CSE 265: System and Network Administration

If you aren't measuring it, you aren't managing it.

- Service Monitoring
  - Historical data
  - Real-time monitoring
    - Alerting
    - Active monitoring systems
  - End-to-end tests
  - Application response time monitoring

- Syslog and Log files
  - Logging policies – what do you do with logs?
  - Linux log files
  - Logrotate: Manage log files
  - Syslog: system event logger
  - Condensing log files
Motivation for monitoring
Motivation for monitoring

- Rapidly detect and fix problems
- Identify the source of problems
- Predict and avoid future problems
- Provide data on SA's achievements
Historical data

- Historical availability
  - record long-term uptime statistics
  - show improvements (99.99% uptime vs 99.9%)

- Utilization data useful for capacity planning

- Process
  - Poll systems at regular intervals
  - Collected, often graphed
  - Example: network status
    - [https://ss.cc.lehigh.edu/public/mrtg/internett.html](https://ss.cc.lehigh.edu/public/mrtg/internett.html)
Real-time monitoring

- Alert SA immediately about a failure
- Want to notice outage before customer does
  - maintain reputation
  - minimize downtime
- Two components
  - Monitoring (polling) systems to check status, watching error messages, checking subsystems
  - Alerting – recognize problems and notify SAs
Monitoring

- Want to monitor everything that can indicate a problem
- Availability monitoring
  - Host/network/application failures
- Capacity monitoring
  - Approaching or past overload
## Public Site Usage

![Graph showing site usage over time](image)

### From 2010/01/16 23:45:58 To 2010/02/16 23:45:58

<table>
<thead>
<tr>
<th>Host</th>
<th>Current</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>coppee103</td>
<td>1</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>drown10</td>
<td>4</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>drown20</td>
<td>6</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>fm400</td>
<td>13</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>fm449</td>
<td>4</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>fm550</td>
<td>9</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>fm650</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>fmexp</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>fr805</td>
<td>3</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>gr28</td>
<td>5</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>iha122</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>ihd109</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>l132w</td>
<td>6</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>l302</td>
<td>6</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>m180</td>
<td>7</td>
<td>8</td>
<td>37</td>
</tr>
<tr>
<td>m292</td>
<td>3</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>mg470</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>mg485</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>ml210</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>ml444</td>
<td>6</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>mu464</td>
<td>2</td>
<td>2</td>
<td>17</td>
</tr>
</tbody>
</table>
Portal Sessions

From 2010/01/16 23:52:09 To 2010/02/16 23:52:09

Sessions Current: 376 Average: 226.37 Maximum: 683
Alerting

- Monitoring useless without alerting system
- Should not depend on system being monitored
  - e.g., don't depend on e-mail if network is down
- Who gets alerts? What if failure persists?
- Need to test alerting system
  - Funny story about an alerting system that called the SA saying “I'm hot! I'm wet!” (wife of SA did not approve)
Active monitoring

- Don't just monitor and alert, do something!
- Respond quickly/automatically
- Temporary solutions
  - Still need a permanent fix
- Can be a security risk (often requires privileges)
End-to-end tests

- Test entire transactions as a simulated customer
  - Send email through a server
  - Log in, select an item, check-out, get receipt
- Find problems before customers
- Find systemic problems, even when individual components are working
Application response time monitoring

- Even when everything works, if it is too slow, it is a failure
  - Loss of productivity
  - Loss of sales
  - Resentment
- Use historical monitoring, too
Summary

- Two types of monitoring:
  - Historical data gathering
    - Trends for capacity planning
    - Recognition of long-term improvements
  - Real-time monitoring and alerting
    - Detect problems faster
    - React before failure (e.g., before swap gets full)
Logging policies

- Log files grow and grow
- What do you do with log files? Some options:
  - Throw away all data immediately
  - Reset log files periodically
  - Rotate log files, keeping data for a fixed time
  - Compress and archive files to tape or other media

