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Abstract

With the substantial progress of deep learning techniques, learning from data and

automating repetitive tasks are increasingly explored in multiple fields ranging from

decision making to scientific experiments. Datasets represent a particular form of

data that is explored in the data science field where the objective of learning from

datasets is to extract useful knowledge for developing data-driven solutions. The

process of generating useful knowledge from datasets starts with a first step that con-

sists of retrieving relevant datasets to a user’s query, and a second step that consists

of cleaning datasets to improve the quality of data for downstream tasks. Multiple

methods for dataset search are based on matching the user’s query against the meta-

data of datasets, and thus ignore data values – an important source of information in

datasets. We distinguish two groups of limitations in previous dataset retrieval meth-

ods. The first group is related to embedding limitations where previous methods rely

on pretrained embeddings from large text corpus, and ignore the characteristics of

datasets. The existing embeddings are trained on large text corpus so that they do

not take into account the structure and co-occurrence information in datasets. The

second group of limitations is related to the deep learning architectures where previ-

ous methods in dataset search are based on neural ranking models that are proposed

for document retrieval, so that datasets are linearized and considered as simple un-

structured documents. Therefore, existing ranking models ignore the specific textual

and structural information of datasets. After extracting relevant datasets to a user’s

query, a data curation step is necessary to improve data quality in order to extract

useful knowledge from the retrieved datasets for downstream analytic tasks. Our ob-

jective is to develop efficient and effective dataset search and curation methods that

allow users to search across all datasets on the Internet, and improve the quality of

the extracted datasets for downstream tasks.
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In this dissertation, we focus on three data curation tasks. The first task is se-

mantic labeling which consists of generating a schema label for each column from a

set of labels. Existing methods generate schema labels solely on the basis of their con-

tent or data values, and thus ignore the contextual information of each column when

predicting schema labels. The second task is dataset similarity that can be used to

cluster datasets for better organization of the dataset collections, and to make recom-

mendations for other datasets that might be relevant. Understanding the connection

between the textual and structural information is an important yet neglected aspect

in table similarity as previous methods treat each source of information indepen-

dently. The third task is entity matching which consists of determining whether two

records refer to the same real-world entity. Despite the effort in the past years to

improve the performance in entity matching, the existing methods still require a huge

amount of labeled data in each domain during the training phase. These methods

treat each domain individually, and capture the specific signals for each dataset in

entity matching, and this leads to overfitting on just one dataset. The knowledge that

is learned from one dataset is not explored to better understand the entity matching

task in order to make predictions on the unseen datasets with fewer labeled samples.

In this dissertation, we propose multiple methods to overcome the limitations of

existing approaches in dataset search and retrieval. The first research direction focuses

on the embedding part for datasets to overcome the limitations of the traditional

context-independent embedding for tokens. The second research direction focuses on

the neural architecture design to incorporate the structural information of datasets

into the ranking process, and overcome the limitations of document retrieval based

models that are applied for dataset search. In addition, we propose multiple methods

for the three data curation tasks with the ultimate objective is to automate the

process of extracting useful knowledge from datasets.
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Chapter 1

Introduction

1.1 Overview

Vast amounts of information that are related to scientific, cultural, and political top-

ics, are stored in datasets. Many users have questions that can be resolved from this

data, but these questions may go unanswered due to ignorance regarding the presence

of the data, ignorance regarding where to look for the data, and inability to formulate

queries using the domain-specific vocabulary of the data’s creators. Given that many

datasets are in tabular form, for the rest of the dissertation, we use data tables and

datasets interchangeably. A data table has multiple rows and columns. Each column

can be seen as a variable described by a schema label in order to distinguish between

the variables. The decentralized aspect of the Web allows individuals and organiza-

tions to publish data; the fast progress in information retrieval has enabled access to

a growing multitude of data sources. In order to extract useful knowledge from the

retrieved datasets for downstream tasks, a data curation step is necessary to improve

data quality. Some of the data tables are pre-processed, for example, those found in

repositories such as UCI machine learning repository1, kaggle2, and OpenML [245].

Many governments also share repositories of tabular open data such as data.gov3.

Some others require extraction such as those HTML tables that are embedded in

web pages, spreadsheet files and PDFs. For pre-processed tables, data providers

1http://archive.ics.uci.edu/ml/index.php
2https://www.kaggle.com/
3https://www.data.gov/
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describe their data tables using metadata, and header’s names that semantically de-

scribe column values. However, many data tables do not follow metadata standards

and naming standards for schema labels resulting in less informative column labels

[112, 105, 33, 166]. For example, the date of birth of a person is saved as Date of

Birth in some data tables, and DOB in others. On the other hand, the extracted

tabular datasets can have missing or wrong header names, as a result of automatic

table extraction. So, the quality of such data sources is often quite poor. The valu-

able knowledge, that is contained in data tables, has been explored in multiple tasks

including augmenting tables [10, 17, 53, 135], extracting knowledge from tables [164],

table retrieval or query answering [17, 18, 168, 38], table-based question answering

[31, 225], table-to-text generation [143, 32], column relations [154, 140, 54, 20], column

type annotation [275, 236, 101], entity linking [9, 295], and table type classification

[48, 180].

In data table search and retrieval, tables can be considered as documents, so that

document retrieval methods can be applied to table retrieval [17, 18]. The community

has recognized that classical bag-of-words models are no longer state-of-the-art in

part because they are not effective in capturing fine-grained contextual structures for

information retrieval, and the same is true for table retrieval. Supervised learning,

based on features from tables, queries, and query-table pairs [18, 10], has resulted in

the best performing table retrieval systems. Building on this, Zhang and Balog [293]

introduced semantic features to embed queries and tables into a semantic space, and

then train a supervised model using the semantic and traditional features. However,

there are major drawbacks of prior approaches for ad hoc table retrieval. First, they

are based on pretrained embeddings, and they ignore contextual information within

tables in the ranking step. Second, they are based on hand-crafted features, and that

limits the ability to capture multiple levels of similarity between the query and table.

Third, understanding the connection between the textual and structural information

is an important yet neglected aspect in table retrieval as previous methods treat

each source of information independently. Fourth, previous methods assume an equal

contribution of each query token to the final relevance score when ranking web tables

against a given query.
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1.2 Objectives

Our objective is to develop efficient and effective dataset search and curation methods

that allow users to search across all datasets on the Internet, and improve the quality

of the retrieved datasets for downstream tasks. Dataset search and curation is a

challenging big data problem due to both the volume (billions of tables) and variety

(often, the schemas of tables are very different). Both dataset search and curation

tasks are related, and improving the performance of one task can have a positive

effect on the other task. For example, we can have a scenario where a table retrieval

algorithm can be used as a core component in other tasks such as table extension

[266] and table mining [209] that can result in better quality data table collections.

On the other hand, we can have data curation methods that can be applied offline to

datasets in order to improve the performance of dataset search and retrieval. Multiple

data curation techniques can be applied to datasets to improve their quality. In this

dissertation, we focus on three data curation tasks. The first task is semantic labeling

which consists of generating a schema label for each column from a set of labels. In

addition to data cleaning, schema labels of datasets are used in multiple tasks such as

data discovery [22, 23], schema matching [197, 282] and data preparation and analysis

[198]. The second task is dataset similarity that can be used to cluster datasets for

better organization of the dataset collections. The third task is entity matching [4]

which consists of determining whether two records refer to the same real-world entity.

Despite the effort in the past years to improve the performance in entity matching, the

existing methods still require a huge amount of labeled data in each domain during

the training phase.

1.3 Observations

The limitations of previous table retrieval approaches can be categorized into two

groups. The first group is related to embedding limitations where previous ap-

proaches rely on pretrained embeddings such as word embedding and graph embed-

ding. These embeddings are trained on large text corpus so that they do not take

into account the structure and co-occurrence information in data tables. The second

group of limitations is related to the neural architecture limitations where pre-

vious methods are based on neural ranking models that are proposed for document

6



retrieval. Designing new ranking models for data tables is inspired by classic informa-

tion retrieval where multiple methods have been proposed to incorporate the internal

organization of a given document into indexing and retrieval steps. Considering the

structure of a document when designing retrieval models can usually improve retrieval

results [260]. It has been shown that combining similarities and rankings of multiple

sections can improve retrieval performance [260].

To overcome the limitations stated in the first group, we have proposed to learn

a new model, called MCON [241], for word embeddings of attribute tokens that is

used to predict the contextual information of tables in the ranking phase. MCON

is a new model that is built for word embeddings of the tokens of table attributes

using contextual information of every table, where we examined multiple formulations

for contexts used to create embeddings. In addition to table retrieval, MCON can

be used as a preprocessing or postprocessing tool for the attributes of data tables

given that MCON provides a fixed length feature vector for the tokens of attributes.

To overcome the limitations stated in the second group, we have proposed a new

neural ranking model, called deep semantic and relevance matching model (DSRMM)

[237], that incorporates both semantic and relevance [80] matching signals for data

table search and retrieval. There are two classes of neural architectures for ad hoc

retrieval. Semantic similarity architectures treat the query and target as equals, and

try to match them. Query relevance architectures exploit characteristics of the ad hoc

retrieval task such as exact matching and non-uniform contribution of query tokens

to the final relevance score. DSRMM is a hybrid model that combines both concepts

into one architecture that incorporates both semantic and relevance matching signals.

In addition, DSRMM includes summary vectors about the contents of the table, both

in terms of values in each column and values in selected rows. The summary vectors

compress each row and each column into a fixed length feature vector using word

embedding of data values.

In terms of embedding techniques, we observed three disadvantages from applying

MCON either to data table retrieval or semantic labeling. First, similar to traditional

word embedding techniques, such as word2vec [158] and Glove [185], MCON provides

a static context-independent representation for each word. In other words, although

MCON is originally trained using the contextual information of dataset collections,

after the unsupervised training phase, MCON assigns a fixed embedding for each

token, and a static representation for each token can negatively affects the results
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of table retrieval and semantic labeling. Second, MCON is mainly based on the co-

occurrence information which is captured from adapting the skip-gram model [158] for

tables using only textual information. In addition to the co-occurrence signal, other

signals such as the semantic and lexical information, can be incorporated to improve

the embedding of tokens. Inspired by document retrieval where multiple sources of

information, such as text, entities, are combined to improve retrieval results, multiple

external sources can be incorporated to produce embeddings for data tables and

queries in multiple spaces. Third, MCON only provides embedding for the attribute’s

tokens. Although the attribute’s embedding can be enough for semantic labeling,

retrieving data tables is based on all fields that are available such as metadata and

data values. To overcome the limitations of MCON, we have noticed that tables

can be represented as a knowledge graph that captures dataset-specific and dataset-

agnostic knowledge for both the textual and structural information of data tables. We

denote this graph-based method by MultiEM-RGCN [238], where we obtain multiple

types of embeddings for each token in the data table.

In terms of neural architecture techniques, although DSRMM has achieved sig-

nificant improvement in data table retrieval results by including both semantic and

relevance matching signals with row- and column-based summary vectors, we can

cite two disadvantages for DSRMM. First, the summary vectors are computed inde-

pendently of the context of data table and query using traditional pretrained word

embedding. As in MCON, a context-independent representation for rows and columns

in DSRMM is unable to capture the relationship between the structured form of data

table, and the textual form of both metadata and queries. Second, the summary

vectors are computed using the mean pooling operation, so that the data values are

treated equally in summary vectors. Depending on the context of the data table

defined by both the metadata and the user’s query, each data value should have

different contributions in both rows and columns. To overcome the limitations of

DSRMM, we propose to capture the dependencies between rows and columns using

a structure-aware BERT model called StruBERT [240], that fuses the structural and

textual information of a data table to produce four context-aware features: two fine-

grained structure- and context-aware representations for rows and columns, and two

coarse-grained representations for row- and column-guided [CLS] embedding.

After finding relevant datasets to a user’s query, the next step consists of dataset

curation. For semantic labeling, existing methods generate schema labels solely on
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the basis of their content or data values, and thus ignore the contextual informa-

tion of each column when predicting schema labels. We propose a new context-aware

semantic labeling method, called SeLaB [236], that incorporates both data values

and column’s context in order to infer schema labels. For datasets similarity, exist-

ing methods decouple the structural information from the textual information, and

StruBERT [240] can be used to fuse both sources of information and identify simi-

lar datasets. For entity matching, existing methods treat each domain individually,

and capture the specific signals for each dataset, and this leads to overfitting on just

one dataset. The knowledge that is learned from one dataset is not explored to bet-

ter understand the entity matching task in order to make predictions on the unseen

datasets with fewer labeled samples. We propose a new domain adaptation-based

method, called DAME [242], that transfers the task knowledge from multiple source

domains to a target domain.

1.4 Contributions

We summarize our contributions in this section. We propose multiple unsupervised

and supervised methods for table retrieval, and data curation:

• We propose a new model for word embeddings of the tokens of table attributes,

called MCON [241], using contextual information of every table. We demon-

strate the usefulness of an attribute’s collection of values (the data tokens) in

creating a meaningful semantic representation of the attribute. We predict the

context of tables using the trained contextual model, and we use a mixed rank-

ing model that incorporates the metadata of a table and the additional contexts

in order to calculate the retrieval score. MCON code is available on Github 4.

• We propose a new knowledge graph that incorporates multiple matching sig-

nals and external resources to learn embeddings for large collections of data

tables. Our proposed graph, denoted by MutiEm-RGCN [238], includes both

dataset-dependent and dataset-agnostic knowledge from table corpus. Exter-

nal semantic and lexical resources are used for edges and nodes leading to an

heterogeneous graph. Multiple types of embeddings are learned simultaneously

4https://github.com/medtray/IEEEBigData2019-TablesEmbeddings
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from our proposed knowledge graph using graph neural networks (GNN) with

the link prediction pre-training task. Unlike MCON that provides an embed-

ding only for the tokens of attributes, our proposed graph provides multiple

embeddings for each token in all the fields. The new graph embeddings are

incorporated into a learning to rank (LTR) architecture that combines multi-

ple embeddings from our heterogeneous graph to solve the table retrieval task.

MutiEm-RGCN code is available on Github 5.

