features are discussed in detail in[3]. We have in-
vestigated a wide range of automatically trainable classification
technologies, including brute-force k-Nearest Neighbors (kNN),
fast approximate kNN using hashed k-d trees, classification and
regression trees, and locality-sensitive hashing[5, 4, 3].

2 Experimental Design

In previously reported experiments[3], we measured informa-
tion retrieval performance on document images classified in this
way. In this section we briefly summarize that work as a tutorial
introduction to the new results which are reported in Section 3.
The experiments involved a development set (A) containing 28
images; and a benchmarking set (B) containing 117 images. For



data set (B), 31 images were placed in the training set, and the
rest in the test set; then set (B) was used to train and test classi-
fiers using these features and results were “cleaned” using iterated
classification methods[1]; analysis of the results of these tests are
reported in detail in[3] and excerpted as illustrations here. Their
text includes English, Arabic and Chinese characters each repre-
sented by bilevel, grey-level, and color examples. The selection of
test and training pages was random except that for each test image
there was at least one similar, but not identical, training image.
Thus these experiments test the discriminating power of the fea-
tures and weak generalization (to similar data) of the classifiers,
but they do not test strong generalization to substantially different
cases.

Each content type was zoned manually (using closely cropped
isothetic rectangles) and the zones were ground-truthed. The train-
ing data was decimated randomly by selecting only one out of ev-
ery 9000th training sample.

We evaluated performance in two ways, per-pixel accuracy and
per-page inventory accuracy:
Per-pixel accuracy: the fraction of all pixels in the document im-

age that are correctly classified: that is, whose class label
matches the class specified by the ground truth labels of the
zones. Unclassified pixels are counted as incorrect. This is
an objective and quantitative measure, but it is somewhat ar-
bitrary due to the variety of ways that content can be zoned.
Some content—notably handwriting—often cannot be de-
scribed by rectangular zones. This in some cases will lead
to a per-pixel accuracy score being worse than an image may
subjectively appear to be. However, this metric does provide
a simple generalization of how well the classifier is perform-
ing: for the test set for data set B, the average per-pixel ac-
curacy score was 79.1%. The confusion matrix is given in
Table 1.
Due to the inevitability of some arbitrariness and inconsis-
tency in zoning, we do not expect per-pixel classification to
achieve perfection; however, it does seem reasonable to ex-
pect zoning to reflect the overall amount of each content type
found in an image, and thus we hope that the classifier can
do roughly as well.

Per-page inventory accuracy: for each content class, we mea-
sure the fraction of each page area that is classified as that
class. That is, each page is assigned four numbers—one for
each of BL, HW, MP, and PH—which sum to one. This de-
scription allows a user to query a data base of page images
in a variety of natural and useful ways. For example, in an
attempt to retrieve all page images with large photographs
with captions, she might ask for all pages containing least
70% photograph and 10% machine print. We believe this
measure is superior to per-pixel classification.
We have analyzed the performance of queries of this form:
“find all images that contain at least the fraction T of pixels
of content class C.” This is of course an information retrieval
problem [7, 2] for which precision and recall are natural mea-
sures of performance: precision is the fraction of page im-
ages returned which are relevant; and recall is the fraction of
relevant documents that are returned.
We issued queries, for every content class, over the full range

of threshold values, and summarized the results with preci-
sion and recall curves as a function of threshold. For ex-
ample, the precision and recall scores for MP are shown in
Table 1.
If we assume that all threshold values (from 0.0 through 1.0)
are equally likely, we can compute expected recall and pre-
cision scores for each class (assuming equal distribution of
content across all thresholds) as seen in Table 1. This is
generalization that must be reconsidered in future work. As
we mention, all images must trivially have expected preci-
sion and recall scores of 1.0 for the threshold t = 0. Also,
there are very few, if any, images in this data set with greater
than threshold t > 0.7 for any content type, further skewing
our assumption that all content class distributions are equally
likely. Therefore, it may be more informative to consider ex-
pected precision and recall scores for a more realistic range
of thresholds, perhaps from 0.2 to 0.6.
It is interesting that even at this early stage of development
of these document inventory methods, MP and PH enjoy use-
fully high expected recall and precision, far higher than the
per-pixel classification accuracy scores would suggest. This
good performance persists up to a threshold of about 60%;
the fall off after that can be attributed to the rarity of such
images in the test set. Most images in the test set were of
mixed content type and do not contain high percentages of
any single content class.

