

Henry S. Baird Spring 2009 Course Design & Analysis of Algorithms CSE/Math 340 CRNs: 11264 (CSE); 13275 (Math) Algorithms are methods for solving information processing problems. For a method to be called an algorithm, it must be fully automatablefor example, a computer can run itand provably correctthat is, it must find the right answer for every instance of the problem. We also often want it to run as fast as possible, and use as little memory as possible, even on huge instances. Fast algorithms for hard, practically important problems are among the key discoveries of computer science research. This course presents algorithms for searching, sorting, manipulating graphs and trees, scheduling tasks, finding shortest paths, matching patterns in strings, etcand gives proofs of their correctness and analysis of their runtime and memory demands. General strategies for designing algorithmse.g. recursion, divideandconquer, greediness, dynamic programmingare stressed. Limits on algorithm efficiency are explored through elementary NPcompleteness theory. Prerequisites: Calculus II (Math 22 or Math 32) and Discrete Structures (CSE/Math 261); or close equivalents (in which case, check with instructor). To review your Discrete Structures background, look at the textbook's Appendix sections A.12, B.13, C.1. This is a required (core) course for these undergraduate degree programs: B.S. in CS (in RCEAS); B.A. in CS (in CAS); and the B.S. in Computer Science & Business (in RCEAS & CBE). There is a graduatelevel version of this course: CSE 498 Advanced Algorithms. No student may take both CSE/Math 340 and CSE 498 for credit. No graduate student may test out of (avoid taking) the Ph.D. Algorithms Qualifier Exam by taking CSE/Math 340 (for this purpose, he or she should take CSE 498 Advanced Algorithms and earn an A or better in it). Course objective: On completing this course, students will be sufficiently familiar with the theory, practice, notation, and vocabulary of algorithm design and analysis to be able to locate in the literature (or design from scratch) provably correct andto the extent possibleefficient algorithms to solve a wide range of problems. They will understand how to judge whether or not a new problem is likely to have an efficient algorithm. They will also have a grasp of basic engineering issues arising in the implementation, adaptation, and application of algorithms. Textbook: T. Cormen, C. Leiserson, R. Rivest, & C. Stein, Introduction to Algorithms, 2nd Edition, The MIT Press, Cambridge, Massachusetts, 2001. You do not need to buy the companion Java CDROM. (Also available from McGrawHill; either publisher's version is fine.) A desk copy may be consulted in the CSE Dept office PL 354 (but cannot be taken away). Another extra copy is available in Dr. Baird's office (PL514C), when he's there; but, again, it can't be taken away. We follow the textbook closely. Lectures may discuss only the most important topics in a section of the textbook, but students are expected to study the corresponding section completely. Unless stated otherwise, all material in covered sections is relevant to homework and tests. Classroom lectures: MWF 11:1012:00 AM in Packard Lab 416 (PL 416). Attendance and Quizes: Attendance in class is not required. There are, however, Pop Quizes, and a missing quiz results in zero points. Homework: There are weekly written homework assignments, due normally on Friday morning, to be handed in as hardcopy at the start of the class. For part of each Friday's class, students are invited to present their solutions on the blackboard, for which they will receive 5 points credit (whether or not their solution is correct); this 'presentation' credit is added to the HW+Quiz score, up to a fixed maximumand so can make up for points lost. Exams: There are two hour exams and a final 3hour exam: all are closedbook, inclass, written exams. Exams are not repeated: if under extraordinary circumstances a student cannot take an exam, it is assigned the average grade of the other two exams. Grading: 80% Exams (20% 1st hour exam, 20% 2nd hour exam, 40% final exam); 20% Homeworks + Quizzes + Presentations. Instructor:
Henry Baird, Prof., CSE Dept,
hsb2@lehigh.edu. Office: Packard Lab 514C.
Office Hours: Thursdays 11:0012:00 AM or by appointment. Grader: Bryan Auslander, bla204@lehigh.edu. Office hours: Thursdays 10:0011:00 AM, in PL 514B, or by appointment. BlackBoard site: Design & Analysis of Algorithms (SP09), CSEMATH340010SP09. We will use BlackBoard in this course to email announcements & distribute lecture notes, homeworks, grades, etc. Once you enroll in the course, browse bb.lehigh.edu, login using your Univ. email id and Portal password, and you should see that you have access to this course. If you can't login, email the instructor immediately.Accommodations for Students with Disabilities: If you have a disability for which you are or may be requesting accommodations, please contact both your instructor and the Office of Academic Support Services, University Center 212 (6107584152) as early as possible in the semester. You must have documentation from the Academic Support Services office before accommodations can be granted. Topics Covered (probable): If you have any questions, ask the instructor: hsb2@lehigh.edu. 

