The Structure of Broad Topics on the Web

Chakrabarti, Joshi, Punera, Pennock

Presented by: Xiaoguang Qi
What Are We Trying to Find Out

- Convergence of topic distribution on undirected random walks
- Degree distribution restricted to topics
- How topic-biased are breadth-first crawls?
- How representative are web directories of topics on the web?
- Topic convergence on directed walks
- Link-based vs. content-based Web communities
How do we do it

- Start from web directories
 - Open Directory
 - Prune the dmoz hierarchy to 482 topics and 144,859 URLs
- Train text classifier
 - Rainbow, Naïve Bayes
- New documents are topic vectors
 - \(d = (0.5, 0.3, 0.2) \)
Sampling Web Pages

- PageRank-based random walk
- Wander Walk
 - The same as PageRank walk except $d=0$
- The Bar-Yossef random walk
 - Make graph undirected
 - Make graph regular: add self loops
- Sampling walk
 - Bar-Yossef walk with random jump
Topic Convergence

- Start from two different topics
- Perform Sampling walk from each of them
- Measure the topic distance between two sampled page sets

\[
\tilde{p}(D) = \frac{1}{|D|} \sum_{d \in D} \tilde{p}(d)
\]

\[
L_1(D_1, D_2) = \sum_{c} |p_c(D_1) - p_c(D_2)|
\]

(Soft counting)
Background Distribution

• An estimation of the background distribution
• 12 top-level topics
• “Computers” accounts for more than 40%
Faithful Representation of Topics in web directories

- Many web users implicitly expect topic directories to be a microcosm of the web itself
- Our sample of dmoz is highly topic biased
 - L1 distance between dmoz and background distribution is high (1.43)
Topic-Specific Degree Distributions

- Degrees of web pages in general follow a power law distribution
 - The probability that a randomly picked node has degree i is proportional to $1/i^x$, for some constant power $x > 1$
- Does power law still hold in fixed topics?
 - Yes!
Topical Locality

How?

- Wander walk
 - Like PageRank walk, no jumping
- Start from a page related to a specific topic
- Collect the pages D_i found at distance i
- Find soft classification histogram $p(D_i)$
- Calculate the L_1 distance between $p(D_i)$ and background distribution, and the distance between $p(D_i)$ and $p(D_0)$
Relations Between Topics

- An N*N matrix, $C(i, j)$ is the probability that a page about topic i links to a page about topic j
- Soft counting:
 - $C(i, j) = C(i, j) + p_i(u) \times p_j(v)$
Concluding Remarks

- What we have shown
- Possible future work
 - How to set PageRank jump parameter?
 - Topic stability of distillation algorithms
 - Better crawling