3 Information Retrieval Performance Analy-
sis

We believe the development of evaluation metrics and ways
of interpreting classification results—beyond simply looking at
raw pixel accuracies—is of vital importance to the development
of these classification techniques. In the previous section we dis-
cussed three methods of evaluating performance. Per-pixel accu-
racy scores give a simple to calculate, quick measure of the per-
formance of a classifier but are of marginal use to an end-user or
process of these classifiers. A per-pixel accuracy score is con-
strained by the methodology used in zoning images and is deteri-
orated by classifier errors that may or may not be unique to a set
of images. Therefore, it is not useful as a means of comparing
images, comparing classifiers and certainly not for the retrieval of
images. They are useful from a diagnostic point of view, as a con-
fusion matrix can be extracted from them, allowing a developer to
identify potential flaws in the classifier, but this is of little use to a
user or downstream process.

We also discussed the possibility of a measure of subjective
segmentation quality of an image. Thinking about implementation
of this measure is more difficult and could naturally be domain or
use specific. This measure would not be very useful for diagnostic
purposes and while helpful to an end user in providing a rough
estimate of classifier performance, is not very useful if identifying
content in an image is a goal.

This leads us to applying to the classifier output Information
Retrieval queries of the form: “find all images that contain at least
the fraction T of pixels of content class C.” These queries build
on the information provided by per-pixel accuracy scores and we



BL HW MP PH Type1
BL 0.178 0.022 0.022 0.005 0.050
HW 0.015 0.050 0.007 0.001 0.024
MP 0.022 0.035 0.383 0.034 0.091
PH 0.013 0.007 0.034 0.170 0.054

Type2 0.051 0.065 0.064 0.039 0.219

Thresh. Recall Prec.
0.0 1.000 1.000
0.1 1.000 0.945
0.2 0.953 0.938
0.3 0.803 0.900
0.4 0.795 0.866
0.5 0.812 0.764
0.6 0.714 0.789
0.7 0.875 0.636
0.8 0.750 1.000

Recall Prec.
MP 0.856 0.871
PH 0.890 0.735

Table 1. Left: Confusion matrix for per-pixel classification of the entire 75 page test set (B), over 208
million test pixels (47M BL; 24M HW; 93M MP; and 44M PH). The rows label ground truth content
types; the columns label the content types assigned by the classifier. The bottom right entry gives
the overall error rate: 21.9%. This matrix is discussed in detail in [1]. Center: Recall and precision
scores for the query “Find all pages with at least the fraction T of machine-print (MP) pixels,” over
a range of thresholds T from 0.0 to 1.0, on the test set of data set (B). Values left blank (0.9 and 1.0)
reflect queries which do not return any images. Right: Expected precision and recall scores for each
class assuming equal distribution of content across all thresholds.

believe are of much more practical use. These queries would al-
low a user to quickly and efficiently search a large set of docu-
ments for objects containing specific amounts of content. Typical
IR performance measures such as precision and recall, also nat-
urally apply to these queries. We will argue that this measure is
less prone to being detrimentally affected by zoning methodology
or minor classification errors. We also believe that looking at the
content inventory of an image and associated information retrieval
queries provide a much richer and useful measure of classifier per-
formance.

3.1 Analysis of Per-Pixel Classification
Accuracy and Per-Class Information
Retrieval Performance Measures

We begin by asking a series of questions about confusion ma-
trices and precision and recall curves: Is there any relationship
between them? Can one predict the other? Is one set more de-
scriptive than the other? We will begin to answer these questions
by analyzing in detail several special cases.

In our current experiments we perform classification and IR
queries on a 4 content class problem, but for this analysis we will
focus on a hypothetical 2 content class problem. We assume the
test set contains these two content classes in the following distri-
bution: half of the documents are 100% class MP and half are
100% class PH. For the rest of this analysis we also assume that a
confusion matrix contains error rates that are distributed uniformly
across the entire collection. We will consider the performance of
three different classifiers for this set of documents categorized by
the type of errors they commit: a perfect classifier (classifies each
content correctly, every time), a one class error classifier (classi-
fies one class correctly all the time and occasionally misclassifies
the second class at a known rate) and a two class error classifier
(misclassifies each class at a known rate)

3.1.1 Perfect Classifier
Assuming an ideal classifier that never makes a mistake in clas-
sifying either of the two classes, the analysis is trivial. The error
rates and expected precision and recall values are found in the left
table of Table 2. Obviously, if no errors are made in classifica-
tion, the expected values for both precision and recall are 1. In
this case, we obtain the same amount of information from either
measure and can infer one from the other.