• We propose a new semantic similarity matching model, called DSRMM [237],

that is able to capture multiple levels of semantic signals between the query

and table. Our representation of the table includes summary vectors about

the contents of the table, both in terms of values in each column and values

in selected rows. We demonstrate the usefulness of query relevance-specific

components for the table retrieval task. Using kernel pooling, we learn a feature

vector based on the probability distribution of the similarity of each document

token to each query token, and we learn the contribution of each token to the

final relevance score using a Term Gating Network. Each of these components

lead to improvement on retrieval tasks without leading to a large increase in

the number of parameters of the model. DSRMM code is available on Github
6.

• We propose a new structure-aware BERT model, called StruBERT [240], that

fuses the structural and textual information of a data table to produce four

context-aware features: two fine-grained structure- and context-aware represen-

tations for rows and columns, and two coarse-grained representations for row-

and column-guided [CLS] embedding. We propose a new ranking model, called

miniBERT, that operates directly on the embedding-level sequences formed

from StruBERT features to solve three table-related downstream tasks: keyword-

and content-based table retrieval, and table similarity. StruBERT code is avail-

able on Github 7.

• We propose a new context-aware semantic labeling approach, called SeLaB

[236], that is used for data curation. Our new formulation of semantic labeling

5https://github.com/medtray/MultiEm-RGCN
6https://github.com/medtray/IEEEBigData2020-DSRMM-Table-Retrieval
7https://github.com/medtray/StruBERT
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is based on the structured prediction setting in which the input to our model is

a data table with missing headers, and we sequentially generate schema labels

for each data table. We incorporate data values and predicted contexts using

BERT, which is trained end-to-end for feature extraction and label prediction.

This reduces human effort in semantic labeling. SeLaB code is available on

Github 8.

• We propose a new domain adaptation-based method for entity matching de-

noted by DAME [242]. Our new formulation of entity matching is based on the

mixture of experts where we transfer learning from multiple source domains to

a target domain. We study the zero-shot learning case on the target domain

and demonstrate that our method learns the entity matching task and transfers

the task knowledge to the target domain. We extensively study fine-tuning our

model on the target dataset from multiple domains, and demonstrate that our

model generalizes better than state-of-the-art methods for most of the datasets.

DAME code is available on Github 9.

1.5 Organization

The rest of the dissertation is organized as follows:

• In Chapter 2, we introduce the deep learning terminologies and techniques that

are related to our proposed methods.

• In Chapter 3, we discuss the literature of table search, table similarity, semantic

labeling, and entity matching.

• In Chapter4, we introduce the datasets that are used in our experiments to com-

pare our proposed methods against baselines for table search, table similarity,

semantic labeling, and entity matching.

• In Chapter 5, we present our unsupervised word embedding for tables that is

based on Skipgram model, and used to predict additional contexts for table

search.

8https://github.com/medtray/SeLaB
9https://github.com/medtray/DAME
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• In Chapter 6, we introduce a two-phased graph-based method that is used for

table retrieval, where the first phase consists of knowledge graph construction

and embedding learning, and the second phase consists of incorporating the

graph embeddings into a new learning-to-rank model.

• In Chapter 7, we present our neural architecture for learning to rank data tables

which is a hybrid model with semantic and relevance matching components.

• In Chapter 8, we present our structure-aware BERT model for table search and

matching, where we fuse the textual and structural information of data tables

to solve three downstream tasks: keyword- and content-based table retrieval,

and table similarity.

• In Chapter 9, we summarize our contributions in dataset search, discuss the

trade-off between the effectiveness and efficiency of dataset search models, and

introduce the dataset curation.

• In Chapter 10, we present our context-aware semantic labeling method that

incorporates both data values and column’s context to infer schema labels.

• In Chapter 11, we introduce our domain adaptation-based method that transfers

knowledge from multiple source domains to a target domain in order to solve

the entity matching task.

• In Chapter 12, we summarize our contributions in dataset search and curation,

and we discuss future research directions about developing an end-to-end system

for dataset search and curation.
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Chapter 2

Related Machine Learning

Techniques and Concepts

In this chapter, we introduce the deep learning terminologies and techniques that are

related to our proposed methods in dataset search and curation.

2.1 N-gram Language Models

A general model for information retrieval is the N -gram Language Model (LM), which

assigns probabilities to a sequence of words. Given a query, a unigram LM is used to

retrieve documents by calculating the probability that each document would generate

the query [45, 192, 283]. For a queryQ, that is composed of query terms q1, q2, . . . , q|Q|,

where |Q| is the length of Q, the probability of Q given a document D is given by:

p(Q|θd) =

|Q|∏
i=1

p(qi|θd)

where θd is the LM estimated for document D and p(qi|θd) is estimated using a uni-

gram LM. In order to avoid assigning zero probability for unseen words in a document,

p(qi|θd) can be estimated using a linear combination of probabilities from unigram

LM and Dirichlet prior smoothing [283, 284]. For a given word w, and a collection of

documents C, p(w|θd) is given by:

p(w|θd) = α1 p(w|D) + α2 p(w|C) (2.1)
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with,

p(w|D) =
count(w,D)

|D|
and, p(w|C) =

count(w,C)

|C|

α1 and α2 are estimated using Dirichlet prior smoothing:

α1 =
|D|
|D|+ µ

and, α2 =
µ

|D|+ µ

where µ is a parameter that is usually chosen to be the average length of documents

in collection C.

Linear interpolation is used to combine multiple language models in order to

estimate a new language model [45, 175]. In this case, p(w|θd) is given by:

p(w|θd) =
L∑
i=1

βi p(w|θdi) (2.2)

where L is the number of language models, θdi is the ith representation of document

D, and βi is the weight associated with language model θdi . The weights βi are

constrained to sum to 1, so that:

L∑
i=1

βi = 1, and βi ≥ 0 for all 1 ≤ i ≤ L

For every language model θdi of the ith document representation, the probability

distribution p(w|θdi) is estimated using Equation (2.1). In this case, the smoothing

is applied to the collection of ith representation of documents, denoted by Ci. So,

p(w|θdi) is given by:

p(w|θdi) = α1i p(w|Di) + α2i p(w|Ci) (2.3)

where Di is the ith representation of document D, α1i and α2i are Dirichlet prior

smoothing parameters for the ith representation of document D. In Chapter 5, lan-

guage models are used for unsupervised baselines of dataset search.
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2.2 Convolutional Neural Network (CNN)

A CNN [132] extracts features from data by defining a set of filters or kernels that

spatially connect local regions. Compared to the dense networks, each neuron is

connected to only a small number of neurons instead of being connected to all neurons

from the previous layer. This design significantly reduces the number of parameters

in the model. In addition, the weights in CNN filters are shared among multiple

local regions for the input, and this further reduces the number of parameters. The

outputs of the CNN are called feature maps. Pooling operations, such as average

and max pooling, are usually applied to the feature map to keep only the significant

signals, and to further reduce the dimensionality. A CNN kernel has a predefined

size so that in order to handle the information in the border of the input, padding is

introduced to enlarge the input. CNNs were first introduced to solve image-related

tasks such as image classification [126, 216, 230, 103, 231], and were later adapted

to solve text-related tasks such as NLP and information retrieval [46, 51, 99, 104,

130, 157, 178, 234, 111, 100]. In Chapter 7, CNN are used in our proposed neural

architecture for learning to rank data tables.

2.3 Recurrent Neural Network (RNN)

An RNN [66] learns features and long-term dependencies from sequential and time-

series data. RNN reads the input sequence sequentially to produce a hidden state

in each timestamp. These hidden states can be seen as memory-cells that store the

sequence information. A current hidden state is a function of the previous hidden

state and the current input. Therefore, a hidden state is computed for each times-

tamp, and the hidden state that corresponds to the last timestamp in the sequence

captures the context-aware representation of the entire sequence. Two major prob-

lems of the vanilla RNN are the vanishing and exploding gradients [183, 227] that can

occur after back-propagation through time during the training phase. For example,

for long sequences, when the gradient flows from later to earlier timestamps in the

input sequence, the signal from the gradient can become very weak or vanish. Two

variants of RNN which are LSTM and GRU have been proposed to capture long-term

dependencies better than RNN, and therefore reduce the vanishing and exploding of

the gradient. The new structures of LSTM and GRU allow the network to capture
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long-range dependencies. In Chapter 7, RNN are used in multiple supervised baselines

for dataset search.

2.4 Long Short-Term Memory (LSTM)

Exploding and vanishing gradients during the training phase result in the failure of the

network to learn long-term dependencies in the input data. LSTM [93] was introduced

to mitigate the effects of exploding and vanishing gradients. LSTM differs from the

vanilla RNN in the structure of the memory cell where three gates are introduced to

control the information in the memory cell. First, the input gate controls the influence

of the current input on the memory cell. Second, the forget gate controls the previous

information that should be forgotten in the current timestamp. Third, the output gate

controls the influence of the memory cell on the hidden state of the current timestamp.

Compared to RNN, LSTM has led to significant improvements in multiple fields with

sequential data such as text, video, and speech. LSTM has been applied to solve

multiple tasks including language modeling [118], text classification [49], machine

translation [228], video analysis [217], image captioning [113], and speech recognition

[79]. In Chapter 7 and Chapter 10, LSTM is used in multiple baselines for dataset

search and semantic labeling, respectively.

2.5 Gated Recurrent Units (GRU)

Similar to LSTM, GRU [39] is used for sequence-based tasks to capture long-term

dependencies. However, unlike LSTM, GRU does not have separate memory cells.

In LSTM, the output gate is used to control the memory content that is used by

other units in the network. On the other hand, the GRU model does not contain an

output gate, and therefore uses its content without any gating control. In addition,

while LSTM computes the value of the new added memory independently of the forget

gate, GRU does not independently control the new added activation but uses the reset

gate to control the previous hidden state. More differences and similarities between

LSTM and GRU are summarized by [43]. This model has been shown to achieve

good performance in multiple tasks such as machine translation [39] and sentiment

classification [233]. In Chapter 7 and Chapter 11, GRU are used in multiple baselines
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for dataset search and entity matching, respectively.

2.6 Word embedding

Words are embedded into low dimensional real-valued vectors based on the distribu-

tional hypothesis [87]. In many proposed models, the context is defined as the words

that precede and follow a given target word in a fixed window [6, 162, 158, 186].

Mikolov et al. [159] proposed the Skip-gram model which scales to a corpora with

billions of words. These pre-trained word embeddings are a key component in multiple

models in neural language understanding and information retrieval tasks. However,

there are multiple challenges for learning word embeddings. First, the embedding

should capture the syntax and semantics of tokens. Second, the embedding should

model the polysemy characteristic where a given word can have different meanings

depending on the context. Multiple works have been proposed to produce context-

sensitive embeddings for tokens that capture not only the meaning of a token, but

also the contextual information of a token. Researchers have investigated the use of

RNN to produce context-dependent representations for tokens [272, 152, 129]. The

word embeddings are initialized using pre-trained embeddings, then the parameters

of RNN are learned using labeled data from a given task. Peters et al. [187] proposed

a semi-supervised approach to train a context-sensitive embedding using a neural

language model pre-trained on large and unlabeled corpus. A forward and backward

RNN are used to predict the next token so that the neural language model encodes

both the semantic and syntactic features of tokens in a context. Adding pre-trained

context-sensitive embeddings from both the forward and backward RNN improves

the performance of the sequence tagging task. However, the embeddings are not

deep, in the sense that they are not a function of all of the internal layers of both

the forward and background language models. Recently, researchers have focused

on creating deep context-sensitive embeddings such as ELMo [188] and BERT [58]

which are trained on large amounts of unlabeled data and achieve high performance

in multiple NLP tasks. In Chapter 5, the Skip-gram model is used to learn a new

embedding for dataset search.
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2.7 Attention mechanism

The attention mechanism was first proposed by Bahdanau et al. [3] for neural machine

translation. The original Seq2Seq model [228] used an LSTM to encode a sentence

from its source language and another LSTM to decode the sentence into a target

language. However, this approach was unable to capture long-term dependencies. In

order to solve this problem, Bahdanau et al. [3] proposed to simultaneously learn to

align and translate the text. They learn attention weights which can produce context

vectors that focus on a set of positions in a source sentence when predicting a target

word. The attention vector is computed using a weighted sum of all the hidden states

of an input sequence, where a given attention weight indicates the importance of a

token from the source sequence in the attention vector of a token from the output

sequence. Although introduced for machine translation, the attention mechanism has

been a useful tool in many tasks such as document retrieval [157], document clas-

sification [273], sentiment classification [258], recommender systems [279], sentence

semantic matching [289, 232, 257, 278], recognizing textual entailment [203], speech

recognition [25], natural language understanding [27], and visual question-answering

[150]. In Chapter 7, the attention mechanism is incorporated in our proposed method

and multiple baselines, and in Chapter 11, the attention mechanism is used in entity

matching.

2.8 Deep contextualized language models

Peters et al. [188] proposed ELMo which is a deep contextualized language model

composed of forward and backward LSTMs. ELMo produces deep embeddings, where

the representations from multiple layers of both the forward and backward LSTM are

linearly combined using task-specific learnable weights to compute the embedding of

a given token. Combining the internal states leads to richer embeddings. Although

ELMo improves the results of multiple NLP tasks, ELMo decouples the left-to-right

and right-to-left contexts by using a shallow concatenation of internal states from

independently trained forward and backward LSTMs. Devlin et al. [58] proposed

a language model, called Bidirectional Encoder Representations from Transformers

(BERT), that fuses both left and right context.

BERT [58] is a deep contextualized language model that contains multiple layers
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of Transformer [246] blocks. Each Transformer block has a multi-head self-attention

structure followed by a feed-forward network, and it outputs contextualized embed-

dings or hidden states for each token in the input. BERT is trained on unlabeled data

over two pre-training tasks which are the masked language model, and next sentence

prediction. Then, BERT can be used for downstream tasks on single text or text

pairs using special tokens ([SEP] and [CLS]) that are added into the input. For single

text classification, BERT special tokens, [CLS] and [SEP], are added to the beginning

and the end of the input sequence, respectively. For applications that involve text

pairs, BERT encodes the text pairs with bidirectional cross attention between the two

sentences. In this case, the text pair is concatenated using [SEP], and then treated

by BERT as a single text.

