Dynamic Parallel Downloading with Bandwidth Estimation in an Uncooperative environment

Kalyan Boggavarapu David Manura CSE 498 Lehigh University

> Kalyan Boggavarapu David Manura Lehigh University

Outline

- □ Introduction
- Bandwidth estimation (PProbe)
- Dynamic parallel downloading (PDownloader)
- Automatic world-wide name server
- Experimental results and analysis

Contributions:

- □ Relative bandwidth estimator (PProbe) in Java.
- Dynamic parallel downloader (PDownloader).
- Automated world-wide name server determination.

"Dynamic parallel downloading"

- "Parallel"—To increase the throughput
- "Dynamic"—To download from the best server
- □ "Uncooperative"—Software need not be installed at the server-side

PProbe

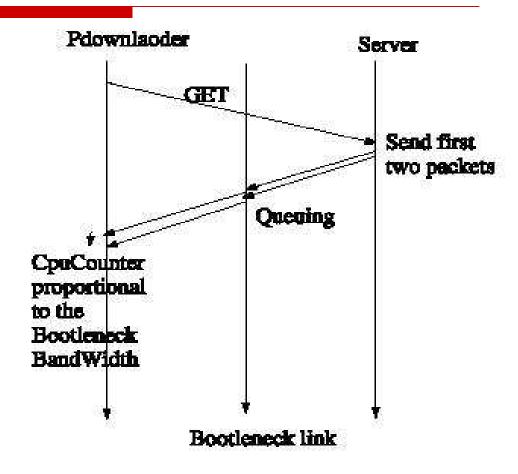
Problems with the current BW estimators

- ☐ Slow
- Some consume lots of bandwidth
- □ System-dependent
- □ Firewall/kernel problems
- Requires root permissions to install the tool

Benefits of PProbe Bandwidth Estimator

- □ Fast—only needs first few packets
- Low bandwidth consumption: needs only the first few packets
- Portable: Java, Platform independent
- No firewall problems because it uses normal TCP packets
- Any user can run it, need not be a root

PProbe Clients


- ☐ All Clients:
 - Fast clients:
 - ☐ Metric: Bottleneck Bandwidth
 - Fast clients, Servers have the same Bottleneck bandwidth:
 - ☐ Metric: Consider the RTT
 - Slow clients:
 - Metric : RTT

Bandwidth Estimator – PProbe Types of implementation

- Applications:
 - Server selection
 - Peer selection in P2P
- □ Java
 - CPU counter
 - CPU (approx) = CPU cycles
 - Fasttimer
- By default the PProbe uses the Java CPU Counter

PProbe: Technique

□ Packet Pair

Kalyan Boggavarapu David Manura Lehigh University

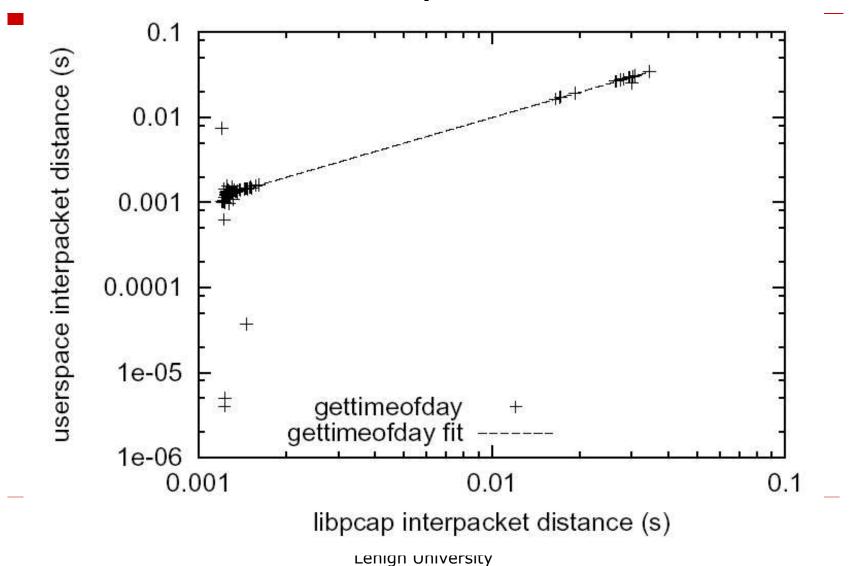
URL Initial List of Hosts stage GetHostMirrors GetFileMirror **PDownloader** Pprobe History Re-ordered list of hosts Start the download threads Switch Between Download threads threads ►E Download Complete

