Propagation of Trust and Distrust

Guha, Kumar, Raghavan, and Tomkins from the 2004 World Wide Web Conference

> Presented by Chad Hogg 2005 October 13

Motivation

- Far too many things webpages, products, postings, etc
- We can leverage other people's opinions
- Avoid disinformation
 - search engine spam
 - shilling
 - practical jokes

Avoiding Disinformation

- Some opinions can be trusted, some cannot
- Sparsity problem most people know nothing about most other people
- Who you distrust can be more important than who you do trust
 - Usually the majority will be trustworthy

Atomic Operations

- Matrix B is either trust or trust/distrust combo
- Direct Propagation B x B

- if $i \rightarrow j$ and $j \rightarrow k$, then $i \rightarrow k$

- Co-citattion B x B' x B (B' is transpose of B)
 - if $i \rightarrow j$, $i \rightarrow k$, $m \rightarrow j$, then $m \rightarrow k$
- Transpose Trust B x B'

- if $i \rightarrow j$, then $j \rightarrow i$

- Trust Coupling B x B x B'
 - if i -> j, k -> j, m -> i, then m -> k

Propagation

- Only Direct vs. only co-citation vs combination
- Two ways to iterate
 - Eigenvalue Propagation
 - Use single result from many iterations
 - Weighted Linear Combination
 - Use sum of results from each iteration, with greater weight given to fewer iterations

Iteration	α	Propagation	Global round.		Local round.		Maj. round.	
			ε	ϵ_S	ϵ	ϵ_S	ϵ	ϵ_S
EIG	e_1	Trust only	0.153	0.500	0.123	0.399	0.077	0.175
		One-step distrust	0.119	0.251	0.108	0.223	0.067	0.162
		Prop. distrust	0.365	0.452	0.368	0.430	0.084	0.206
	e_2	Trust only	0.153	0.500	0.114	0.365	0.080	0.190
		One-step distrust	0.097	0.259	0.087	0.234	0.066	0.159
		Prop. distrust	0.149	0.380	0.121	0.279	0.080	0.187
	e*	Trust only	0.153	0.500	0.107	0.336	0.077	0.180
		One-step distrust	0.096	0.253	0.086	0.220	0.064	0.147
		Prop. distrust	0.110	0.284	0.101	0.238	0.079	0.180
WLC, $\gamma = 0.5$	e_1	Trust only	0.153	0.500	0.123	0.390	0.189	0.163
		One-step distrust	0.093	0.231	0.083	0.205	0.098	0.205
		Prop. distrust	0.102	0.221	0.098	0.199	0.121	0.295
	e_2	Trust only	0.153	0.500	0.113	0.354	0.074	0.174
		One-step distrust	0.088	0.254	0.080	0.231	0.093	0.187
		Prop. distrust	0.126	0.336	0.100	0.252	0.076	0.177
	e*	Trust only	0.153	0.500	0.108	0.340	0.078	0.159
		One-step distrust	0.086	0.247	0.076	0.217	0.092	0.190
		Prop. distrust	0.087	0.237	0.079	0.203	0.074	0.162
WLC, $\gamma = 0.9$	e_1	Trust only	0.153	0.500	0.123	0.391	0.132	0.152
		One-step distrust	0.102	0.241	0.092	0.216	0.069	0.171
		Prop. distrust	0.111	0.238	0.106	0.211	0.101	0.227
	e_2	Trust only	0.153	0.500	0.113	0.356	0.078	0.184
		One-step distrust	0.092	0.260	0.082	0.235	0.071	0.173
		Prop. distrust	0.134	0.355	0.106	0.261	0.078	0.188
	e*	Trust only	0.153	0.500	0.107	0.337	0.075	0.169
		One-step distrust	0.091	0.253	0.082	0.222	0.072	0.171
		Prop. distrust	0.091	0.254	0.081	0.209	0.078	0.177

Table 3: Prediction of various algorithms. Here, $e^* = (0.4, 0.4, 0.1, 0.1), K = 20$.

Conclusions

- Each atomic operation is useful for prediction
- Adding one-step distrust is almost always useful
- Adding many-iteration distrust can be effective
 - Does i -/-> j and j -/-> k imply i -/-> k or i -> k ?
- Iteration methods are roughly equivalent
- Majority rounding is most effective