CSE 265: System and Network Administration

- Disks
- Partitions
- Volumes
- Filesystems
- Files
Disk interfaces

- Relatively few
 - SCSI (pronounced “scuzzy”)
 - Common, widely supported
 - IDE a.k.a. ATA or PATA, and SATA
 - Inexpensive, simple
 - Fibre Channel
 - High bandwidth, lots of simultaneous devices
 - Supports 100MB/s and faster
 - Universal Serial Bus (USB)
 - Fast enough for slow devices (e.g., CD-ROMs, portable, removable drives)
SCSI: Small Computer Systems Interface

- Many versions
 - SCSI-1 (1986) 8-bits, 5MB/s
 - SCSI-2 (1990) added command queuing, DMA, more
 - Fast SCSI-2 8-bits, 10MB/s
 - Fast/wide SCSI-2 16-bits, 20MB/s
 - Ultra SCSI 8 bits, 20MB/s
 - Wide Ultra SCSI 16bits, 40MB/s
 - Wide Ultra2 SCSI 16bits, 80MB/s
 - Wide Ultra3 SCSI 16bits, 160MB/s
 - Ultra-320, Ultra-640 SCSI
IDE a.k.a. ATA

- Integrated Drive Electronics / AT Attachment
 - Very short cable lengths (18in!)
- ATA-2 added DMA and LBA (get beyond BIOS 504MB limit)
- ATA-3 added power management, self-monitoring (16MB/s)
- Ultra-ATA added Ultra DMA/33, /66, and /133 modes (33-133MB/s)
- ATAPI interface allows non-ATA devices to connect
 - E.g., CD-ROMs
SATA

- Becoming standard equipment
 - Fast: 150-300MB/s
 - Software compatible with parallel ATA
 - One drive per controller
 - Thin cables
SCSI vs. IDE

- SCSI traditionally beats IDE technically, but may not be worth the price premium
- In single-user systems, IDE will provide 85%, cheaply
- For best possible performance, SCSI is better
 - e.g., in servers and multi-user systems
 - handles multiple simultaneous requests + more devices better
 - higher-end equipment (faster, better warranty, etc.)
- Newer SATA technology is quite good
 - Better than IDE, usually better price/performance than SCSI
- Still subject to much debate
Black box

- 40+2 SATA drives
- RAID
- Dual Xeon
- 8U tall
- Up to 40TB
Sun X4500

- 48 SATA drives
- Software RAID or ZFS
- Dual AMD
- 4U tall
- Up to 48TB
Adding a disk to Linux
STEP-BY-STEP (w/out LVM)

- Install new hardware
 - verify that hardware is recognized by BIOS or controller
- Boot, make certain device files already exist in /dev
- Use `fdisk` to partition the drive
 - Verify the system type on each partition
- Use `mke2fs` (-j) on each regular partition
- Use `mkswap` to initialize swap partitions
- Add entries to `/etc/fstab`
- Mount by hand, then reboot to verify everything
Disk installation

• Connecting the disk
 − depends primarily on the interface used

• Formatting the disk
 − Need device files in /dev to access a drive
 − Formatted capacity is less than advertised
 − All drives come preformatted
 • Factory formatting often more precise
 • Avoid doing a (low-level) format!
hdparm: test/set hd params

• hdparm will do simple performance tests

[root@wume2 ~]# /sbin/hdparm -Tt /dev/hda
/dev/hda:
 Timing cached reads: 1928 MB in 2.00 seconds = 963.26 MB/sec
 Timing buffered disk reads: 122 MB in 3.03 seconds = 40.22 MB/sec

[root@wumel ~]# /sbin/hdparm -Tt /dev/sda
/dev/sda:
 Timing cached reads: 3440 MB in 2.00 seconds = 1720.77 MB/sec
 Timing buffered disk reads: 162 MB in 3.03 seconds = 53.41 MB/sec

[root@night ~]# /sbin/hdparm -Tt /dev/sdd
/dev/sdd:
 Timing cached reads: 10504 MB in 2.00 seconds = 5254.65 MB/sec
 Timing buffered disk reads: 1196 MB in 3.00 seconds = 398.28 MB/sec

[root@morning ~]# /sbin/hdparm -Tt /dev/hda
/dev/hda:
 Timing cached reads: 4092 MB in 2.00 seconds = 2047.82 MB/sec
 Timing buffered disk reads: 10 MB in 3.03 seconds = 3.30 MB/sec
Disk partitions