The sentence pair classification setting is used to solve multiple tasks in informa-

tion retrieval including document retrieval [50, 173, 271], frequently asked question

retrieval [205], passage re-ranking [172], and table retrieval [36]. The single sentence

setting is used for text classification [224, 281]. BERT takes the final hidden state hθ

of the first token [CLS] as the representation of the whole input sequence, where θ

denotes the parameters of BERT. Then, a simple softmax layer, with parameters W ,

is added on top of BERT to predict the probability of a given label l:

p(l | hθ) = softmax(Whθ) (2.4)

The parameters of BERT, denoted by θ, and the softmax layer parameters W are

fine-tuned by maximizing the log-probability of the true label. BERT is used in

Chapter 8 for dataset search, Chapter 10 for semantic labeling, and Chapter 11 for

entity matching.

2.9 Neural ranking models for document retrieval

2.9.1 Overview

Ranking and retrieving documents that are relevant to a user’s query is a classic in-

formation retrieval task. Given a query, the ranking model outputs a ranked list of

documents so that the top ranked items should be more relevant to the user’s query.

Search engines are examples of systems that implement ad-hoc retrieval where the
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possible number of queries that are continually submitted to the system is huge. The

general flowchart of document retrieval with neural ranking models is illustrated in

Figure 2.1. A large collection of documents is indexed for a fast retrieval. A user

enters a text-based query which goes through a query processing step consisting of a

query reformulation and expansion [2]. Many neural ranking models have complex ar-

chitectures, therefore computing the query-document relevance score using the neural

ranking model for every document in the initial large collection of documents leads

to a significant increase in the latency for obtaining a ranked list of documents from

the user’s side. So, the neural ranking component is usually used as a re-ranking step

that takes two inputs which are the candidate documents and the processed query.

The candidate documents are obtained from an unsupervised ranking stage, such as

BM25 [202], which takes as inputs the initial set of indexed documents and the pro-

cessed query. During the unsupervised ranking, the recall is more important than

the precision to cover all possible relevant documents and forward a set of candidate

documents, that has both relevant and irrelevant documents, to the neural based

re-ranking stage. The output of the ranking model is a set of relevant documents to

the user’s query which are returned to the user in a particular order. In Chapter 9,

we discuss a similar multi-stage model for dataset search to improve the efficiency of

the ranking stage.

Query
Query 

Processing

Indexing 

Neural Ranking 
Model

Relevant
docs

Neural ranking component

User Return 
Relevant docs

Unsupervised 
ranking 

Candidate 
docs

Figure 2.1: Overview of the flowchart of the neural ranking based document retrieval.
The neural ranking component is highlighted within the red box. The inputs to the
neural ranking model are the processed query and the candidate documents that are
obtained from the traditional ranking phase. The final output of the neural ranking
model is a ranking of relevant documents to the user’s query.
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The inputs to neural ranking models consist of queries and documents with vari-

able lengths in which the ranking model usually faces a short query with keywords,

and long documents from different authors with a large vocabulary. Although ex-

act matching is an important signal in retrieval tasks, ranking models also need

to semantically match queries and documents in order to accommodate vocabulary

mismatch. In ad-hoc retrieval, features can be extracted from documents, queries,

and document-query interactions. Some document features go beyond text content

and can include number of incoming links, page rank, metadata, etc. A challenging

scenario for a ranking model is to predict the relevance score by only using the doc-

ument’s textual content, because there is no guarantee to have additional features

when ranking documents. Neural ranking models have been used to extract feature

representations for the query and document using text data. For example, a deep neu-

ral network model can be used to map the query and documents to feature vectors

independently, and then a relevance score is calculated using the extracted features.

For query-document interaction, classic information retrieval models like BM25 can

be considered as a query-document feature. For neural ranking models with a textual

input for the query and document, features are extracted from the local interactions

between the query and document. In chapter 7, we show the importance of extracting

interaction-based features between the query and document in an early stage in the

neural ranking model.

2.9.2 Task formulation

For ranking tasks, the objective is to output a ranked list of documents given a

query representing an information need. Neural ranking models are trained using the

LTR framework that starts with a phase to train a model to predict the relevance

score from a given query-document pair. During the training phase, a set of queries

Q = {q1, q2, . . . , q|Q|} and a large collection of documents D are provided. Without

loss of generality, we suppose that the number of tokens in a given query is n, and

the number of tokens in a given document is m. The groundtruth relevance scores for

query-document pairs are needed to train the neural ranking model. In the general

setting, for a given query, the groundtruth relevance scores are only known for a subset

of documents from the large collection of documents D. So, we formally define that

each query qi is associated with a subset of documents di = (di1, d
i
2, . . . , d

i
li) from D,
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where dij denotes the jth document for the ith query, and li is the size of di. Each list of

documents di is associated with a list of relevance scores yi = (yi1, y
i
2, . . . , y

i
li) where yij

denotes the relevance score of document dij with respect to query qi. The objective is

to train a function fw, with parameters w, that is used to predict the relevance score

zij = fw(qi, dij) of a given query-document pair (qi, dij). The function fw is trained by

minimizing a loss function L(w). In LTR, the learning categories are grouped into

three groups based on their training objectives: the pointwise, pairwise, and listwise

approaches. In general, fw is considered as the composition of two functions M and

F , with F is a feature extractor function, and M is a ranking model. So, for a given

query-document pair (qi, dij), z
i
j is given by:

zij = fw(qi, dij) = M ◦ F (qi, dij) (2.5)

In traditional ranking models, the function F represents a set of hand-crafted fea-

tures. The set of hand-crafted features include query, document, and query-document

features. A ranking model M is trained to map the feature vector F (qi, dij) into a

real-valued relevance score such that the most relevant documents to a given query

are scored higher to maximize a rank-based metric. In recently proposed ranking

models, deep learning architectures are leveraged to learn both feature vectors and

models simultaneously. The features are extracted from query, document, and query-

document interactions. The neural ranking models are trained using ground truth

relevance of query-document pairs. In this dissertation, we use the LTR formulation

to train our supervised models in dataset search.

2.9.3 Categories of strategies for learning for ad-hoc retrieval

Liu [144] divided LTR approaches into three categories based on their training ob-

jectives. In the pointwise category, each query-document pair is associated with a

real-valued relevance score, and the objective of the training is to make a prediction

of the exact relevance score using existing classification [75, 137] or regression models

[47, 71]. However, predicting the exact relevance score may not be necessary because

the final objective is to produce a ranked list of documents. In Chapter 8, we use the

pointwise loss to train our proposed model.

In the pairwise category, the ranking model does not try to accurately predict

22



the exact real-valued relevance score of a query-document pair; instead, the objective

of the training is to focus on the relative order between two documents for a given

query. So, by training using the pairwise category, the ranking model tries to produce

a ranked list of documents. In the pairwise approach, ranking is reduced to a binary

classification to predict which of two documents is more relevant to a given query.

Many pairwise approaches are proposed in the literature including methods that are

based on support vector machines [90, 109], neural networks [16], Boosting [69], and

other machine learning algorithms [299, 298]. For a given query, the number of pairs is

quadratic, which means that if there is an imbalance in the relevance judgments where

more groundtruth relevance scores are available for a particular query, this imbalance

will be magnified by the pairwise approach. In addition, the pairwise method is more

sensitive to noise than the pointwise method because a noisy relevance score for a

single query-document pair leads to multiple mislabeled document pairs.

The third learning category for ad-hoc retrieval is known as the listwise category,

proposed by Cao et al. [21]. In the listwise category, the input to the ranking model is

the entire set of documents that are associated with a given query in the training data.

Listwise approaches can be divided into two types. In the first type, the loss function

is directly related to evaluation measures [24, 26, 193]. So, they directly optimize

for a ranking metric such as NDCG, which is more challenging because these metrics

are often not differentiable with respect to the model parameters. Therefore, these

metrics are relaxed by approximation to make computation efficient. For the second

type, the loss function is differentiable, but it is not directly related to the evaluation

measures [21, 96, 249]. For example, in ListNet [21], the probability distribution of

permutations is used to define the loss function. Since a ranking list can be seen as

a permutation of documents associated with a given query, a model representing the

probability distribution of permutations, like the Plackett-Luce [191] model, can be

applied for ranking in ListNet. In Chapter 6 and Chapter 7, we use the listwise loss

function to train our proposed supervised models for dataset search.

2.9.4 Deep learning-based models

When extracting features from a query-document pair, the feature extractor F can

be applied separately to the query and document [214, 97, 194, 213, 167, 176, 251],

or it can be applied to the interaction between the query and document [252, 89, 270,

23



67, 95]. The first type is known as the representation-focused model, and it tries to

extract a good feature representation for a single text using a deep neural network.

For example, Shen et al. [214] proposed a Convolutional Deep Structured Semantic

Models (C-DSSM) in which a convolutional neural network (CNN) is used instead of

feed-forward-networks in Siamese [15] architecture. So, the feature extractor F is a

CNN, while M is the cosine similarity function. In ARC-I [95], F is a CNN, and M is

a multi-layer perceptron (MLP). The models that belong to the first category of deep

matching architectures differ the interaction between two sentences until learning

individual representations, so that there is a risk of losing important details for the

matching task. The second type, the interaction-based models, starts by building

local interactions between two texts based on basic representations, then trains a deep

model to capture the important interaction patterns for matching. For example, in

ARC-II [95], F maps each text to a sequence of word embeddings, while M is a CNN

over the interaction matrix between the two texts. In Chapter 7 and Chapter 8, we

show the importance of interaction-based architectures in dataset search.

The neural ranking models in document retrieval present two important matching

techniques: semantic matching and relevance matching [80]. Semantic matching is

introduced in multiple text matching tasks, such as natural language inference, and

paraphrase identification. Semantic matching, which aims to model the semantic

similarity between the query and the document, assumes that the input texts are

homogeneous. Semantic matching captures composition and grammar information to

match two input texts which are compared in their entirety. In information retrieval,

the Question-Answering (QA) task is a good scenario for semantic matching, where

semantic and syntactic features are important to compute the relevance score. On

the other hand, semantic matching is not enough for document retrieval, because

a typical scenario is to have a query that contains keywords. In such cases, the

relevance matching is needed to achieve better retrieval results. Relevance matching

is introduced by Guo et al. [80] to solve the case of heterogeneous query and document

in ad hoc document retrieval. The query can be expressed by keywords, so a semantic

signal is less informative in this case because the composition and grammar of a

keyword-based query are not well defined. In addition, the position of a given token in

a query has less importance than the strength of the similarity signal, so some neural

ranking models, like DRMM [80], do not preserve the position information when

computing the query-document feature vector. An important signal in the relevance
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matching is the exact matching of query and document tokens. In traditional retrieval

models, like BM25, exact matching is primarily used to rank a set of documents, and

the model works reasonably well as an initial ranker. Incorporating exact matching

into neural ranking models can improve the retrieval performance mainly in terms of

recall for keyword-based queries because as in traditional ad hoc document retrieval,

the document has more content than the query and the presence of query keywords in

a document is an initial indicator of relevance. In Chapter 7, we incorporate semantic

and relevance matching signals in our proposed neural ranking model to improve the

evaluation metrics of dataset search.

2.9.5 Deep contextualized language model-based document

retrieval

The sentence pair classification setting is used to solve the document retrieval task.

The overview of BERT for the document retrieval is shown in Figure 2.2. In general,

the input sequence to BERT is composed of the query q and selected tokens sd from

the document d: [[CLS], q, [SEP], sd, [SEP]]. The selected tokens can be the whole

document, sentences, passages, or individual tokens. The hidden state of the [CLS]

token is used for the final retrieval score prediction. In Chapter 10 and Chapter 11, we

use the sentence pair classification setting in semantic labeling and entity matching,

respectively.

While BERT has been successfully applied to QA, applying BERT to ad-hoc re-

trieval of documents comes with the challenge of having significantly longer documents

than BERT allows (BERT cannot take input sequences longer than 512 tokens). Yang

et al. [271] proposed to address the length limit challenge by dividing documents into

sentences and applying BERT to each of these sentences. The sentence-level repre-

sentation of a document is motivated by recent work [288] which shows that a single

excerpt of a document is better than a full document for high recall in retrieval. In

addition, using sentence-level representation is related to research in passage-level doc-

ument ranking [146]. For each document, its relevance to the query can be predicted

using the maximum relevance of its component sentences, which is denoted as the best

sentence. Yang et al. [271] generalize the best sentence concept by choosing the top-k

sentences from each document based on the retrieval score calculated by BERT for

sentence pair classification setting. A weighted sum of the top-k sentence-level scores,
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Figure 2.2: Overview of BERT model for document retrieval. The input sequence to
BERT is composed of the query q = q1q2 . . . qn (shown with orange color in the first
layer) and selected tokens sd = d1d2 . . . dm (shown with dark blue color in the first
layer) from the document d. The BERT-based model is formed of multiple layers of
Transformer blocks where each token attends to all tokens in the input sequence for
all layers. From the second to the last layer, each cell represents the hidden state
of the corresponding token which is obtained from the Transformer. The query and
document tokens are concatenated using the [SEP] token, and [CLS] is added to the
beginning of the concatenated sequence. The hidden state of the [CLS] token is used
as input to MLP in order to predict the relevance score.

which are computed by BERT, is then applied to predict the retrieval score of the

query-document pair. In Chapter 8, we show how to incorporate the sentence-level

representation into our proposed BERT-based model for dataset search by dividing

a given dataset into rows and columns.

In order to capture both relevance and semantic matching, MacAvaney et al. [153]

propose a joint model that incorporates the representation of [CLS] from the query-

document pair into existing neural ranking models (DRMM [80], PACCR [99], and

K-NRM [262]). The representation of the [CLS] token provides a strong semantic

matching signal given that BERT is pretrained on the next-sentence prediction. As

we explained previously, some of the neural ranking models, like DRMM, capture

relevance matching for each query term based on the similarities with the document

26



tokens. For ranking models, MacAvaney et al. [153] use pretrained contextual lan-

guage representations as input, instead of the conventional pretrained word vectors to

produce a context-aware representation for each token from the query and document.

In Chapter 8, we show how to incorporate the context-aware embeddings from BERT

into our proposed model to encode the structure- and context-aware sequences, that

are obtained from fusing the structural and textual information of datasets.

Nogueira et al. [173] propose a multi-stage ranking architecture. The first stage

consists of extracting the candidate documents using BM25. In this stage, the re-

call is more important than the precision to cover all possible relevant documents.