- Throwing away log files
  - Not recommended!
  - Need evidence of security problems
  - Alert for hardware and software problems
  - Ideally, keep for a month
    - may take that long to notice a problem!
  - Resetting when disk is full isn't good either
Rotating log files

• Keep a fixed set of previous log files
  – Rotate current file into set on a regular basis (daily, weekly, etc.)
  – Example:

    ```bash
    #!/bin/sh
    cd /var/log
    mv logfile.2 logfile.3
    mv logfile.1 logfile.2
    mv logfile logfile.1
    touch logfile
    chmod 600 logfile
    ```
  – May want to add compression, reset server
Archiving log files

• May need to archive all accounting data and log files for policy, potential audits, etc.
• First rotate on disk
  – fast access to recent data
• Then write to tape or other media
• Log files should be part of backup sequence
  – Hackers tend to delete them!
Linux log files

- Most log files are recorded in /var/log
  - /var/adm may also contain some (distro dependent)
- Most programs send entries to syslog daemon
  - /etc/rsyslog.conf usually puts them in /var/log
- Sample log files:
  - messages – main system log file
  - maillog – record of sendmail activity
  - boot.log – output of system startup scripts
Other log files

- `/var/log/wtmp`
  - Record of users' logins and logouts
  - Binary format – use `last` to read
  - Still truncated and rotated

- `/var/log/lastlog`
  - Record of time of last log in
  - Binary format (is used to say when you last logged in)
  - Constant size – no need to rotate

- `/var/log/dmesg`
  - Dump of kernel message buffer at end of boot
Logrotate

- Excellent utility to manage log files
- Specifies groups of log files to be managed

```bash
# Example log rotation
rotate 5
weekly

/var/log/messages {
    postrotate
        /bin/kill -HUP `cat /var/run/syslogd.pid`
    endscript
}
/var/log/samba/*.log {
    notifempty
copytruncate
    postrotate
        /bin/kill -HUP `cat /var/lock/samba/*.pid`
    endscript
}
```
Syslog

• Comprehensive logging system
  – Frees programmers from needing to write their own
  – Allows sysadmins to control logging

• Flexible
  – Can sort by source or severity level
  – Output to variety of destinations – files, terminals, other machines

• Can centralize logging to a well-controlled machine

• RHEL/CentOS 6 uses rsyslog (improved)
Syslog (continued)

- Three parts
  - syslogd – logging daemon (uses /etc/rsyslog.conf)
  - openlog – library routines
  - logger – shell command to submit log entries
- Apps use library to write to /dev/log
  - UNIX domain socket
- Syslogd reads messages from /dev/log
  - Outputs message depending on /etc/rsyslog.conf
Sample syslog.conf

# Emergencies: tell everyone who is logged in
*.emerg;user.none

*.warning;daemon,auth.info,user.none /var/log/messages

# Forward important messages to the central logger
*.warning;daemon,auth.info @netloghost

# printer errors
lpr.debug /var/log/lpd-errs
Sample syslog output

Feb 22 04:04:21 wume1 named[2826]: lame server resolving '211.68.246.64.in-addr.arpa' (in '68.246.64.in-addr.arpa?'): 160.79.6.130#53
Feb 22 13:22:41 wume1 sshd(pam_unix)[16776]: session opened for user brian by (uid=0)
Feb 22 13:22:44 wume1 su(pam_unix)[16802]: session opened for user root by brian (uid=501)
Feb 25 20:31:57 wume1 sshd(pam_unix)[28375]: check pass; user unknown
Feb 25 20:32:00 wume1 sshd(pam_unix)[28375]: 1 more authentication failure; logname= uid=0 euid=0 tty=NODEVssh ruser= rhost=dyn032098.cc.lehigh.edu
Condensing log files

- Syslog (as well as any other monitoring and logging facility) generates lots of log files
- Need utilities to scan log files and find important entries
  - security-related entries
  - messages about disks full
  - messages repeated many times
Summary

- It is imperative to monitor systems and generate logs
  - For warnings, job performance, trends, etc.
- Logs cannot be permitted to impact proper system operation