A Non-interfering Deployable Web
Prefetching System

Ravi Kokku, Praveen Yalagandula,
Arun Venkataramani, Mike Dahlin

USENIX Symposium on Internet Technologies &
Systems (USITS), March 2003

Presented by Prof. Davison
24 April 2003

Prefetch-Nice

* Web prefetching system
* Claims:

- Novel
— Non-intrusive

- Avoids interference between prefetch and
demand requests at server and network

- Deployable without modifications to browsers,
HTTP protocol, and network

- 25% reduction in response time vs. traditional
technique

How Prefetch-Nice works

* To prefetch, it

- modifies HTML pages to include JavaScript
code to issue prefetch requests

* To avoid interference, it

— monitors the server load externally to
dynamically tune client prefetch aggressiveness

- uses TCP-Nice, a specially tuned TCP stack for
low-priority data transfer

— uses heuristics to control resources on the client

Damand/Prefatch
Requests

I/ Elrent‘\”,..—l/

Fafargnce Lrst-s
Hint Lists —

l\ éﬂer)

-

(a} One Cannection (b} Twa Connection

Figure 1. Design Aematives for a Prefetching Sysiem

Demand/Prefech

Requests —
= .r’f nten-:t\\'-
E \, Senver

e
§ | Samhpes
—1
“"t /,. Maon 'rtc;_l
EVET 7 Hint List Size -
Flgure 3. A Monitored Prefetching Sysiem

e D
'“"'\._ -

erce Lists Files =t

.-' _m_"\-,_l
"J_';IEIT WY __.-'

(a)
Figure 10. Prefetching mechanisms for (a) one connection and (b) two connection architeciures.

Results

* |IBM sporting event workloads on LAN and
WAN (cable modem) environments

N o
0.030

& Ay Respores Tims
ra Frafetch BYsY iin [YbEes) P

sacords)

| 0015

Tim=

C0.aa

1 0.005

3
i
=
o §
g
E
"
T

A=ques P=spormss

Anwg

AN

Figure 7. Perfoomance of No-avoidance, Nice Figure 16. The average demand request re-
and Monitor schemes on IBM Server Workload sponse times in the WAN experiments.

Critique

- Paper had good goals

- Did not succeed - requires changes to server (TCP-Nice),
requires infrastructure (monitor, page munger, prefetch
server), prefetching technique not new, requires separate
hint retrievals and reference uploads, prefetched objects
have different URLs, monitor causes overhead

- Experimental results are very limited (one server-only
dataset, two environments), and not always positive (all
prefetching increased mean response time in fig 7, and
TCP-Nice paper had similar data)

- Paper unclear - how to run JavaScript-based
experiments? Monitor(?ms)? Placement of hint server?