The irrelevant documents can be discarded in the next stages. The second stage,

called monoBERT, uses a pointwise ranking strategy to filter the candidate docu-

ments from the first stage. The classification setting of BERT with sentence pairs is

used to compute the relevance scores. The third stage, called duoBERT, is a pair-

wise learning strategy that computes the probability of a given document being more

relevant than another candidate document. Documents from the second stage are

ranked using duoBERT relevance scores in order to obtain the final ranked list of

documents. The input to duoBERT is the concatenation of query, first document,

and second document, where [SEP] is added between the sentences, and [CLS] is

added to the beginning of the concatenated sentence. In Chapter 9, we show how

to incorporate our proposed BERT-based model for dataset search into a multi-stage

ranking architecture to reduce the memory and time complexity.

2.10 Knowledge graph embeddings

Various methods have been proposed for representation learning of knowledge graphs,

which aims to project entities and relations into a continuous space. TransE [14], in-

spired by Word2Vec [158], is the most representative translation-based model, which

considers the translation operation between head and tail entities for relations. The

variants of TransE, such as TransH [259] and TransR [142], follow a similar principle

but use different scoring functions to learn the embeddings. Socher et al. [219] apply

neural tensor networks to learn knowledge graph embeddings. Dettmers et al. [57]

propose a convolutional neural network approach to learn knowledge graph embed-

dings and use them to perform link prediction. RDF2Vec [201] adapts the Word2Vec

[158] approach to RDF (Resource Description Framework) graphs in order to learn
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embeddings for entities in RDF graphs.

The recent success of graph neural networks has boosted research on various tasks.

R-GCN [208] pioneered the use of graph convolutional networks to model relations

in knowledge graphs. The embeddings learned by R-GCN have shown to be effective

for downstream tasks such as entity classification and link prediction. R-GCN [208]

can be seen as an extension of GCN [60, 121] for relational data that operates on

a local graph neighborhood using a message-passing framework [77]. The R-GCN

model updates the hidden representation of node vi in the relational graph as given

by:

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)
r h

(l)
j +W

(l)
0 h

(l)
i

 (2.6)

where h
(l)
i ∈ Rd(l) is the l-th layer hidden state of node vi in the neural network, d(l)

is the dimension of the embedding in the l-th layer, and σ(.) is a nonlinear activation

function. N r
i denotes the set of r-neighbors, where r ∈ R. ci,r is a normalization

constant that is equal to |N r
i |. Unlike the linear transformation in GCN that can be

applied to any node in a given layer, R-GCN has a relation-specific linear transfor-

mation, denoted by W
(l)
r , that depends both on the type and direction of the edge in

a directed and labeled graph. W
(l)
0 is a trainable matrix that incorporates the l-th

layer representation into the l + 1-th layer of the neural network. R-GCN is formed

of multiple stacked layers with non-linear activation functions to capture complex

patterns in the graph that are not only related to direct neighbors. Updating the

nodes in R-GCN for a given layer is done in parallel to reduce computation time.

More recently, Xu et al. [265] first construct a product knowledge graph and then

propose a self-attention-enhanced distributed representation learning method with

an efficient multi-task training schema to learn the graph embeddings, which can

improve the performance of downstream tasks such as search ranking and recommen-

dation. In chapter 6, the knowledge graph is used to represent datasets and learn

new embeddings for tokens of datasets.

2.11 Structured prediction

Structured prediction [196, 55, 128, 174] is the task of learning a function that maps

the input to a structured output that is not a simple discrete or Boolean variable, but
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can be more complicated with rich substructure. Therefore, the mapping function

predicts a structured label such as a label for each token in a sequence for natu-

ral language parsing, or a label for each pixel or region in an image for the image

segmentation task. The exponential size of the possible structured labels leads to

computational challenges in both training and inference phases that can be NP-Hard

as stated by Deshwal et al. [55].

Multiple methods have been proposed to learn the mapping function in the struc-

tured prediction setting such as Conditional Random Fields (CRF) [127], and struc-

tured Support Vector Machines [128]. Deep learning models have been leveraged in

structured prediction to capture the structural dependencies between the inputs and

outputs. For example, in part-of-speech (POS) tagging which consists of labeling each

token in a text with a POS tag (noun, adjective, verb, etc), a deep neural network

based model, called BI-LSTM-CRF [98], has been proposed to solve the POS tagging

task. The structural dependency between the inputs and outputs is captured using

both the Bi-LSTM features and the CRF that finds the best tagging sequence. Deep

learning is also integrated in structured prediction for computer vision applications

[174, 196]. For example, Quattoni et al. [196] formulated annotating images with

semantic tuples as a structured prediction task where CRF models are used to map

the feature vectors that are extracted using convolutional neural networks to semantic

tuples. In Chapter 10, we formulate the semantic labeling task using the structured

prediction setting.

2.12 Domain adaptation

Domain adaptation (DA) studies the transfer of task knowledge from a single or

multiple labeled source domains to an unlabeled target domain. In this dissertation,

we are interested in the case of multiple source domains known as Multi-Source DA

(MSDA). Using only unlabeled data from the target domain is known as Unsupervised

DA (UDA).

Existing approaches in UDA focus on reducing the domain shift between the source

and target domains by aligning feature vectors [5, 177]. Representation learning meth-

ods have been proposed for UDA such as domain adversarial networks [296, 211].

Other representation learning methods include comparing the marginal distribution

between the source and target domains in an adversarial way [81] and minimizing the
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covariance between the source and target representations [223]. An effective strat-

egy in the case of MSDA is known as a mixture of experts [81, 119, 261]. Kim et

al. [119] proposed to incorporate an attention mechanism to combine the predictions

from multiple models trained on the source domains. Guo et al. [81] proposed a

method that is based on a mixture of experts where the posteriors of the models are

combined using a point-to-set Mahalanobis distance metric between an input sample

and source domains. Wright and Augenstein [261] improved the performance of a

mixture of expert-based models using deep contextualized language models (DCLM)

as experts in source domains. This work follows a line of research that investigates

the use of Transformer-based models in DA [83, 86, 151, 200]. Ma et al. [151] im-

proved the performance of BERT in the target domain for natural language inference

by incorporating a similarity of target domain to source domains with curriculum

learning [7]. AdaptaBERT [86] is a BERT-based model that is proposed in the case

of UDA for the sequence labeling by adding a masked language modeling in the target

domain. Fine-tuning of BERT on the target domain was also shown to be effective

in the sentiment analysis task [200]. Gururangan et al. [83] combines both domain

and task adaptive pretraining to improve the performance of RoBERTa on multi-

ple NLP tasks. The task-adaptive pretraining represents pretraining on unlabeled

datasets that are relevant to the task by continuing pretraining RoBERTa on these

datasets. In Chapter 11, domain adaptation is used in our proposed method for entity

matching.
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Chapter 3

Tasks Definitions and Related

Work

3.1 Table Search and Similarity

In table retrieval, a table can be considered as a document, and traditional document

retrieval methods can be applied to table ranking. Cafarella et al. [17, 18] retrieve

relevant documents using web search engines, and then tables are extracted from the

highest-ranked documents. The simplest approach is to represent a table by a single

field containing all the text associated with the table. The retrieval score is then

calculated using existing retrieval methods, such as language models or BM25 [202].

However, a table has multiple components of varying importance, which means that

retrieval models for multi-field documents are often more appropriate [190]. Pimplikar

and Sarawagi [190] proposed a late fusion [292] method for multi-field ranking. In

this case, for a given query, a score is calculated independently for every field, and

then a linear combination of the scores is taken. The final score is given by:

score(Q, T ) =
∑
i

wi × score(Q, fi) (3.1)

where Q is a given query, T is a table, fi is the ith field of T , and wi is the weight

associated with fi. For supervised ranking of tables, multiple query, table, and query-

table features are proposed in the literature [18, 10]. Zhang and Balog [293] proposed

extending these features with semantic matching between queries and tables using

31



semantic spaces including: Word embeddings, Graph embeddings, Bag-of-entities and

Bag-of-categories. DBpedia [134] is used to construct a vector of zeros and ones for

both bag-of-entities and bag-of-categories. The dimension of bag-of-entities is equal

to the total number of entities in the knowledge base, where a value of 1 indicates

that the entity is mentioned in the table. The same applies to bag-of-categories with

a dimension that is equal to the total number of Wikipedia categories.A supervised

model is then trained using the semantic and traditional features.

Recent works have used embedding techniques to learn a low dimensional repre-

sentation for table tokens. Deng et al. [290] proposed a natural language modeling-

based approach to create embeddings for table tokens. The trained embedding is

then used with entity similarity from a knowledge base to rank tables. Using matrix

factorization, Chen et al. [34] generated additional headers that are used in rank-

ing table-query pairs. The authors showed that the generated headers improve the

performance of unsupervised table retrieval.

Deep contextualized language models, like BERT [58] and RoBERTa [148], have

been recently proposed to solve natural language understanding [253, 145] and infor-

mation retrieval [276, 50, 173, 271, 205, 172] tasks. Different from traditional word

embeddings, the pre-trained neural language models are contextual with the repre-

sentation of a token is a function of the entire sentence. This is mainly achieved using

a self-attention structure called Transformer [246]. Building on BERT, Chen et al.

[36] proposed a BERT-based ranking model to capture the matching signals between

the query and the table fields using the sentence pair setting. They first select the

most salient items of a table to construct the BERT representation, where different

types of table items and salient signals are tested.

Shraga et al. [215] use neural networks to learn unimodal features of a table which

are combined into a multimodal representation. The final table-query relevance is

estimated based on the query representation and multimodal representation. Tables

can also be represented as graphs to solve table retrieval [256, 37].

Table similarity consists of predicting the semantic similarity between tables and

then classifying a table pair as similar or dissimilar. Das Sarma et al. [53] proposed a

table similarity method that is based on entity consistency and expansion, and schema

similarity, and is used to find related tables in a large corpus of heterogeneous data. In

entity consistency, similar tables should have similar entities, and in entity expansion,

the queried table should add new entities to the query table. In schema similarity,
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similar tables should have similar schemas that represent similar entities. Relevance

scores are computed for entity consistency and expansion, and schema similarity, and

then combined to predict the entity complement score of a table pair.

Deep learning models have been leveraged to predict the similarity score between

tables. TabSim [85] treats the data table fields independently in which one bi-LSTM

model is used to map the caption of a data table to an embedding vector, and a

second attention-based model is used to compute the embeddings of the columns

of a data table. The caption and column embeddings are concatenated to form the

representation of a data table. After extracting the feature vectors of two data tables,

Euclidean distance is used to predict the semantic similarity between tables.

3.2 Semantic Labeling

Semantic labeling [244, 204, 101] consists of classifying sets of data values into a

predefined set or categories known as semantic labels. These approaches rely on a

multiclass classification setup where the labels are manually defined and curated.

Hulsebos et al. [101] extend the set of semantic types by considering 275 DBpedia [1]

properties. These manually defined concepts, like Birth place, Continent, and Prod-

uct, represent the semantic types that are frequently found in datasets. In order to

infer the semantic type of a column using data values, the authors defined multiple

categories of hand-crafted features. Each feature category has a different performance

and noise level, so that the authors propose a multi-input neural networks model, in-

stead of simply concatenating all features, and feeding the resulting feature vector to

a single-input neural network. The multi-input neural networks model is composed

of multiple identical subnetworks without weights sharing. Each subnetwork consists

of two fully connected hidden layers with batch normalization, rectified linear unit

(ReLU) activation functions, and dropout.

Knowledge base-based methods [28, 29] integrate DBpedia [1] to predict semantic

labels, where entities from DBpedia that match all the column cells are used as

additional information for a given column values. Semantic types use a limited set of

vocabulary, and can restrict the number of categories that can be considered when

inferring the label of a given column. In practice, the predefined set of semantic

types may not apply for new datasets. Chen et al. [33] proposed a schema label

generation task, in which the objective is to infer the schema label, and not only the
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semantic type. This setting can be seen as a multiclass classification task, where each

column’s label in the training set represents a possible semantic label. Generating

schema labels is more challenging as the number of possible labels is large compared

to the predefined set of semantic types. The authors extract hand-crafted features

from data values to predict schema labels. The set of features include content and

unique content ratio [61], and the content histogram which is a 20-dimensional vector

extracted using fast Fourier transform (FFT). Random forest classifier is used to

predict schema labels from the curated features.

Schema matching is related to semantic type detection where the objective is

to find correspondence between attributes in different schemas. Existing data on

the Web, such as WebTables [19], and knowledge bases, such as DBPedia [1] and

Freebase [13], are used in schema matching. Syed et al. [229] use headers and data

values to predict the class of a column in the target ontology or knowledge base.

The data values provide additional information that can disambiguate between the

possible candidates. Limaye et al. [141] associate one or more types from YAGO

[222] with each attribute or column in the table using a probabilistic graphical model.

Another probabilistic approach, that is based on the maximum likelihood hypothesis,

is introduced by Venetis et al. [247]. The best label is chosen to maximize the

probability of the values given the class label for a given column. The authors showed

that class labels that are automatically extracted from the web provide more coverage

for column’s labeling than using manually created knowledge bases like YAGO [222]

and Freebase [13].

Matching functions are used to infer the correct semantic labels for data values.

Pham et al. [189] treat semantic labeling as a combination of many binary classifica-

tion problems. After extracting similarity metrics features from a pair of attributes,

each feature vector is given a True/False label, where True means that the attributes

have the same semantic type, and False indicates that the attributes are not sharing

the same semantic type. Logistic Regression and Random Forests are used to pre-

dict the matching score. For the similarity metrics features, the authors investigated

multiple metrics, such as Jaccard similarity [155], cosine similarity of the product of

term frequency (TF) and inverse document frequency (IDF), known as TF-IDF [155],

Kolmogorov-Smirnov test (KS test) [133], and Mann-Whitney test (MW test) [133].

Mueller and Smola [166] proposed a neural network embedding for data values to

predict the matching score of two sets of data values. The matching score is estimated
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using the distance between the embeddings of two sets of data values. The score is

adjusted using the output of another neural network to distinguish two columns that

are different but their data values are identically distributed.

