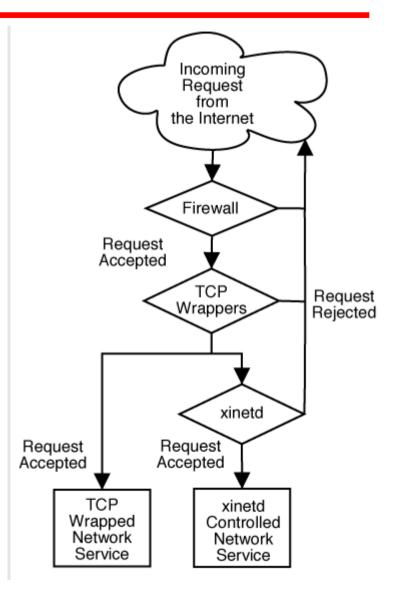
CSE 265: System and Network Administration

- Daemons
 - init
 - cron and atd
 - inetd and xinetd
 - Kernel daemons
 - File service daemons
 - Internet daemons
 - Time synchronization daemons
 - Booting and configuration daemons
 - FTP and WWW proxy servers

init


- First process to run after booting
- PID of 1
- Either goes to single user mode or starts scripts to go to multi-user mode
- Runs some version of getty for console and serial logins

cron and atd

- crond runs commands at preset times
- so does atd
 - but can limit when jobs are run (based on load)

inetd and xinetd

- inetd is a daemon that manages other daemons
 - Starts client daemons only when there is work for them
 - Lets them die when their work is complete
- Only works with daemons that provide network services
 - Attaches itself to the network ports used by clients
 - When connection occurs, inetd starts the daemon, and connects standard I/O to the network port
- xinetd is an improved alternative

Fall 2014

CSE 265: System and Network Administration

©2004-2014 Brian D. Davison

/etc/inetd.conf

 inetd uses /etc/inetd.conf to determine which ports and daemons to use (along with /etc/services)

```
Sample portions of an /etc/inetd.conf from Solaris
#
#
ftp
      stream tcp6 nowait root /usr/sbin/tcpd
                                               in.ftpd
telnet stream tcp6 nowait root /usr/sbin/tcpd
                                               in.telnetd
#
shell
     stream tcp nowait root /usr/sbin/tcpd
                                               in.rshd
shell
     stream tcp6 nowait root /usr/sbin/tcpd
                                               in.rshd
login
      stream tcp6 nowait root /usr/sbin/tcpd
                                               in.rlogind
      stream tcp nowait root /usr/sbin/tcpd
                                               in.rexecd
exec
exec stream tcp6 nowait root /usr/sbin/tcpd
                                               in.rexecd
             udp
                  wait root /usr/sbin/tcpd
talk
      dgram
                                               in.talkd
time
      stream tcp6 nowait root internal
             udp6 wait root internal
time
      dgram
                  wait backup /opt/amanda/libexec/amandad amandad
amanda dgram
             udp
```

xinetd

 /etc/xinetd.conf, and can also use a directory with entries like:

```
# default: off
# description: An xinetd internal
# service which echo's characters
# back to clients.
# This is the tcp version.
service echo
{
                = INTERNAL
   type
                = echo-stream
    id
   socket type
                = stream
   protocol
                = tcp
   user
                = root
   wait
                = no
   disable
                = ves
```

```
# default: off
# description: The talk server
# accepts talk requests for
# chatting with users on other
# systems.
```

```
service talk
{
    disable = yes
    socket_type = dgram
    wait = yes
    user = nobody
    group = tty
    server = /usr/sbin/in.talkd
}
```

/etc/services file

<pre># service-name</pre>	port/protocol	[aliases]	[# comment]
tcpmux	1/tcp		#	TCP port service multiplexer
rje	5/tcp			# Remote Job Entry
rje	5/udp			# Remote Job Entry
echo	7/tcp			
echo	7/udp			
systat	11/tcp	users		
systat	11/udp	users		
daytime	13/tcp			
daytime	13/udp			
qotd	17/tcp	quote		
qotd	17/udp	quote		
ftp-data	20/tcp	·		
ftp	21/tcp			
ssh	22/tcp			<pre># SSH Remote Login Protocol</pre>
telnet	23/tcp			Ŭ
smtp	25/tcp	mail		
smtp	25/udp	mail		
		-		

Kernel daemons

- A few parts of the kernel are managed as if they were user processes
 - low PID processes, usually beginning with k
 - keventd, kupdated, klogd, kjournald
- Generally deal with memory management, synchronization of disk caches, and message logging

File service daemons

- rpc.nfsd: kernel daemon that serves NFS requests
- rpc.mountd: accepts filesystem mount requests
- amd and automount: mount on demand
- rpc.lockd and rpc.statd: NFS locking and NFS status
- rpciod: caches NFS blocks
- rpc.rquotad: serve remote quotas (NFS)
- smbd: Windows-compatible file and print services
- nmbd: Windows-compatible NetBIOS name service requests

Administrative database daemons

- ypbind: locate NIS servers
- ypserv: NIS server
- rpc.ypxfrd: transfer NIS database
- nscd: name service cache daemon

Internet daemons (1/2)

- talkd: network chat
- sendmail: MTA
- snmpd: remote network management
- rwhod: remote user lists
- vsftpd: very secure ftp daemon
- popper: basic mailbox access
- imapd: more functional mailbox access
- in.rlogind: remote logins
- in.telnetd: uses telnet protocol

Internet daemons (2/2)

- sshd: secure remote logins
- in.rshd: remote command execution
- rsyncd: synchronize files
- routed, gated: maintain routing tables
- named: DNS server
- syslogd: logging server
- in.fingerd: look up users
- httpd: WWW server
- Ipd: print spooler

Booting & Configuration Daemons

- dhcpd: dynamic address assignment
- in.tftpd: trivial file transfer server
- rpc.bootparamd: provide info to diskless clients

Time synchronization daemons

- timed: synchronize clocks
 - (multiple implementations with same name)
- ntpd, xntpd: better implementation
 - more accurate, within a few milliseconds

We enabled ntpd when we installed CentOS

FTP servers

- File Transfer Protocol predated the Web
- Anonymous FTP becoming less common
 - Non-anonymous FTP is a security concern (same as telnet usernames and passwords in cleartext)
- vsftpd can be run standalone or via inetd
- To limit the security concerns, vsftpd can have authenticated users access their own chrooted space
- Do not make any ftp directories world writable!
 - Your machine becomes a free file server

Web proxies

- A proxy: someone who does something on your behalf
- Uses for web proxies:
 - Access management / filtering / logging
 - Bandwidth and latency reduction through caching
 - Load-spreading mechanism for busy web servers
- Squid is an open-source example

Web caches (proxy server)

Goal: satisfy client request without involving origin server

- User sets browser to access Web via cache
- Browser sends all HTTP requests to cache
 - If object in cache: cache returns object
 - Else cache requests object from origin server, then returns object to client

More about Web caching

- Cache acts as both client
 and server
- Cache can do up-to-date check using If-modifiedsince HTTP header
 - Issue: should cache take risk and deliver cached object without checking?
 - Heuristics are used.
- Typically cache is installed by ISP (university, company, residential ISP)

Why Web caching?

- Reduce response time for client request.
- Reduce traffic on an institution's access link.
- Internet dense with caches enables "poor" content providers to effectively deliver content (that is, it reduces the load on Web servers).