3.1.2 One-Class Error
We assume that the classifier now classifies MP correctly at a rate
α and never misclassifies PH. The error rates and expected pre-
cision and recall values are found in the middle table of Table 2.
The expected recall value for PH is not affected. The expected re-
call value for MP is reduced to α as some of the MP documents
are now misclassified as PH. These values are derived from the
following equations,

E[recall] = TP/(TP + FN) = α/(α − (1 − α)) = α

where TP (True Positive) is documents that contain MP classi-
fied as MP and FN (False Negative) is documents that contain MP
misclassified as PH. The denominator must add to 1 as every pixel
must be classified as only one of two classes.

Likewise, the opposite is true for the expected precision values.
The expected precision for MP is not affected as every document
returned as MP is correctly classified as such. However, the ex-
pected precision value for PH is now reduced as some documents
returned for a query seeking PH will also now return MP docu-
ments. These values are derived from the following equations,

E[precision] = TP/(TP+FP ) = 1/(1+(1−α)) = 1/(2−α)

where FP (False Positive) is documents that contain MP misclas-
sified as PH.



3.1.3 Two-Class Error
Finally, we generalize to assume that class MP is misclassified at
a rate α and PH is misclassified at a rate β (obviously, in our two
class problem we are discussing any pixel misclassified is classi-
fied as the other class, there is no third, or error class). The error
rates and expected precision and recall values are found in the right
table of Table 2. The same discussion and derivations that pre-
ceded the One-Class Error classifier applies here as the classifier
now misclassifies both classes at a constant rate across all docu-
ments in the set. One important thing to remember in this part of
the analysis is that we assume that errors are distributed uniformly
across all documents in the set. This assumption is necessary at
this point to allow us to estimate the expected precision and re-
call values from the confusion matrices and to infer the estimated
precision and recall curves.

3.1.4 Perfect Classifier
The next step in this analysis is to consider a slightly more com-
plex case by considering the same three classifiers applied to a
different data set. Previously, we assumed that each document in
the set was entirely one content type and there was an equal distri-
bution of each type of document. Now we will assume that every
document contains content of both classes, at a fixed rate across
the entire set. We assume the classifier never makes a mistake in
classifying either content class resulting in a similar analysis as
with the first set discussed in the right table of Table 3. We use
fMP to represent the frequency of MP content in each image and
fPH to be the frequency of PH content. These rates are constant
across the entire data set. We see that the confusion matrix re-
mains the same as does the expected precision values. The only
difference in these models due to the change in content distribu-
tion is a new limit on the maximum expected recall values. Since
each document now contains both types of content, recall can no
longer be 1 since there is no document that contains entirely one
content class only. Therefore, the recall we found for the previous
set is multiplied by the frequency of its content class to find the
new expected recall value.

3.1.5 One-Class Error
We assume the classifier correctly classifies PH every time and
correctly classifies MP at rate α in the center table of Table 3.
Same observation as above, the confusion matrix remains the
same, however the expected recall value must be adjusted. The
precision values remain the same and are not affected by the dif-
ferent content inventory of the images. The derivations of these
values are the same as the analysis in the first One-Class Error
discussion.

3.1.6 Two-Class Error
We assume the classifier correctly classifies MP at a rate α and PH
at a rate β in the right table of Table 3. As with the first document
set, for this split content set we again estimate the precision and
recall curves for each classifier from the confusion matrix for that
classifier and vice versa.

3.2 Conclusions

Beginning with this generalized analysis and also thinking of
the data from our experiments, we can start to answer the questions
we asked at the start of this section. First, obviously there is a rela-
tionship between the measures of per-pixel classification accuracy
(seen here in the form of confusion matrices) and per-class infor-
mation retrieval performance measures. This is not surprising as
the IR measures use the per-pixel accuracy scores in part to answer
their queries. For some limited cases in the above analysis we see
that the it is possible to calculate expected values for precision and
recall and the shape their curves will take under some simplifying
assumptions. The main assumptions being that that distribution
of content and error rates were uniform across the entire data set.
With this assumption it appears that there is no difference in what
either measure (per-pixel accuracies versus IR measures) tells us
about the data and that one can be derived from the other.