Update History

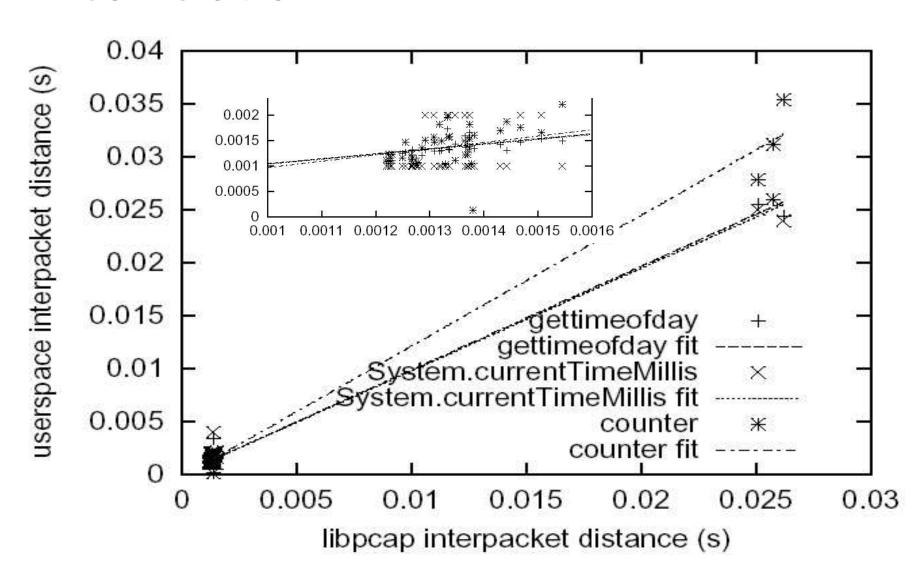
PDownloader Features

- □ Fault tolerance
 - Dynamic switching between the best servers
 - If the local servers are down, could use the worldwide name servers list to find out the servers from elsewhere.
- Scalability
 - New mirrors could easily be added
 - Files could be easily be added at new locations
 - ☐ Use Google to find the multiple locations of the file
- Clients
 - Fast clients: to get better throughput
 - Slow clients: availability
- ☐ Server side: No changes required.
- ☐ Client side: could implement the PDownloader

Automatic World-Wide Name Servers


- Purpose
 - To download from world-wide mirror servers
- Technique
 - Get the list of servers from the <u>www.traceroute.org</u> homepage,
 - Parse them and get the name servers
- Infrastructure side: An optional special service could be provided to get the name servers at different locations.
 - We have web page which provides the list of world wide name-servers.
 - http://wume.cse.lehigh.edu/~kcb2/advNet/proj/dns_explore/ips.txt
 - To find the mirror files: two proposed solutions
 - □ Sol1: Query Google and get the list of locations of the file mirrors
 - □ Sol2: A special search engine could be hosted like the citeseer, but this one for the files.