Semantic type prediction is formalized as a ranking problem in the approach pro-

posed by Ramnandan et al. [199]. Training data values are considered as documents,

and the previously-unseen data values are considered as queries. So, in the prediction

phase, the objective is to extract the top k candidate semantic labels for the new data

values by ranking semantic labels in decreasing order using cosine similarity between

a query feature and every document feature in the training data. The authors dis-

tinguished between textual and numeric data. For textual data, the feature vector is

a weighted bag of words with TF-IDF. For numerical data, the authors used a sta-

tistical hypothesis testing to analyze the distribution of numerical data values that

correspond to a given semantic label. The statistical hypothesis test is performed

between each sample in the training data and the testing sample. The returned p-

values are then ranked in descending order to predict the top k candidate semantic

labels for the testing data values.

3.3 Entity matching

Entity matching (EM) [165, 139, 114, 62, 4] is the field of research that solves the

problem of finding records that refer to the same real-world entity. This task, also

known as data matching, record linkage, entity resolution, etc, has been intensively

studied in recent years because of the importance of EM in data cleaning and inte-

gration. Given two collections of records D1 and D2, EM classifies a pair of entities

(e1, e2),∀e1 ∈ D1, e2 ∈ D2 into match or non-match. The records from D1 and D2 can

have the same or different set of attributes. The value of each attribute is composed

of a sequence of tokens. In figure 3.1, we show examples of pairs of records for EM

from the Amazon-Google dataset where in both subfigures the above record is from

Amazon and the below record is from Google. In Figure 3.1(a), both records refer

to the same real-world entity adobe photoshop 4.0 although in one record the manu-

facturer value is missing, and the prices are different. In figure 3.1(b), the difference

in the value of title attribute in both records clearly indicates that records refer to

different entities.

Comparing all record pairs from D1 and D2 grows quadratically, and it becomes
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title manufacturer price 

adobe photoshop elements 4.0 ( mac ) adobe 89.99

title manufacturer price 

adobe photoshop elements 4.0 photo-
editing software for mac

NULL 85.95

(a) Records refer to the same entity: adobe
photoshop 4.0

title manufacturer price 

microsoft publisher 2007 
version upgrade

microsoft 99.95

title manufacturer price 

microsoft excel 2007 ( pc ) microsoft 229.95

(b) Records refer to different entities

Figure 3.1: Examples of pair of records for EM from the Amazon-Google dataset.
The above record is from Amazon and the below is from Google.

very time-consuming to predict the matching records for the input datasets. There-

fore, a set of candidate pairs C ⊂ D1 × D2, where |C| � |D1 × D2| is selected

in a separate step, called blocking, before running a computationally expensive al-

gorithm for EM. Multiple blocking methods have been proposed in the literature

[42, 68, 181]. After the blocking step, each record pair (e1, e2) ∈ C is compared to

predict a binary label indicating a match or non-match. Prior works have proposed

string similarity-based methods to compare records [41, 65, 149]. Traditional super-

vised classifiers, such as decision trees, support vector machines, and naive Bayes

have been proposed to map the string similarities-based feature vector to a binary

class label [40, 11]. In addition, rule-based methods have been proposed to solve EM

[52, 64, 218]. Recently, deep learning (DL)-based methods have been proposed to

solve EM [62, 70, 114, 165, 297, 139]. The DL methods of EM can be categorized as

attribute- and record-level comparison methods. Attribute comparators predict the

label of a pair of records based on the signals collected from matching values of the

same attribute. DeepMatcher[165], which is the SOTA attribute-level comparator,

explores multiple techniques to compute the attribute representation from word em-

bedding, where combining both bidirectional GRU and decomposable attention [182]

leads to the best results. FastText [12] is used for word embedding in DeepMatcher.

The SOTA method in EM is a record-based comparator known as Ditto [139]

which is based on DCLM. Ditto models each record by alternating between attributes

and data values with two additional special tokens [COL] and [VAL]. Incorporating

attribute names in the record representation provides the Transformer [246] layers

with more information to match attributes of two records. Then, Ditto adapts the

sentence pair classification setting to EM in order to compare record pairs using the

special tokens [SEP] and [CLS] that are added into the input. In addition, Ditto ex-

plores domain-specific optimizations by injecting domain knowledge into the input in
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the form of span typing and normalization. Ditto uses data augmentation techniques

during the training phase with span-, attribute-, and record-level operators consisting

of deletion, shuffling, and swapping.
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Chapter 4

Data Collections

4.1 Table Retrieval

4.1.1 WikiTables

This dataset is composed of the WikiTables corpus [9] containing over 1.6M tables.

Each table has five indexable fields: table caption, attributes (column headings), data

rows, page title, and section title. An example of a table from Wikipedia is shown in

Figure 4.1. In addition, each table contains statistics which are: number of columns,

Figure 4.1: Example of table from a Wikipedia page.
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number of rows, and set of numerical columns of the table. Additional LTR features

[293] are provided for each table. The set of LTR features include number of in-links

to the page embedding the table, number of out-links from the page embedding the

table, number of page views, etc. We use the same test queries that were used by

Zhang and Balog [293]. The queries are divided into two subsets: the first subset

contains queries collected by Cafarella et al. [17] using Amazon’s Mechanical Turk

platform, and a second subset contains queries collected by Venetis et al. [248] using

Google Squared. The second subset consists of queries created by combining the

name of an ‘instance class’ and a property (i.e., attribute).

We present three statistics about the query collection: the minimum length of a

query is 1 term, the maximum length of a query is 7 terms, and the average length

of the queries in the collection is 2.8 terms. Examples of queries are: ‘world interest

rates Table’, ‘fuel consumption’, ‘state capitals and largest cities in us’, ‘baseball

teams captain’, etc. We use Zhang and Balog’s [293] ground truth of query-table

relevance, where every query-table pair is evaluated using three numbers: 0 means

irrelevant, 1 means partially relevant and 2 means relevant. The objective of the

annotators was to use the retrieved tables to create a new table that fulfills the query.

So, for a given query, they needed to find tables that are useful in forming a single

table that matches the query. By using this task to evaluate a given table’s relevance,

if a table could not be used to create the final table, it is given a relevance 0. If

only some values are used from the table, it is partially relevant. Finally, if blocks

of a table are used, it is considered relevant. There are 60 queries in the WikiTables

collection, and the number of query-table pairs is equal to 3117.

4.1.2 WebQueryTable

WebQueryTable1 collection is introduced by Yan et al. [268]. Unlike the WikiTables

collection that contains tables only from Wikipedia, WebQueryTable is composed of

more various tables collected from web pages. The total number of tables in We-

bQueryTable is 297, 884. Each table has four indexable fields: table caption, table

subcaption, attributes (column headings), and data rows. In addition, WebQuery-

Table [268] contains 21, 142 queries. Each query-table has a relevance value that is

1https://github.com/tangduyu/Table-Intelligence/tree/master/table-search
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equal to 0 or 1, and only one table is relevant to a given query. The tables were se-

lected from the top ranked web page, and the annotators were asked to label whether

the extracted table is relevant to the query or not. The minimum length of a query

is 1 term, the maximum length of a query is 22 terms, and the average length of the

queries in the collection is 4.6 terms. Examples of queries are: ‘large big mac meal

price australia’,‘largest cities in USA area wise’, and ‘largest financial institutions’.

4.1.3 Query by example data

Zhang and Balog [291] proposed a query by table dataset that is composed of 50

Wikipedia tables used as input queries. The query tables are related to multiple

topics, and each table has at least five rows and three columns. For the ground truth

relevance scores of table pairs, each pair is evaluated using three numbers: 2 means

highly relevant and it indicates that the queried table is about the same topic of

the query table with additional content, 1 means relevant and it indicates that the

queried table contains a content that largely overlaps with the query table, and 0

means irrelevant. The total number of table pairs is 2850.

4.2 Table Similarity

4.2.1 WikiTables for table similarity

In addition to keyword-based table retrieval, we adapt WikiTables for table similarity.

As in TabSim [85], we iterate over all the queries of WikiTables, and if two tables are

relevant to a query, the table pair is given a label 1. On the other hand, an irrelevant

table to a query is considered not similar to all tables that are relevant to the same

query, and therefore the table pair is given label 0.

4.2.2 PMC

Habibi et al. [85] proposed a table corpus that is formed from the PubMed Central

(PMC) Open Access subset, and used for evaluation on the table similarity task.

This collection is related to biomedicine and life sciences. Each table contains a

caption and data values. The table pairs are annotated for binary classification by

comparing the caption and data values of each table. A given table pair is given a
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label dissimilar if both data values and captions are labeled dissimilar, otherwise the

table pair is given the label similar. In the PMC table corpus, there are 1391 table

pairs, where 542 pairs are similar and 849 pairs are dissimilar.

4.3 Semantic Labeling

4.3.1 WikiTables for semantic labeling

This dataset is composed of the WikiTables corpus [9] which contains over 1.6M tables

that are extracted from Wikipedia. Since a lot of tables have unexpected formats, we

preprocess tables so that we only keep tables that have enough content with at least

3 columns and 50 rows. We further filter the columns whose schema labels appear

less than 10 times in the table corpus, as there are not enough data tables that can

be used to train the model to recognize these labels. We experiment on 15, 252 data

tables, with a total number of 82, 981 columns. The total number of schema labels is

1, 088.

4.3.2 Log Tables from Network Equipment

Our work is partially motivated by the business need to automatically generate

schema labels for the data tables extracted from log files of network equipment.

Network log files contain computer-generated event records, such as authentication

attempts, process assessment calls and information output of network equipment, and

are instrumental for network performance monitoring and fault diagnosis.

For the purpose of schema label auto-generation, we shall utilize the existing data

tables that have already been collected in an internal platform used by network care

engineers from parsing log files. In the current pipeline, engineers design a parser for

each type of log file, and these parsers generate the tables. We have collected 329

tables from this platform with log files coming from products on wireless equipment

such as base stations, Radio Access Network and Radio Network Controllers. To

evaluate our methods on header prediction, we removed tables that have less than 10

rows and cleaned up columns that have mostly invalid values (such as NULL, empty

string, or NA). The remaining set contains 248 tables. The number of rows of these

tables have a very skewed distribution with quantiles being 138 (25%), 551 (50%)
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Figure 4.2: Cumulative Frequency Distribution of Headers

and 1954 (75%), while the number of columns ranges from 3 to 48 with many tables

having in the neighborhood of 10 columns. For our purpose, we focus on 87 headers

from these tables that have more than 3 instances.

Figure 4.2 shows the cumulative frequency distribution for the headers from the

WikiTables and Log Tables datasets, from the most to the least popular. There is a

small set of labels that are much more frequently occurring in WikiTables. One reason

that the labels in log tables are more scattered is because the tables are manually

collected from diverse products as we would like to understand the performance of

our algorithm in various situations.

4.3.3 Combined data

We also evaluate our method using two web table collections which are: T2Dv22 and

Efthymiou [63]. We combine these two datasets into a single dataset that contains

395 data tables. The data set has 1, 739 total columns and 166 distinct schema labels.

2http://webdatacommons.org/webtables/goldstandardV2.html
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Table 4.1: Datasets for entity matching experiments.

Dataset Domain Size % matches nb attributes

Shoes clothing 5,805 21.95 1

Cameras electronics 5,255 22.03 1

Computers electronics 8,094 22.42 1

Watches electronics 6,413 22.85 1

DBLP-GoogleScholar citation 28,707 18.62 4

DBLP-ACM citation 12,363 17.95 4

Fodors-Zagats restaurant 946 11.62 6

Beer product 450 15.11 4

iTunes-Amazon music 539 24.48 8

Abt-Buy product 9,575 10.73 3

Amazon-Google software 11,460 10.18 3

Walmart-Amazon electronics 10,242 9.39 5

4.4 Entity Matching

Table 4.1 represents all the datasets that we use in our experiments. The 12 datasets

are from the entity resolution Benchmark datasets [124] and the Magellan data repos-

itory [123]. These datasets cover multiple domains including clothing, electronics,

citation, restaurant, products, music, and software. Each dataset is composed of can-

didate pairs of records from two structured tables that have the same set of attributes.

The datasets vary in the size and this simulates real-world scenarios where there are

some domains that are more frequent than others. The total number of attributes in

all datasets ranges from 1 to 8. The rate of matches in all datasets ranges from 9.39%

to 24.48%. Clearly, there is a class imbalance in all datasets where the non-matching

class is significantly larger than the matching class. Each dataset is split into training,

validation, and testing, and we use the same pre-splited datasets in Ditto [139].
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Chapter 5

Multiple Context Embedding for

Attributes of Data Tables

5.1 Introduction

Words are embedded into low dimensional real-valued vectors based on the distri-

butional hypothesis [87]. In many models, the context is defined as the words that

precede and follow a given target word in a fixed window [158, 185]. Mikolov et

al. [159] proposed the Skip-gram model which scales to a corpora with billions of

words. In order to solve the entity linking problem, Gentile et al. [74] proposed an

embedding model, instead of using the classic bag-of-word representation. They cre-

ate sentences from the attributes and/or values of the table, then use these sentences

to train new Skip-gram embeddings for the tokens. The similarity between tables is

calculated using cosine similarity between the learned embeddings for table tokens.

In their approach to table classification, Ghasemi-Gol and Szekely [76] proposed a

new unsupervised embedding for tables. They define four different contexts for each

cell value: text within each cell, text in the corresponding attribute or header, text

in adjacent cells, and text surrounding the table in the web page.

In a table retrieval task, a table can be considered as a document, and traditional

document retrieval methods can be applied to table ranking. Cafarella et al. [17, 18]

retrieve relevant documents using web search engines, and then tables are extracted

from the highest-ranking retrieved documents. The simplest approach is to represent

a table by a single field containing all the text associated with the table. The retrieval
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score is then calculated using existing retrieval methods, such as language models or

BM25 [202]. However, a table has multiple components of varying importance, which

means that retrieval models for multi-field documents are often more appropriate.

A major drawback of prior approaches is that they are based on pretrained em-

beddings, and they ignore contextual information within tables in the ranking step.

In order to overcome the limitations of using pre-trained embeddings for table search,

we propose learning a new model for word embeddings of attribute tokens that is

used to predict the contextual information of tables in the ranking phase.

Our proposed approach has three stages: in the first step, we build word em-

beddings for attribute tokens using contextual information from each table. In the

second step, for a given attribute token of a table, we predict its context using the

trained contextual model and augment the table with this additional, implicit, and

descriptive information. In the third step, we calculate a score for a given query-table

pair in order to rank and retrieve tables that are related to the query. We use a mixed

ranking model that incorporates the metadata of a table and the additional predicted

context in order to calculate the retrieval score.