In practice however, we cannot make these assumptions. Con-
tent will not be distributed uniformly across all documents in a set
and as a result error rates certainly will not be uniform. If we are
given a confusion matrix for per-pixel accuracies, we cannot cal-
culate what the measures of IR queries performance will be, we
can only estimate the expected values of them if we apply the as-
sumptions that we did. As we saw in our experimental data, the
actual precision and recall curves present a much more descriptive
analysis of the data and allow the documents to be searched and
organized in a way not possible with simply per-pixel accuracies
alone.

We have concluded that under general conditions we cannot ex-
tract precision and recall measures from per-pixel accuracies alone
(only estimates of the expected values of these measures). Now
we must answer the inverse question: given a complete set of pre-
cision and recall curves for every content class, can we derive the
confusion matrix for that data set? If not always, are there assump-
tions that we can apply as before to do so? Can we at least claim
that the average per-pixel accuracy score corresponds to the aver-
age precision and recall scores? Also, if we cannot directly derive
one from the other, can we find for a particular content class for
which the per-pixel accuracy is always greater than (or, perhaps,
always less than) its precision and recall scores?

4 Discussion and Future Work

Our developing intuition, reinforced by experiments and con-
firmed by analysis, is that precision and recall curves provide a
richer and potentially more useful methodology for analyzing con-
tent classification, compared with per-pixel accuracy results (in the
form of, e.g., confusion matrices). We have shown here that in-
formation retrieval performance metrics can be derived from per-
pixel accuracies with the assistance of detailed distribution mod-
els, with the result that we can predict the expected values of pre-
cision and recall over ranges of natural queries.

In our experiments over the past year, we have consistently ob-
served that the overall average precision and recall scores are sub-
stantially higher than per-pixel accuracy scores for the same data
for machine print and photographs (we don’t have enough data yet
to draw conclusions about handwriting and blank). This may be,



MP PH
MP 1 0
PH 0 1

E[recall] 1 1
E[precision] 1 1

MP PH
MP α 1-α
PH 0 1

E[recall] α 1
E[precision] 1 1/(2-α)

MP PH
MP α 1-α
PH 1-β β

E[recall] α β

E[precision] 1/(2-β) 1/(2-α)

Table 2. Summary of algebra discussed in Sections 3.1.1-3.1.3. The left table assumes a perfect
classifier, the middle table a one-class error classifier, and the right table a two-class error classifier.

MP PH
MP 1 0
PH 0 1

E[recall] fMP fPH

E[precision] 1 1

MP PH
MP α 1-α
PH 0 1

E[recall] α*fMP fPH

E[precision] 1 1/(2-α)

MP PH
MP α 1-α
PH 1-β β

E[recall] α*fMP β*fPH

E[precision] 1/(2-β) 1/(2-α)

Table 3. Summary of algebra discussed in Sections 3.1.4-3.1.6. Same description as above.

in part, an artifact of our choice of data sets to emphasize doc-
uments containing substantial mixtures of content types on each
page. More testing on expected data sets with a greater, and per-
haps more representative variety of per–page mixtures may be nec-
essary to confirm our observations or to reveal deeper correlations
among these measures. We hypothesize that the use of informa-
tion retrieval queries and their metrics will not be constrained by
factors that limit the utility of per-pixel accuracy scores. For ex-
ample, per-pixel accuracy scores are often highly sensitive to the
choice of zoning and ground-truthing protocols, are occasionally
greatly affected by small fluctuations in classifier performance.
Future experiments will be conducted to test the hypothesis that
information-retrieval metrics are often more stable than per-pixel
accuracies. One referee kindly suggested an alternative analysis of
information retrieval queries that would “bin” precision and recall
scores (within narrow ranges of thresholds). For example, rather
than search for images containing at least 30 percent of a given
class, instead search for all images containing between 20 and 30
percent of that class. Larger test sets—perhaps an order of magni-
tude larger—will be needed to investigate this.
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