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Prefetch-Nice

* Web prefetching system
* Claims:

- Novel
— Non-intrusive

- Avoids interference between prefetch and
demand requests at server and network

- Deployable without modifications to browsers,
HTTP protocol, and network

- 25% reduction in response time vs. traditional
technique



How Prefetch-Nice works

* To prefetch, it

- modifies HTML pages to include JavaScript
code to issue prefetch requests

* To avoid interference, it

— monitors the server load externally to
dynamically tune client prefetch aggressiveness

- uses TCP-Nice, a specially tuned TCP stack for
low-priority data transfer

— uses heuristics to control resources on the client
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Results

* |IBM sporting event workloads on LAN and
WAN (cable modem) environments
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Figure 7. Perfoomance of No-avoidance, Nice Figure 16. The average demand request re-
and Monitor schemes on IBM Server Workload sponse times in the WAN experiments.




Critique

- Paper had good goals

- Did not succeed - requires changes to server (TCP-Nice),
requires infrastructure (monitor, page munger, prefetch
server), prefetching technique not new, requires separate
hint retrievals and reference uploads, prefetched objects
have different URLs, monitor causes overhead

- Experimental results are very limited (one server-only
dataset, two environments), and not always positive (all
prefetching increased mean response time in fig 7, and
TCP-Nice paper had similar data)

- Paper unclear - how to run JavaScript-based
experiments? Monitor(?ms)? Placement of hint server?



