Daemons

- init
- cron and atd
- inetd and xinetd
- Kernel daemons
- File service daemons
- Internet daemons
- Time synchronization daemons
- Booting and configuration daemons
- FTP and WWW proxy servers
init

- First process to run after booting
- PID of 1
- Either goes to single user mode or starts scripts to go to multi-user mode
- Runs some version of getty for console and serial logins
cron and atd

- crond runs commands at preset times
- so does atd
 - but can limit when jobs are run (based on load)
inetd and xinetd

- **inetd** is a daemon that manages other daemons
 - Starts client daemons only when there is work for them
 - Lets them die when their work is complete
- Only works with daemons that provide network services
 - Attaches itself to the network ports used by clients
 - When connection occurs, inetd starts the daemon, and connects standard I/O to the network port
- **xinetd** is an improved alternative
inetd uses /etc/inetd.conf to determine which ports and daemons to use (along with /etc/services)

```bash
# Sample portions of an /etc/inetd.conf from Solaris
#
ftp    stream tcp6 nowait root /usr/sbin/tcpd  in.ftpd
#
telnet stream tcp6 nowait root /usr/sbin/tcpd  in.telnetd
#
shell  stream tcp  nowait root /usr/sbin/tcpd  in.rshd
shell  stream tcp6 nowait root /usr/sbin/tcpd  in.rshd
login  stream tcp6 nowait root /usr/sbin/tcpd  in.rlogind
exec   stream tcp  nowait root /usr/sbin/tcpd  in.rexecd
exec   stream tcp6 nowait root /usr/sbin/tcpd  in.rexecd
talk   dgram  udp  wait   root /usr/sbin/tcpd  in.talkd
time   stream tcp6 nowait root internal
time   dgram  udp6 wait   root internal
amanda dgram  udp  wait backup /opt/amanda/libexec/amandad amandad
```
xinetd

- /etc/xinetd.conf, and can also use a directory with entries like:

```
# default: off
# description: An xinetd internal service which echo's characters back to clients.
# This is the tcp version.

default {
    disable = yes;
}

service echo {
    type = INTERNAL;
    id = echo-stream;
    socket_type = stream;
    protocol = tcp;
    user = root;
    wait = no;
    disable = yes;
}

# default: off
# description: The talk server accepts talk requests for chatting with users on other systems.

service talk {
    disable = yes;
    socket_type = dgram;
    wait = yes;
    user = nobody;
    group = tty;
    server = /usr/sbin/in.talkd;
}
```
/etc/services file

```plaintext
# service-name port/protocol [aliases ...] [# comment]
tcpmux       1/tcp                     # TCP port service multiplexer
rje          5/tcp                        # Remote Job Entry
rje          5/udp                        # Remote Job Entry
echo         7/tcp
echo         7/udp
systat       11/tcp         users
systat       11/udp         users
daytime      13/tcp
daytime      13/udp
qotd         17/tcp         quote
qotd         17/udp         quote
ftp-data     20/tcp
ftp          21/tcp
ssh          22/tcp                       # SSH Remote Login Protocol
telnet       23/tcp
smtp         25/tcp         mail
smtp         25/udp         mail
```
Kernel daemons

• A few parts of the kernel are managed as if they were user processes
 – low PID processes, usually beginning with k
 – keventd, kupdated, klogd, kjournald

• Generally deal with memory management, synchronization of disk caches, and message logging
File service daemons

- rpc.nfSD: kernel daemon that serves NFS requests
- rpc.mountd: accepts filesystem mount requests
- amd and automount: mount on demand
- rpc.lockd and rpc.statd: NFS locking and NFS status
- rpciod: caches NFS blocks
- rpc.rquotad: serve remote quotas (NFS)
- smbd: Windows-compatible file and print services
- nmbd: Windows-compatible NetBIOS name service requests
Administrative database daemons

- ypbind: locate NIS servers
- ypserv: NIS server
- rpc.ypxfrd: transfer NIS database
- nscd: name service cache daemon
Internet daemons (1/2)

- talkd: network chat
- sendmail: MTA
- snmpd: remote network management
- rwhod: remote user lists
- vsftpd: very secure ftp daemon
- popper: basic mailbox access
- imapd: more functional mailbox access
- in.rlogind: remote logins
- in.telnetd: uses telnet protocol
Internet daemons (2/2)

- sshd: secure remote logins
- in.rshd: remote command execution
- rsyncd: synchronize files
- routed, gated: maintain routing tables
- named: DNS server
- syslogd: logging server
- in.fingerd: look up users
- httpd: WWW server
- lpd: print spooler
Booting & Configuration Daemons

- dhcpd: dynamic address assignment
- in.tftpd: trivial file transfer server
- rpc.bootparamd: provide info to diskless clients
Time synchronization daemons

- timed: synchronize clocks
 - (multiple implementations with same name)
- ntpd, xntpd: better implementation
 - more accurate, within a few milliseconds

We enabled ntpd when we installed CentOS
FTP servers

- File Transfer Protocol – predated the Web
- Anonymous FTP becoming less common
 - Non-anonymous FTP is a security concern (same as telnet – usernames and passwords in cleartext)
- vsftpd can be run standalone or via inetd
- To limit the security concerns, vsftpd can have authenticated users access their own chrooted space
- Do not make any ftp directories world writable!
 - Your machine becomes a free file server
Web proxies

• A proxy: someone who does something on your behalf

• Uses for web proxies:
 - Access management / filtering / logging
 - Bandwidth and latency reduction through caching
 - Load-spreading mechanism for busy web servers

• Squid is an open-source example
Web caches (proxy server)

Goal: satisfy client request without involving origin server

- User sets browser to access Web via cache
- Browser sends all HTTP requests to cache
 - If object in cache: cache returns object
 - Else cache requests object from origin server, then returns object to client
More about Web caching

- Cache acts as both client and server
- Cache can do up-to-date check using If-modified-since HTTP header
 - Issue: should cache take risk and deliver cached object without checking?
 - Heuristics are used.
- Typically cache is installed by ISP (university, company, residential ISP)

Why Web caching?
- Reduce response time for client request.
- Reduce traffic on an institution's access link.
- Internet dense with caches enables “poor” content providers to effectively deliver content (that is, it reduces the load on Web servers).