Our work differs from several table embedding methods in the literature. Unlike

Gentile et al. [74], our contexts do not depend on the arbitrary ordering of rows or

columns in the dataset, and we learn a word embedding for attribute tokens by en-

larging the context to cover metadata of tables. The additional contexts are useful in

table retrieval as more predicted contexts are available when scoring a table against

a query using multi-field ranking approaches. In Nishida et al. [171], a word embed-

ding of every cell token is obtained after supervised training of a hybrid model. In

our case, we use a different architecture with unsupervised training when learning

embeddings. Similar to Ghasemi-Gol and Szekely [76], we identify multiple contexts

from the table. However, a key difference is that our model distinguishes between

the different contexts, rather than treating them uniformly. Also, we have different

notions of context: we do not simply treat the four cells adjacent to a cell as context,

and the only locality information that is used is that all cells in the header row are

considered context for each other.
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5.2 Word embeddings for attribute tokens

The objective is to learn an embedding for every attribute token that captures its

contextual information inside a table. We use an adapted Skip-gram model [158] for

tables. The training objective is to learn a real-valued representation for attribute

tokens using contextual information from each table. Then, the trained model is used

to predict additional tokens that are relevant to the table.

Our model differs from the original Skip-gram model in two major aspects: train-

ing context and vocabulary. In the original Skip-gram model, the context is based on

the surrounding words of a given word. However, in a table, how to define context is

not so obvious. Clearly, other tokens in the name of an attribute count as context,

but are there other meaningful contexts? The metadata of a table clearly provides a

larger context for the attributes, and an attribute is also contextualized by the other

attributes that appear in the same table. We also argue that the cell values provide

meaningful contextual information. For example, an attribute that consisted of 50

two-character values including ‘AZ’, ‘KY’, ‘MS’, ‘WA’ , etc. should be assigned an

embedding that is similar to another attribute with the same set of values, even if

the attributes shared no name tokens. Thus, the context for an attribute token is

rich, but we argue that these different types of contexts should not all be treated

uniformly. Levy and Goldberg [136] have shown that, for word embeddings, differen-

tiating contexts can lead to embeddings that better express similarity as opposed to

relatedness. Inspired by this work, we use a multi-context model, so that a token that

appears in the metadata has a different impact than the same token when it appears

in a cell value. Thus, for a given attribute’s token, we have four different types of

contexts: description, values, other tokens from the same attribute, and other tokens

from attributes in the same table. For simplicity, we append a distinct suffix to every

context token in order to distinguish between the different contexts in the training

data.

Our model uses different input and output dictionaries: the input dictionary con-

tains tokens of attributes extracted from the collection of tables, and the output

dictionary is composed of tokens from all four types of contexts. More formally, given

a sequence of T training attribute tokens a1, a2, a3, . . . , aT , the objective of our model
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is to maximize the sum of log probabilities using our proposed contextual information:

T∑
t=1

( ∑
wd∈Dt

log p(wd|at) +
∑
wv∈Vt

log p(wv|at)

+
∑

woa∈OAt

log p(woa|at) +
∑

wsa∈SAt

log p(wsa|at)
)

where at is a given attribute’s token, Dt is the set of description context tokens of at,

Vt is the set of values context of at, OAt is the set of other tokens from attributes in

the same table containing at, and SAt is the set of other tokens from same attribute

containing at.

Given an output context wc and input token at, the Skip-gram model defines

p(wc|at) using the softmax function. Computing the softmax probability is expensive

because it requires summing over all the words in the output dictionary. To address

this problem, we estimate the softmax probability using Noise Contrastive Estimation

(NCE) [84, 163]. NCE reduces the language model estimation problem to a binary

logistic regression classifier that distinguishes between data and noise.

5.2.1 Managing Numerical Cell Values

Numerical values play a more prominent role in tables than in text documents. For

example, 26.9% of cells in the WikiTables dataset are numeric values, while in a

random sample of 372 tables from data.gov [33], 58.2% of the cells are numeric.

An attribute’s numeric values can contribute to its interpretation and thus provide

useful context information: four digit numbers beginning with 19 or 20 are likely to be

years, while in the United States five-digit numbers are often zip codes and sequences

of the form ddd-ddd-dddd are often phone numbers. However, the number of unique

numeric values in a dataset can be far larger than the number of unique non-numeric

tokens, and adding them to the vocabulary will lead to an increase in the size of the

output dictionary. For the WikiTables dataset, we obtain 2,401,425 unique tokens

(including numbers) in the output vocabulary. Furthermore, context should ideally

recognize that small numeric distances reflect similar contexts, and context should

not be adversely impacted by noise or rounding errors. That is, the numbers 998 and

1002 are quite close, as are 3.14 and 3.14159. Likewise, two attributes with a range

of values from 1960 to 2020 should be considered to have very similar values context
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even if less than half of the values appear in both attributes.

A typical approach to handling numbers in word embeddings is to replace each

digit with a special character, such as the hash symbol (‘#’). For simplicity, we

tokenize using the same punctuation that we use to tokenize the rest of the text.

Thus, 999-99-9999 becomes the tokens ‘999’, ‘99’ and ‘9999’, and then ‘###’,‘##’

and ‘####’. This means that regardless of the number of distinct numerical values,

we only add a number of tokens to the output dictionary that is less or equal to the

length of the longest successive sequence of digits. As a partial solution to the problem

of recognizing numbers that are close, while keeping the cardinality of numeric tokens

low, we propose a new approach: keep the leading digit of a number, and only replace

other digits by ‘#’ in order to refine numerical values context. With this approach, the

size of output vocabulary decreases to 2,032,424, a reduction of about 15%. However,

in other datasets, such as those in data.gov, numbers are more prevalent, and the

savings will be more significant.

5.2.2 Table features

We describe a table using three sets of features:

• original description (Do): Set of tokens extracted from the table metadata such

as its title and/or caption,

• original attributes (Ao): Set of tokens extracted from the header row of the

table, and

• original values (Vo): Set of tokens extracted from the data rows of the table

(i.e., all rows other than the header).

We augment these features with additional features produced by our trained

model. First, for an attribute token a in the input dictionary DI , we predict the

different contexts by extracting the top k words from the output dictionary that have

the highest probabilities. We denote our set of top k contexts by Ck. We divide the

predicted contexts into three categories: description context Dc, values context Vc,

and attributes context Ac. More formally,

Ck = Dc ∪ Vc ∪ Ac
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Second, the hidden layer H ∈ IRWi×h of our model, where Wi is the number of

attributes tokens, presents a new word embedding of dimension h for each attribute

token. We use the new word embedding to extract the set of top m closest tokens,

denoted by Im, to a given attribute token a, using cosine similarity.

The final predicted context Pc is given by:

Pc = Ck ∪ Im = Dc ∪ Vc ∪ Ac ∪ Im

5.2.3 Unsupervised Ranking methods for table retrieval

The predicted context Pc enables us to augment every table with additional fields that

capture the contextual information obtained from the original attribute tokens. The

additional contexts can be combined with original fields, such as title, data, original

attributes, etc., in order to improve multi-field ranking, and thus table retrieval. We

propose using the multiple ranking mechanisms based on Equation (3.1). We use

traditional ranking methods such as BM25 and TF-IDF. The third ranking method,

LM-Ranking, is based on combining language models [175]. In other words, we index

tables using the contents of the original fields and additional predicted contexts, then

we estimate a language model for every field, and we combine the estimated language

models using Equation (2.2).

The fourth ranking method, Late-avg, is a late fusion similarity model [293] based

on Equation (3.1) for multi-field ranking, but with scores calculated by averaging the

cosine similarity between the embeddings of all pairs of query terms and terms of

field fi. Given an embedding E(·) for a term t:

scorela(Q, fi) =
1

|Q| ×mi

|Q|∑
k=1

mi∑
j=1

cosine(E(qk), E(tji)) (5.1)

where mi is the length of field fi, qk is the kth query term of Q, and tji is the jth

token in fi.

Kenter and de Rijke [115] proposed a Semantic Text Similarity (STS)-based rank-

ing method specifically intended for short texts. This combines a traditional BM25

formula with semantic similarity computed from word embeddings. Because the se-

mantic similarity is computed on query token/field token pairs, this has aspects of a

late-fusion approach. In STS, the query is assumed to be the short text.
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As a simplification of the above approach, we consider a pure late-fusion approach

that only considers the semantic similarity, and ignores the BM25 aspects. In this

approach, we select the best matching query term for each table field term and refer

to it as MaxQuery:

scoremq(Q, fi) =

mi∑
j=1

max
k∈[1,...,|Q|]

cosine(E(qk), E(tji))

Finally, we argue that Kenter and de Rijke’s assumptions about short text simi-

larity do not apply to the table retrieval problem. In particular, rather than choosing

the best query token for each field token, we choose the best field token for each query

token. Typically, the set of table tokens will be much larger than the set of query

tokens. A table could be a good match for a query even if only a portion of the table

is relevant. Our final model, MaxTable is a late fusion similarity model, but we find

the closest table term to each query term using cosine similarity, and then sum over

these similarities:

scoremt(Q, fi) =

|Q|∑
k=1

max
j∈[1,...,mi]

cosine(E(qk), E(tji)) (5.2)

In the above ranking methods, the choice of embedding E(·) depends on which

field is being compared to the query. Since we only apply our embedding approach

to attribute tokens, other fields will contain tokens for which we do not produce

embeddings. For these fields, we use pre-trained fastText [12] embeddings, which are

built from character-level n-grams, allowing embeddings to be created even for terms

that have not been seen before. Specifically, we use our embeddings on the original

attribute field Ao, the predicted context attribute field Ac, and the closest tokens

Im. All other fields (Do, Dc, Vo, and Vc) use fastText embeddings for computing

similarity. Recall that the predicted description contexts and value contexts were

produced by our embedding model, so our approach still contributes to the scores

even when fastText embeddings are used for determining cosine similarity.
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5.3 Evaluation

5.3.1 Baselines

We compare the performance of our proposed model with two baselines:

Single-field document ranking: A table is considered as a single field document

by concatenating a subset of WikiTables fields: table caption, attributes, data rows,

page title and section title (as in [17, 18]). In the result tables, we identify which

fields were used. Then a language model is estimated for the formed document in

order to rank a given table against the query. We can also calculate the score of a

query-table pair using word embedding-based ranking methods from Section 5.2.3.

Multi-field document ranking: In a multi-field ranking scenario, a table is

defined using five fields: page title, section title, table caption, attributes and table

body or values. We compare our method against two baselines in the category of

multi-field document ranking using word embedding. The first multi-field ranking

method, MultiField-P, is based on the pretrained fastText word embedding as in

Zhang and Balog [293] when calculating cosine similarity. In the second multi-field

ranking method, MultiField-G, we use a word embedding trained by the adapted

Skip-gram model to the context introduced by Ghasemi-Gol and Szekely [76]. Field

weights are optimized using grid search.

We conduct an ablation study that evaluates five variations of our model. The

first variation is called SCON (single context), in which we treat all contexts as one

context. In other words, we do not append a distinct suffix to every context token

to distinguish between different contexts. The other four variations are based on

different formulations of the values context Vt for a given attribute at. In the NOVAL

variation, we ignore the values context by setting Vt=∅. In the NONUM variation,

Vt includes only string contexts. In the HASHNUM variation, we replace each digit

with the hash symbol (‘#’), but otherwise use all value tokens and multiple contexts.

Finally, the MCON variation is our full model, where we keep the leading digit for

numbers and replace other digits by ‘#’. In HASHNUM and MCON, Vt includes both

numerical and string value contexts. In the experimental results section, we report

results from all five variations.

51



Table 5.1: Example of contexts for token ’syntax’ of web table shown in Figure 4.1

Dsyntax OAsyntax SAsyntax Vsyntax

[
’syntax’,’python d’

]
,[

’syntax’,’programming d’
]
,[

’syntax’,’language d’
]
,[

’syntax’,’typing d’
]
,[

’syntax’,’summary d’
]
,[

’syntax’,’python d’
][

’syntax’,’built d’
]
,[

’syntax’,’types d’
]

[
’syntax’,’mutable o’

]
,[

’syntax’,’type o’
]
,[

’syntax’,’description o’
] [

’syntax’,’example s’
]

[
’syntax’,’true v’

]
,[

’syntax’,’false v’
]
,[

’syntax’,’bytearray v’
]
,[

’syntax’,’some v’
]
,[

’syntax’,’ascii v’
]
,[

’syntax’,’bytearray v’
]
,[

’syntax’,’some v’
]
,[

’syntax’,’ascii v’
]
,[

’syntax’,’bytearray v’
]
,[

’syntax’,’1## v’
]
,[

’syntax’,’1## v’
]
,[

’syntax’,’1## v’
]
,[

’syntax’,’1## v’
]

5.3.2 Experimental Setup

We use the full set of 1, 652, 771 tables to train our embedding model. For the

description context Dt of a given attribute token at, we concatenate three fields from

WikiTables: page title, section title and caption.

We set the dimension of word embeddings h to 100, and the number of labels used

in NCE estimation to 10, 000. We train our model for 3 epochs with a batch size of

100. We use SGD to minimize the loss function, and update the weights of our model.

We set the learning rate to 0.01. The model is implemented using TensorFlow, with

Tesla T4 GPU (memory Clock Rate: 1.59 GHz). For context prediction, we set the

size of Ck, k, and the size of Im, m, to 20. In order to calculate the retrieval score

for query-table pairs by combining language models, we use the implementation in

Hasibi et al. [88] which is based on Elasticsearch.

5.3.3 Example of MCON context

We give an example of the extracted contexts from the Wikipedia table shown in

Figure 4.1. We refer to the union of the page title, caption and section title as the

description. Given the token ‘syntax’ of attribute ‘Syntax example’, we construct

Dsyntax, OAsyntax, SAsyntax, and Vsyntax. We show the different target-context pairs

in Table 5.1.
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5.3.4 Model statistics

We start by comparing our models in terms of sizes of input dictionary, output dic-

tionary, and training data (number of target-context pairs). The statistics are shown

in Table 5.2. For all five variations, we have the same size of input vocabulary. For

output vocabulary, MCON has the largest vocabulary, as it includes multiple contexts

and the numerical context. The output dictionary size does not influence the train-

ing time because we use NCE to estimate the softmax probabilities. The number of

parameters for MCON is significantly larger than NOVAL because of the difference

in the size of output vocabulary. So, MCON allocates more memory than NOVAL

to update model parameters. The training time is directly related to the number of

target-context pairs. In our experiments using a single Tesla T4 GPU, the average

training time for 4000 steps each with a batch size of 100 is 34.67 seconds. Our models

are trained for three epochs. So, for MCON, we need 14.22 hours for one epoch of

training and the total training time is 42.66 hours. Because training depends directly

on the number of target-context pairs, NOVAL is significantly less, at 13.39 hours.