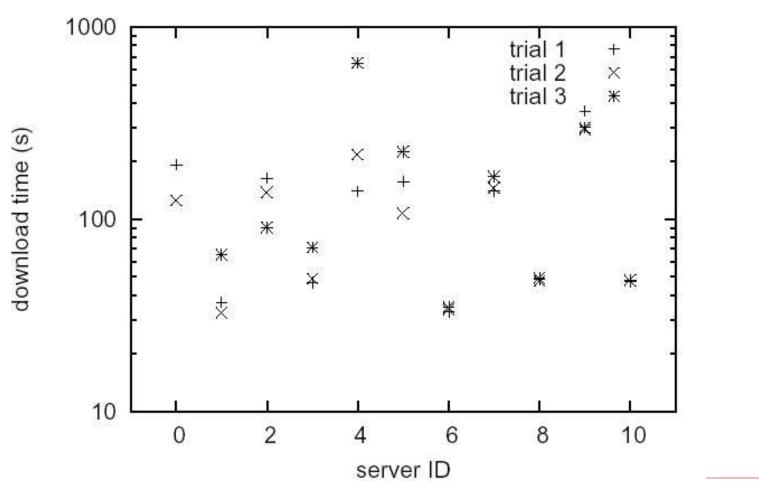
Experimental Results and Analysis


TCP Chunk Traces

C version Java version							
<u>Bytes</u>	∆Bytes	s ∆Time _m	<u>Bytes</u>	∆Bytes	<u>∆Time</u> u_	<u>∆Time</u> _m	$\Delta Time_{c}$
1460			/4380		<u>~</u>		<u>-</u>
2920	1460	0.001135	/8760	4380	0.027657	0.028	0.020378
4380	1460	0.001300	/ 10220	1460	0.001312	0.001	0.001872
5840	1460	0.029430	11680	1460	0.001382	0.002	0.001819
7300	1460	0.001154	/ 13140	1460	0.001296	0.001	0.001819
8760	1460	0.001139 /	14600	1460	0.025469	0.025	0.027849
10220	1460	0.001494	/20440	4380	0.004606	0.005	0.000787
11680	1460	0.001416	/ 23360	1460	0.001497	0.001	0.002213
13140	1460	0.001317	/ 24820	1460	0.001725	0.002	0.001958
14600	1460	0.026687	/ 26280	1460	0.001038	0.001	0.001042
16060	1460	0.001047	/ 27740	1460	0.001555	0.001	0.001319
17520	1460	0.001339	/ /30660	2920	0.004999	0.005	0.001564
18980	1460	0.001609	/ / 31184	524	0.016136	0.017	0.017324
20440	1460	0.001300					
21900	1460	0.001275				/ /	
23360	1460	0.001352	/ Kalyan Bog	gavarapu	oad of nttp)://WWW.` // C N/ID\	yahoo.com.
24820	1460	0.001151	/ David M Lehigh Un		$\Gamma = 30 \text{ ms}$	(ICIVIP)	
			,	•			

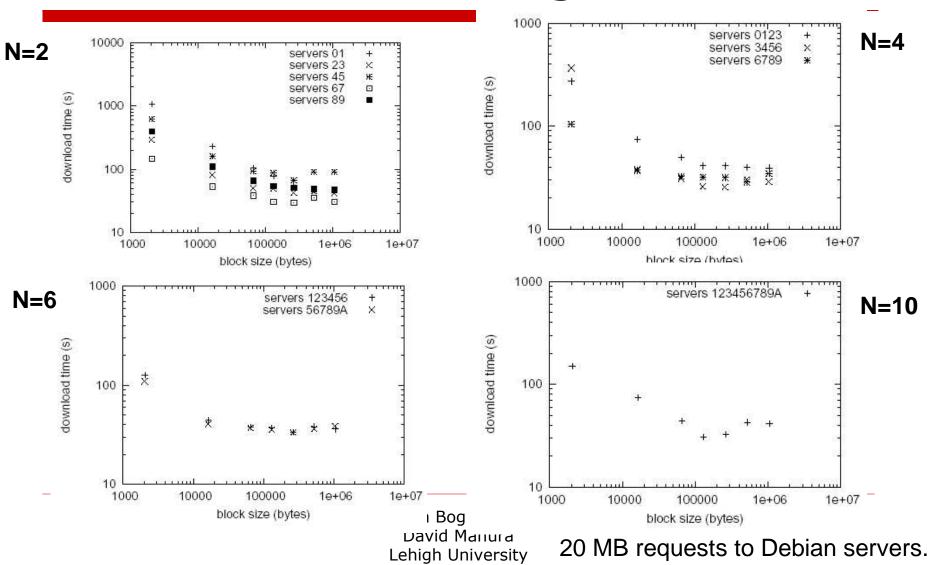
C version: chunk-packet correlation

Java version: chunk-packet correlation



Parallel Downloading Experiment

□Servers used:


- 0: aurolinux.mit.edu
- 1: cudlug.cudenver.edu
- 2: debian-cd.rutgers.edu
- 3: debian.midco.net
- 4: debian.oregonstate.edu
- 5: ftp.keystealth.org
- 6: ftp.lug.udel.edu
- 7: ftp.rutgers.edu
- 8: linux.csua.berkeley.edu
- 9: mirror.csit.fsu.edu
- 10: mirrors.usc.edu

Single Downloading

Kalyan Boggavarapu David Manura 20 MB requests to Debian servers. Lehigh University

Parallel Downloading

Web Server Support

Web Mirror Set	web100.com	mirc.com
number of servers	100	40
contactable servers	90	24
server type		
Apache	39	20
IIS	22	2
Netscape	20	2 1
features		
RR + PC	20	20
RR + !PC	5	2
!RR + PC	37	0
!RR + !PC	28	2
auto disConc time(s)	
0-1	33	4
1-30	34	18
30-inf	23	2
HTTP version	P100 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 - S
1.1	84	22
1.0	6	2

Conclusions