- Drive must be divided into one or more partitions that are treated independently
 - Partitions make backups easier, confine damage
- Typically have at least two or three
 - root partition (one)
 - everything needed to bring system up in single-user mode
 (often copied onto another disk for emergencies)
 - swap partition (at least one)
 - stores virtual memory when physical memory is insufficient
 - user partition(s)
 - home directories, data files, etc.
 - boot partition - boot loader, kernel, etc.
Logical Volumes

- Partitions are static, and sometimes you want to change them
- LVM (Linux Logical Volume Manager) lets you combine partitions and drives to present an aggregate volume as a regular block device (just like a disk or partition)
 - Use and allocate storage more efficiently
 - Move logical volumes among different physical devices
 - Grow and shrink logical volume sizes on the fly
 - Take “snapshots” of whole filesystems
 - Replace on-line drives without interrupting service
- Similar systems are available for other OSes
LVM

- LVM2 was incorporated with the 2.6 kernel
- Sample organization:

```
hdal   hdc1   (Physical volumes on partitions or whole disks containing many p.extents)
\   /       (Volume group)
diskvg
\ /        
/ |   
/ |   
/|   |
usrlv rootlv varlv (Logical volumes)
|   |   |
|   |   |
ext3 reiserfs xfs (filesystems)
```
Example configuration

[from fdisk]

Disk /dev/hda: 40.0 GB, 40020664320 bytes
16 heads, 63 sectors/track, 77545 cylinders
Units = cylinders of 1008 * 512 = 516096 bytes

<table>
<thead>
<tr>
<th>Device</th>
<th>Boot</th>
<th>Start</th>
<th>End</th>
<th>Blocks</th>
<th>Id</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hda1</td>
<td>*</td>
<td>1</td>
<td>203</td>
<td>102280+</td>
<td>83</td>
<td>Linux</td>
</tr>
<tr>
<td>/dev/hda2</td>
<td></td>
<td>204</td>
<td>77545</td>
<td>38980368</td>
<td>8e</td>
<td>Linux LVM</td>
</tr>
</tbody>
</table>

Disk /dev/hdd: 15.3 GB, 15393079296 bytes
16 heads, 63 sectors/track, 29826 cylinders
Units = cylinders of 1008 * 512 = 516096 bytes

<table>
<thead>
<tr>
<th>Device</th>
<th>Boot</th>
<th>Start</th>
<th>End</th>
<th>Blocks</th>
<th>Id</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hdd1</td>
<td>*</td>
<td>1</td>
<td>29826</td>
<td>15032272+</td>
<td>83</td>
<td>Linux</td>
</tr>
</tbody>
</table>
Example configuration

```
[root@brian]# lvs
<table>
<thead>
<tr>
<th>LV</th>
<th>VG</th>
<th>Attr</th>
<th>LSize</th>
<th>Origin</th>
<th>Snap%</th>
<th>Move</th>
<th>Copy%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogVol00</td>
<td>VolGroup00</td>
<td>-wi-ao</td>
<td>16.34G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogVol01</td>
<td>VolGroup00</td>
<td>-wi-ao</td>
<td>1.25G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogVol02</td>
<td>VolGroup00</td>
<td>-wi-ao</td>
<td>9.78G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogVol03</td>
<td>VolGroup00</td>
<td>-wi-ao</td>
<td>9.75G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
[root@brian]# df
<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1K-blocks</th>
<th>Used</th>
<th>Available</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/mapper/VolGroup00-LogVol00</td>
<td>16868196</td>
<td>6510016</td>
<td>9501300</td>
<td>41%</td>
<td>/</td>
</tr>
<tr>
<td>/dev/hda1</td>
<td>99043</td>
<td>21381</td>
<td>72548</td>
<td>23%</td>
<td>/boot</td>
</tr>
<tr>
<td>none</td>
<td>322356</td>
<td>0</td>
<td>322356</td>
<td>0%</td>
<td>/dev/shm</td>
</tr>
<tr>
<td>/dev/mapper/VolGroup00-LogVol02</td>
<td>10095152</td>
<td>6793148</td>
<td>2789188</td>
<td>71%</td>
<td>/home</td>
</tr>
<tr>
<td>/dev/mapper/VolGroup00-LogVol03</td>
<td>10063176</td>
<td>55264</td>
<td>9496732</td>
<td>1%</td>
<td>/misc</td>
</tr>
<tr>
<td>/dev/hdd1</td>
<td>14796212</td>
<td>11901736</td>
<td>2142864</td>
<td>85%</td>
<td>/backup</td>
</tr>
</tbody>
</table>
```
Filesystems