Table 5.2: Statistics of our models

Model Input dict Output dict Target-context pairs

SCON 118,421 1,608,455 590,661,355
NOVAL 118,421 415,272 185,390,306

NONUM 118,421 1,997,633 432,705,346
HASHNUM 118,421 2,025,698 590,661,355

MCON 118,421 2,032,424 590,661,355

5.3.5 Semantic similarity for MCON word embedding

In Table 5.3, we show examples of using cosine similarity to extract tokens from the

input vocabulary that are close to a given attribute token. In WikiTables data, the

attribute token ‘pos’ is frequently present in tables that are related to sport. In

general, ‘pos’ means the ranking position of a team or player. As shown in Table 5.3,

the closest tokens to ‘pos’ are also related to sport. For example, we have ‘w’ which

is an abbreviation of ‘win’, ‘l’ which is an abbreviation of ‘loss’, and also we can find

a synonym of ‘pos’ which is the token ‘position’.
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Table 5.3: Examples of cosine similarity between embeddings of tokens from our input
vocabulary

Original attribute token
Closest attributes tokens from

input vocabulary

‘pos’
‘w’, ‘l’, ‘position’, ‘rank’, ‘points’, ‘game’, ‘de’, ‘final’,

‘positions’, ‘total’, ‘results’, ‘team’, ‘round’, ‘place’, ‘pts’

‘actor’
‘director’, ‘role’, ‘writer’, ‘character’, ‘cast’, ‘artist’,

‘directed’, ‘written’, ‘title’, ‘name’, ‘production’, ‘winner’,
‘description’, ‘film’, ‘episode’

‘height’
‘weight’, ‘hometown’, ‘women’, ‘length’, ‘overall’, ‘college’,

‘us’, ‘remarks’, ‘singles’, ‘men’, ‘american’, ‘current’,
‘end’, ‘average’, ‘model’

‘vote’
‘seats’, ‘percentage’, ‘parties’, ‘democratic’, ‘people’,

‘change’, ‘non’, ‘canada’, ‘australia’, ‘previous’, ‘point’,
‘regional’, ‘seat’, ‘post’, ‘body’

5.3.6 Ranking results

We evaluate the performance of our proposed method and baselines on the table

retrieval task using Normalized Discounted Cumulative Gain (NDCG) [106] at cut-

off thresholds 5, 10, 15, and 20. All evaluation metrics results are reported using the

TREC evaluation software, trec eval1.

Table 5.4: Table retrieval evaluation results using MaxTable

Method Fields NDCG@5 NDCG@10 NDCG@15 NDCG@20

Single-field document ranking all 0.4715 0.4832 0.5155 0.5404
Single-field document ranking cell values 0.3292 0.3775 0.4245 0.4657
Single-field document ranking description 0.4632 0.4912 0.5330 0.5462
Single-field document ranking attributes 0.3204 0.3545 0.4137 0.4584

MultiField-P all 0.4794 0.4930 0.5298 0.5473
MultiField-G all 0.4610 0.4818 0.5051 0.5386

SCON all 0.4824 0.5022 0.5343 0.5494
NOVAL all 0.4813 0.5021 0.5323 0.5491
NONUM all 0.4862 0.5037 0.5368 0.5505

HASHNUM all 0.4902 0.5043 0.5367 0.5505
MCON all 0.5088 0.5117 0.5460 0.5587

In Table 5.4, we show the NDCG results of table retrieval using the MaxTable

ranking method (results for other ranking methods showed similar trends). We show

that MultiField-P leads to a better performance than the single-field document rank-

ing. From the results of the single-field document ranking using only cell values,

we observe that the cell value-based single-field document ranking is not effective in

1https://trec.nist.gov/trec eval/trec eval.8.1.tar.gz
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ranking query-table pairs. The additional predicted contexts using our MCON model

have the best performance for all NDCG metrics.

In Table 5.5, we summarize the results of all ranking approaches from Section

5.2.3 using our best model, MCON. Here, the MaxTable ranking method is shown

to be the most effective ranking for our embedding and context prediction approach.

Aggregating scores using the sum of maximum similarities is more effective than

using average similarity. Late-avg is stricter as it requires a query term to have large

similarity with multiple tokens of a given field in order to obtain a high score. On the

other hand, for MaxTable, a high similarity between a query term and one token from

a given field is enough to obtain a high similarity score for a given field in a table.

Among the ranking methods that are not based on word embedding (LM-Ranking,

BM25, and TF-IDF), LM-Ranking achieves higher performance at all NDCG cut-off

thresholds. Note, that for our table features, STS actually performs worse than plain

BM25, while simply using its approach to semantic similarity gets closer to BM25.

Table 5.5: MCON table retrieval results

Method NDCG@5 NDCG@10 NDCG@15 NDCG@20

BM25 0.4545 0.4854 0.5186 0.5449
TF-IDF 0.4316 0.4746 0.5073 0.5344

LM-Ranking 0.4755 0.4976 0.5316 0.5548
Late-avg 0.4740 0.5025 0.5241 0.5464

STS 0.4323 0.4502 0.4863 0.5158
MaxQuery 0.4642 0.4726 0.5087 0.5310
MaxTable 0.5088 0.5117 0.5460 0.5587

5.3.7 Analysis of query subsets

In Table 5.6, we show NDCG@5 for every subset of queries using MCON and MultiField-

P with MaxTable ranking method. Both methods have better performance on queries

subset 1 than subset 2. Overall, we achieve better results than MultiField-P in both

subsets.

We show a more fine-grained analysis by plotting query-level performance in

both subsets. We plot the query-level difference in NDCG@5 between MCON and

MultiField-P using the MaxTable ranking method. In Figure 5.1(a), the rightmost

bar corresponds to the query ‘composition of the sun’. For this query, there is one
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Table 5.6: Table retrieval results, MCON vs MultiField-P, on the two query subsets
in term of NDCG@5 using MaxTable

Method Subset 1 Subset 2

MCON 0.5939 0.4908
MultiField-P 0.5603 0.4570

query-table pair with rank 2, one query-table pair with rank 1, and the other pairs

are irrelevant (rank 0). MCON returns many irrelevant tables so that we obtain a low

NDCG@5 score for this specific query. The table that is relevant to the query belongs

to a Wikipedia page that has the title ‘Atmosphere of Jupiter’, the section title is

‘Chemical composition’, and the caption is ‘Elemental abundances relative to hydro-

gen in Jupiter and Sun’. This table is ranked second using our approach. The top

ranked table using our approach is from the same Wikipedia page and section, and

has the caption ‘Isotopic ratios in Jupiter and Sun’. Although this table has zero rel-

evance in the ground truth, we believe that this table is indeed relevant to the query.

The table that is ranked third by our algorithm belongs to ‘Political composition’.

The “somehow relevant” table is ranked 9th by our method. For these two cases, the

irrelevant predicted contexts affect the ranking negatively, and this can be explained

by the lack of tables in training data that are related to the query’s topic. In Figure

5.1(b), the rightmost bar corresponds to the query ‘broadway musicals director’. In

the testing collection, there is only one query-table pair that is “somehow relevant”,

and all other pairs are irrelevant. In the test data, the “somehow relevant” table has

inaccurate attributes (as verified by examining the original Wikipedia page), leading

our model to predict contexts that are not relevant to the actual table, and lowering

the query-table similarity score.

5.4 Summary

We have shown that using multiple, differentiated contexts can result in more useful

attribute embeddings. When the MaxTable ranking method is used for the table

retrieval task, our MCON system has up to 5.47% improvement in NDCG@5 over

a method that uses the same context fields but treats them as the same context.

Likewise, we have shown that the data values of an attribute provide useful context

information: our full system always performs better than the version that does not
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(a) Queries subset 1 (b) Queries subset 2

Figure 5.1: Query-level NDCG@5 difference between MCON and MultiField-P

include values as context by as much as 5.71% in NDCG@5. Finally, we have shown

that our simple treatment of numeric values also leads to better embeddings: when

numeric values are dropped, NDCG@5 scores drop by up to 4.44%.

MCON embeddings can be used as an initial unsupervised ranker to extract an

initial set of relevant tables to the user’s query, where the recall is more important than

the precision. This is similar to the document retrieval where BM25 is used in many

cases as an initial ranker. Our results show that MCON has better performance than

BM25 and language models, therefore MCON can be used to obtain a more relevant

initial set of tables.

MCON embeddings capture mainly the co-occurrence information obtained from

the adapted Skip-gram model. In addition, MCON provides embeddings only for the

dataset attributes. To capture richer contextual information of a table corpus, in the

next chapter we represent the table corpus as a knowledge graph. With the graph

representation, multiple signals can be incorporated when learning the embedding of

tokens in datasets. In document retrieval, researchers have focused on using learning-

to-rank methods for document retrieval [293, 254, 263, 161] to refine the initial set

of extracted documents. Similar to document retrieval, we incorporate the graph

embedding into a new learning-to-rank architecture for dataset search to refine the

initial set of relevant tables.
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Chapter 6

Graph Embedding for Data Tables

6.1 Introduction

We address multiple research questions in this chapter. The first research question

(RQ1) is how to capture multiple signals, such as the semantic and lexical informa-

tion, when learning the embedding of tokens in datasets. Inspired by recent progress

of transfer learning on graph neural networks, we propose an heterogeneous graph

that incorporates multiple signals. The second research question (RQ2) consists of

how to learn an embedding for each node in the heterogeneous graph. After learn-

ing the graph-based embedding, the third research question (RQ3) consists of how

to incorporate the graph-based embeddings into an LTR model that improves table

retrieval results. So, our proposed approach is a two-phased table retrieval method

which uses graph embeddings pretrained on a large table corpus, denoted as Multiple

Embeddings R-GCN (MultiEm-RGCN).

6.2 Knowledge Graph Construction and Embed-

ding Learning

RQ1 is answered by phase I, where we construct a knowledge graph containing two

types of knowledge: dataset-dependent knowledge and dataset-agnostic knowledge.

The graph contains words and tables from a collection of tables as nodes. To incor-

porate dataset-dependent knowledge, point-wise mutual information (PMI) between

word nodes, and term frequency-inverse document frequency (TF-IDF) between table
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and word nodes are computed based on the collection of tables. To avoid overfitting,

we incorporate dataset-agnostic knowledge via external resources containing semantic

knowledge from pretrained word embeddings, and lexical knowledge from WordNet.

This incorporates a subgraph from WordNet into our knowledge graph. We model

the graph with R-GCN which is used to learn multiple types of embeddings simulta-

neously. In phase II, we solve the table retrieval task by incorporating the R-GCN

heterogeneous embeddings from phase I into a new learning-to-rank (LTR) architec-

ture that combines multiple embedding spaces into one joint model.

We denote a knowledge graph by G = (V, T,R), with a set of nodes V, a set of

relation types R, and a set of directed edges (vi, r, vj) ∈ T , where vi,vj ∈ V and

r ∈ R. T can be seen as an RDF collection that contains (s, p, o) triples representing

the knowledge graph. In this section, we first give a brief overview of R-GCN. Then

we introduce how to construct a knowledge graph (KG) based on the table corpus

given a set of predefined relations, which incorporate dataset-dependent knowledge

and dataset-agnostic knowledge. After that, we describe how to learn high-quality

node embeddings based on the constructed KG with link prediction as the pretraining

task under the R-GCN framework. Ultimately, we present a Multiple Embeddings

R-GCN (MultiEm-RGCN) model with two phases: phase I consists of training unsu-

pervised embedding using R-GCN, and phase II consists of incorporating the multiple

embeddings into a new LTR model.

6.2.1 Heterogeneous Knowledge Graph Construction

We describe how to build a meaningful knowledge graph for a large collection of

tables that captures both general knowledge and dataset specific knowledge. Our

graph contains word nodes and table nodes. The word nodes are constructed from

the table collection and external resources. For a given word in the table collection,

we also use its synonyms defined in WordNet and the hypernyms of these synonyms,

which also have corresponding nodes in our constructed knowledge graph. In other

words, our final graph includes a subset of WordNet relevant to the table collection.

We construct edges that encode two types of knowledge: dataset-dependent

knowledge and dataset-agnostic knowledge . For dataset-dependent knowledge,

we build table-word edges and word-word edges from the table collection. However,
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only pretraining node embeddings from such a graph could overfit the dataset col-

lection and harm the generalization ability of learned node embeddings, especially

given a small training set. Therefore, we also propose to encode dataset-agnostic

knowledge from external resources such as other pretrained word embeddings and

WordNet. By constructing edges that encode both dataset-dependent knowledge and

dataset-agnostic knowledge, we assume the learned node embeddings can capture

both dataset specific information and open world knowledge. The overview of our

proposed knowledge graph is shown in Figure 6.1. We build our graph G using RDF

triples T . Initially, T is empty, and in this section we show how to build T .

𝒕𝟏

𝒕𝟑

𝒕𝟐

𝒘𝟏

𝒘𝟐

𝒘𝟑

𝒘𝟒

𝒘𝟓
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𝒘𝒏𝟑

𝒘𝒏𝟔

𝐡𝐚𝐬𝐂𝐨𝐬𝐢𝐧𝐞𝟐

Figure 6.1: Overview of phase I of the proposed method MultiEm-RGCN. We use the
same edge for hasCosine and hasPMI to avoid clutter in the graph. We can notice
that the words w2 and w3 have only the hasCosine2 relation because w2 and w3 do
not co-occur in the tables collection.

Dataset-agnostic knowledge: We consider two types of dataset-agnostic knowl-

edge. The first is semantic knowledge from word embeddings, such as Glove [186],

pretrained on a large corpus. The cosine similarity of a word pair can be treated as

prior information for two word nodes in our graph.
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Let dsemantic(wi, wj) denote the cosine similarity between two words wi and wj,

which is a real value in the interval [−1, 1]. When building the knowledge graph, we

do not keep the exact value of dsemantic(wi, wj). Instead, we define several relations

that represent different levels of similarities. This idea is inspired by the histogram

matching method by Guo et al. [80] used for query document matching. We discretize

the interval into a set of ordered bins and each bin has a corresponding edge type.