- Linux filesystems are created in partitions or volumes
 - Originally used Tanenbaum's MINIX filesystem
 - ext2fs (Second Extended File System) is common
 - ext3fs (Third Extended File System) is now standard
 - Augments ext2fs to incorporate journaling
 - Journals contain filesystem updates
 - Journal log can reconstruct consistent filesystem
 - Journal speeds filesystem consistency checks
 - Other filesystems also supported
 - ReiserFS, IBM's JFS, SGI's XFS
 - Can read foreign filesystems
 - FAT, NTFS, ISO 9660, etc.
ext2 and ext3 filesystems

- For ext2/ext3, **mke2fs** is used, which creates
 - A set of inode storage cells
 - each holds info about one file
 - A set of scattered “superblocks”
 - holds global filesystem info (multiple copies for reliability)
 - size and location of inode tables, block map and usage, etc.
 - A map of the disk blocks in the filesystem (used and free)
 - The set of data blocks

- Setting up ext3 extensions
 - Can convert an ext2 using **tune2fs**, edit /etc/fstab
 - mke2fs -j /dev/hda4
Mounting a filesystem

- Filesystem must be mounted before use
 - Must be made part of root filesystem
- Can be mounted on any directory
 # mount /dev/sda1 /usr/local
 # df /usr/local
- Use /mnt for temporary mounts
- Want to set up automatic mounting
/etc/fstab

- (Almost) every filesystem that the system knows about automatically is in /etc/fstab

```bash
[root@brian]# more /etc/fstab
/dev/VolGroup00/LogVol00 /       ext3   defaults   1   1
LABEL=/boot           /boot ext3   defaults   1   2
none                  /dev/pts devpts gid=5,mode=620 0   0
none                  /dev/shm tmpfs defaults 0   0
none                  /proc    proc    defaults   0   0
none                  /sys     sysfs   defaults   0   0
/dev/VolGroup00/LogVol02 /home ext3   defaults   1   2
/dev/VolGroup00/LogVol03 /misc ext3   defaults   1   2
/dev/hdd1              /backup ext3   defaults   1   2
/dev/VolGroup00/LogVol01 swap swap defaults 0   0
```
[u]mounting, swap

- mount, umount, swapon and fsck all read the /etc/fstab file
- allows
 - # mount /mnt/cdrom
- fstab entries must be in the correct order
- at startup
 - mount -a executed, mounts all regular partitions
 - swapon enables swapping on all swap partitions
fsck: check and repair filesystems

- During power failure, superblock, inodes, and data blocks may not get written to disk
- **fsck** can fix minor damage (ext3 systems quickly)
 - unreferenced inodes
 - inexplicably large link counts
 - unused data blocks not recorded in block maps
 - data blocks listed as free that are also used in a file
 - incorrect summary info in superblock
- More complex damage will make **fsck** ask human
 - Places unfixable files in lost+found directory
 - You should re-run **fsck** until no errors are found
The Filesystem

- A filesystem incorporates:
 - A way of naming and organizing things (namespace)
 - An API for navigating and manipulating objects
 - A security model for protecting, hiding, and sharing objects
 - An implementation to tie the model to the hardware

- Linux abstract kernel interface supports many different filesystems
 - from disk, network, memory
Pathnames

- The Linux filesystem is a single unified hierarchy, starting with / (the root directory)

- A pathname can be
 - absolute
 - /etc/passwd
 - relative
 - ./passwd
 - Always starts with current working directory

- No technical limitations on file naming other than length and /
 - some chars are more difficult to use (need quotes or escape)
Mounting & unmounting filesystems

- The filesystem is made of smaller filesystems
- Most filesystems are disk partitions
 - but can be anything that obeys the API
- Filesystems may be added or removed using the mount and umount commands
 - The mount point is a directory
 - Ex:

 # mount /dev/hdc1 /backup
mounting filesystems

- List of filesystems is in /etc/fstab
 - Such filesystems are checked (fsck -A) and mounted (mount -a) at boot
- umount will fail if the filesystem is busy
 - busy = any open files, processes with cwd, or copies of executing programs
 - /sbin/fuser will show such processes
 - f – file open for reading or writing
 - c – process cwd is on filesystem
 - e – process is executing a file
 - r – process root dir is on filesystem
 - m – process has mapped file or shared lib
File tree organization

- Not really well organized
- Many files organized by function
 - difficult to upgrade
 - `/etc/` contains files that are never customized, and ones that are entirely local
- There is at least one place for everything
- Admins need to learn standard places, not move or use new ones
Filesystem hierarchy

http://www.pathname.com/fhs/

/bin: Essential user command binaries (for use by all users)
/boot: Static files of the boot loader (e.g., kernel)
/dev: Device files (terminals, disks, modems, etc.)
/etc: Host-specific system configuration
/home: User home directories (optional)
/lib: Essential shared libraries and kernel modules
/media: Filesystems on removable media
/opt: Add-on application software packages
/proc: Kernel and process information virtual filesystem
/root: Home directory for the root user (optional)
/sbin: System binaries for repairing, booting, or recovering the OS
/tmp: Temporary files (that disappear at reboot)
/usr: (more next slide)
/var: (more next slide)
/usr, /var

/usr
/usr/bin : Most commands and executables
/usr/include : Header files for C programs
/usr/lib : Libraries and support files for standard programs
/usr/local : Local software (stuff you install)
/usr/man : Manual pages
/usr/sbin : Less essential sysadmin commands
/usr/share : Content that is common to multiple systems (RO)
/usr/src : Source code for (nonlocal) software packages

/var
/var/adm : Various logs, system setup records
/var/log : System log files
/var/spool : Spooling directories for printers, mail, dns
/var/tmp : More temporary space (preserved between reboots)
File types

- Linux defines seven types of files
 - [-] - Regular files
 - [d] - Directories
 - [c] - Character device files
 - [b] - Block device files
 - [s] - Local domain sockets
 - [p] - Named pipes (FIFO)
 - [l] - Symbolic links

- `ls -ld` shows the filetype of a file
Directories

- Created with `mkdir`, deleted with `rmdir` (if empty) or `rm -r`
- Contains named references (links) to other files
- Special entries “.” and “..” refer to self and parent directories respectively
- Filenames are stored within parent directory
- More than one directory entry can refer to the same file (hard links)
 - Can be created with `ln`, removed with `rm`
Character and block device files
/dev/

- Allow programs to communicate with hardware
 - When kernel gets request that refers to device file, it is handed off to the device driver
- Character (raw) device files
 - Allow drivers to do own i/o buffering
- Block device files
 - Handle i/o in large chunks, kernel buffers
- Characterized by major (which driver) and minor (which device) device numbers

crw-rw---- 1 root lp 6, 0 Jan 30 2003 /dev/lp0
- Created with **mknod** and deleted by **rm**
Sockets & pipes

- Local domain sockets
 - Sockets provide connections between processes
 - Local/UNIX domain sockets are only accessible through the filesystem
 - Only used by processes involved in connection
 - Created with `socket`, deleted by `rm` or `unlink`
 - Used by X Windows, syslog, and printing system

- Named pipes
 - FIFO files that allow communication between processes on same host
 - Created with `mknod` and deleted with `rm`
Symbolic links

- Commonly used to reorganize a subtree, or provide multiple points of access to a file
- “Soft links” -- record path information, but not actual file
- Created by `ln -s`, deleted with `rm`
- Can contain absolute or relative path
 - # `ln -s ../parent`
 - # `ln -s /etc/mime.types .mime.types`
- First arg is recorded, not resolved until use
File attributes

• Every file has 12 mode bits
 (four octal values of 3 bits each)
 - 4000 – setuid
 - 2000 – setgid
 - 1000 – sticky bit
 • On a directory, means only the owner of the file, directory, or superuser can delete or rename files
 • Keeps /tmp more private and secure
Permission bits

• Nine permission bits
 - User: owner read, write, execute
 • 400, 200, 100
 - Group read, write, execute
 • 40, 20, 10
 - Other: world read, write execute
 • 4, 2, 1
• Ability to delete or rename is controlled by permissions on directory
Examples

- **chmod** changes permissions
- **chown** changes ownership and group

  ```
  # chown -R user.group /home/user
  ```
- **umask**

 - Set shell parameters to control default permissions
 - umask 027 gives everything to owner, forbids writes to group, and gives nothing to other users
 - Usually set in /etc/profile or /etc/csh.login
Resources

● Introduction to IDE/ATA/SATA/SCSI
 - http://pclt.cis.yale.edu/pclt/PCHW/IDESCSI.HTM

● Logical Volume Management
 - http://www.tldp.org/HOWTO/LVM-HOWTO/