Suppose that W is the set of word tokens in the training collection. We build the

triples with pcosine as the predicate only for those word pairs whose cosine similarity is

larger than a threshold Mcos, since we care more about the semantic similarities rather

than the dissimilarities, and the inferred dissimilarities from word embeddings could

be inaccurate and trivial (two words randomly selected are likely to be dissimilar).

In order to reduce the effect of extreme values which may result in bins with few

data points, we calculate the mean mcos and standard deviation stdcos of the set of

all valid cosine similarities. Then we set the interval as [mincos,maxcos] where mincos

is the smallest cosine similarity that is larger than mcos − 2 × stdcos, and maxcos

is the largest cosine similarity that is smaller than mcos + 2 × stdcos. We linearly

divide [mincos,maxcos] into ncos intervals and the k-th interval has a corresponding

predicate hasCosinek. For example, if dsemantic(wi, wj) belongs to the k-th interval,

then we add (wi, hasCosine
k, wj) to T . Note that there are word pairs that have

cosine similarity smaller than mincos: we assign them to the 1st bin, and those have

cosine similarity larger than maxcos are assigned to the last bin. Here, we define the

set of semantic relation triples as

SemT = {(wi, hasCosinek, wj)|wi, wj ∈ W and dsemantic(wi, wj) > Mcos} (6.1)

where dsemantic(wi, wj) belongs to the k-th interval. We add SemT to T .

The second type of dataset-agnostic knowledge incorporated into our graph is lex-

ical knowledge from WordNet [160]. Specifically, we define two additional relations

in R. The first relation corresponds to the edges between a word and its synonyms

(also called synsets) defined in WordNet. In particular, given a word wi, we extract

its synonyms, denoted by Syni. We define the set of synonym relation triples SynTi

associated with wi and its synonyms Syni as

SynTi = {(wi, Synonym,wn)|wn ∈ Syni} (6.2)
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with Synonym ∈ R. We add SynTi for every word wi ∈ W to T .

The second relation corresponds to the edges between synonyms in the graph.

Given a node wni which is a synonym of wi, we extract the hypernyms of wni, denoted

by Hypi. Then, we define the hypernym relation triples HypTi associated with wni

and its hypernyms as

HypTi = {(wni, Hypernym,wnj)|wnj ∈ Hypi} (6.3)

with Hypernym ∈ R. T is expanded by adding all triples from HypTi.

To have a complete directed graph, for all triples (s, p, o), we add the triples

(o, p−1, s) to T , with p−1 is the inverse of p. We have already added all cosine sim-

ilarity edges because hasCosine and hasCosine−1 are identical. We calculate the

triples from the inverse of Synonym and Hypernym, denoted by Synonym−1 and

Hypernym−1, respectively, and we add the calculated triples to T . We choose not to

treat Synonym and Synonym−1 as identical relations because the domain and range

have different types (word-WordNet entity edge).

Dataset-dependent knowledge: In order to incorporate dataset specific informa-

tion, we connect table nodes with word nodes using TF-IDF relations. In particular,

we calculate the TF-IDF value for a word wi in table t ∈ C, denoted as TF-IDF(t, wi).

We follow the same binning approach that we used for discretizing semantic similar-

ities in order to obtain a triple from TF-IDF(t, wi). For example, given ntfidf dif-

ferent intervals, if TF-IDF(t, wi) belongs to the k-th interval, we obtain the triple

(t, hasTFIDF k, wi) which is added to T . In this case, we expand R by adding ntfidf

relations that are related to TF-IDF.

The cosine similarity between two words from a pretrained embedding encodes

the co-occurrence information in the large pretraining corpus. By encoding the local

co-occurrence information in our table collection, the constructed knowledge graph

can retain dataset-specific relations. If we take the headers of tables as an example,

in multiple tables, we could frequently find this sequence of headers (with different

orders): Birth date, Birth place, Death date, Death place, etc. So the co-occurrence

of tokens in this sequence of headers should be high. We utilize PMI to describe local

context information using a sliding window strategy. The edge weight of each pair of
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words is calculated by:

PMI (wi, wj) = log
p (wi, wj)

p (wi) p (wj)
(6.4)

where p (wi, wj) is the probability of co-occurrence of words wi and wj in the same

sliding window of length sw, which is estimated by:

p (wi, wj) =
#Nco−occurrence (wi, wj)

#Nwindows

(6.5)

with #Nco−occurrence (wi, wj) is the number of times the pair (wi, wj) co-occurs in the

same sliding windows over the whole table collection, and #Nwindows is the total

number of sliding windows of size sw over the whole collection of tables.

Binning is used again for PMI(wi, wj). Given npmi intervals for the set of PMI val-

ues, if PMI (wi, wj) belongs to the k-th interval, we obtain the triple (wi, hasPMIk, wj).

The triple (wj, hasPMIk, wi) is also valid because the PMI calculation is symmetric,

and we add both triples to T . After adding the triples, we expand R by adding npmi

relations that are related to PMI.

We add the inverse relations in order to finish constructing the graph. Like the

hasCosine relation, hasPMI and hasPMI−1 are identical. For TF-IDF, we define

a new relation TF-IDF−1 ∈ R in order to compute the directed edges from words to

table nodes.

6.2.2 Knowledge Graph Embedding Learning

To learn an embedding for each node in the graph (RQ2), we use link prediction as

the pretraining task to learn node embeddings of the constructed knowledge graph

in section 6.2.1. The objective of link prediction is to predict new facts given by

(s, p, o) triples. So, the directed labeled graph G contains only a subset of possible

edges, and the objective is to predict the score f(s, p, o) of a possible edge (s, p, o) to

determine the validity of the triple. We use the graph auto-encoder model introduced

by Schlichtkrull et al. [208] that consists of a node encoder and scoring function for

the decoder. The role of the encoder is to compute the embedding ei ∈ Rd of node

vi in the graph. So, the encoder is the R-GCN model, and the node embedding is

obtained by setting ei to hLi , where L is the number of layers in R-GCN and hLi is

the hidden representation of node vi from the last layer. The role of the decoder
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is to reconstruct edges of the graph using node embeddings. This means that the

decoder maps (s, p, o) triples into a real valued score. The advantage of the encoder-

decoder architecture is the end-to-end training of both the embedding and the scoring

function.

The decoder function is based on DistMult factorization [269] that has shown

good results in link prediction despite its simple expression. Every relation p ∈ R
is associated with a diagonal matrix Rp ∈ Rd×d, and the score f(vi, p, vj) of triple

(vi, p, vj) is given by:

f(vi, p, vj) = eTviRpevj (6.6)

where evi and evj are the embeddings of nodes vi and vj respectively. The graph auto-

encoder is trained with negative sampling as in [269, 208, 243]. In particular, we treat

the triples in T as positive triples. For each tp ∈ T , we sample w negative samples

by either corrupting the object or subject of tp. We optimize the graph auto-encoder

parameters via link prediction by minimizing the cross-entropy loss:

L = − 1

(1 + ω)|E|
∑

(s,p,o,y)∈T

y log σ(f(s, p, o)) + (1− y) log(1− σ(f(s, p, o))) (6.7)

where T represents the set of positive and corrupted triples, y is the label of triple

which is set to 1 for positive triples, and 0 for corrupted triples, and σ is the logistic

sigmoid function. Minimizing the cross-entropy loss leads to having a higher f(s, p, o)

score for positive triples than the corrupted ones.

6.3 KG Embedding for Table Retrieval

Our proposed heterogeneous graph includes information from both the table collec-

tion and external resources, where various relations among nodes are encoded. As

described in section 6.2.2, after training the graph auto-encoder on the link prediction

task, the encoder provides an embedding for each node in the graph that captures

the graph structure and the information that is passed from node to node using the

edges labeled by relations from R.

We show how to incorporate node representations into a learning-to-rank (LTR)

model (RQ3) designed for table retrieval. Our trained graph auto-encoder simul-

taneously provides embeddings for different types of nodes (tables, words, synsets)
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in the knowledge graph so that we can tackle the table retrieval problem by using

each embedding type independently or by having a joint model that combines the

multiple embeddings. In this section, we discuss multiple LTR models that take ad-

vantage of our proposed graph embeddings in order to improve the results of ad hoc

table retrieval. In training, a set of queries Q = {q1, q2, . . . , qs}, and a table corpus

C = {t1, t2, . . . , tl}, are given, where s and l are the total number of queries and data

tables, respectively. We denote the number of tokens per query q ∈ Q by n, and the

number of tokens per table tj ∈ C by m. Each table tj has a relevance score, denoted

by yj, to a given query q. We propose fw, a new joint embedding LTR model with

parameters w, which incorporates multiple embedding spaces to predict the relevance

score of a given query-table pair (q, tj), such that higher ranked tables should be more

relevant to the query.

6.3.1 Graph word embedding:

The first type of embedding used in our LTR model is the word embedding obtained

from word nodes. After using the encoder to calculate the embedding of each node,

we collect word nodes to form a word vocabulary for the tables collection, which

is used to compute the word embeddings of queries and tables. For a given query

q = q1, q2, . . . , qm where m is the length of the query and ql is the l-th token of q, the

R-GCN word representation is given by

q = q ⊕ q ⊕ q ⊕ · · · ⊕ qm (6.8)

where qk ∈ Rd is a d-dimensional R-GCN word embedding of token qk and ⊕ is the

concatenation operator to build the matrix q ∈ Rm×d. A given table tj is linearized by

concatenating metadata, such as table caption, page title, headers, and data values.

Then, R-GCN word embeddings are used to map tj to an embedding matrix tj ∈
Rn×d.

For a given query-table pair (q, tj), the inputs to the word embedding-based LTR

model are q and tj . We choose the Convolutional Kernel-based Neural Ranking

Model (Conv-KNRM), proposed by Dai et al. [51], as our word embedding-based

LTR architecture.

Conv-KNRM uses a Convolutional Neural Network (CNN) to embed n-grams of
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the query and document into a unified embedding space, and computes the similarity

between each pair of n-gram embeddings. These similarities are compared to a set

of K kernels, where each kernel is a normal distribution with a given mean and

standard deviation. Then kernel-pooling [263] is used to summarize the similarities

into a soft-matching feature vector of dimension K; intuitively, this vector represents

the probabilities that the similarities come from the distribution specified by each

kernel. The soft-matching feature vector is computed for different n-grams of query

and document, and then they are concatenated into a single feature vector. The

extracted feature is then passed through a learning-to-rank layer to predict a relevance

score. We choose Conv-KNRM as the main component in our LTR model because it

shows good performance in multiple benchmarks for document retrieval. Moreover,

the CNN approach of modeling n-grams makes cross-matching between query and

document tokens feasible, effective, and efficient. The input embedding layer to conv-

KNRM is initialized using our word embeddings.

6.3.2 Graph embeddings for WordNet entities:

Given a query q = q1, q2, . . . , qm where m is the length of the query and ql is the l-th

token of q, we translate each token ql into a set of synonyms and hypernyms, denoted

by Trans(ql), using WordNet. First, we extract the set of synonyms from WordNet

and we append it to Trans(ql). Then, we use a stack to extract the hypernyms of

synonyms, and then the transitive closure, with a maximum of 20 hops, over hyper-

nyms. So, Trans(ql) forms a sequence of synonyms and hypernyms from WordNet.

Finally, the translated query, Trans(q), is given by:

Trans(q) = [Trans(q1);Trans(q2); . . . ;Trans(qm)] (6.9)

We apply the same idea to obtain the translation Trans(tj) of a given table tj. After

the translation step, our queries and tables are represented as a sequence of WordNet

entities. Given that our graph auto-encoder produces embeddings for WordNet enti-

ties (synonyms and hypernyms), we compute WordNet embeddings for the translated

query and table:

Trans(q) =
⊕

wn∈Trans(q)

wn ; Trans(tj) =
⊕

wn∈Trans(tj)

wn
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where wn ∈ Rd is a d-dimensional R-GCN WordNet embedding of wn, Trans(q) ∈
R|trans(q)|×d and Trans(tj) ∈ R|trans(tj)|×d are the R-GCN embedding matrices of

Trans(q) and Trans(tj), respectively. We train a Conv-KNRM model on table-query

pairs of translated sequences using Trans(q) and Trans(tj) as inputs, and with an

embedding layer that is initialized using the R-GCN embedding for WordNet nodes.

6.3.3 Graph table embedding:

The embeddings for both word and WordNet nodes can be used directly for tables and

query tokens. In contrast, embeddings of table nodes only provide representations

for tables. For a given query-table pair (q, tj), in order to compute an embedding

for queries using table node embeddings, we propose an approach inspired by pseudo

relevance feedback, where we generate a pseudo-query by aggregating the top-J tables

returned by BM25. In particular, given a query q and a collection of tables C, the

pseudo-query q′ is the sequence of closest J tables, t1, t2, . . . , tJ , to q using BM25.

The R-GCN table embeddings are used to compute the embedding matrix q′ ∈ RJ×d

which is given by

q′ = t ⊕ t ⊕ t ⊕ · · · ⊕ tJ (6.10)

where ti is the table embedding of ti which is computed using R-GCN for table nodes

in the knowledge graph.

Then, we aggregate q′ using a simple aggregation function for neural networks, in

order to compute the query embedding. Our neural aggregation function is based on

ARC-I [95] which summarizes the meaning of a sequence through layers of convolution

and pooling, and produces a fixed length feature vector qagg. In our case, the input

sequence to ARC-I is q′. The last layer of the feature extractor of the table embedding

model consists of a pointwise multiplication layer between the table embedding tj of

tj and qagg. The resulting feature vector is passed through a multilayer perceptron

(MLP) to predict the relevance score of (q, tj).

6.3.4 Joint embedding:

We describe phase II of our proposed MultiEm-RGCN which combines all three types

of embeddings into one LTR model. As shown in Figure 6.2, the phase I embeddings
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Figure 6.2: Overview of phrase II of the proposed method MultiEm-RGCN. The blue
and orange edges represent the data flow for a given query q and table tj, respectively.
⊕ denotes the concatenation operator used to form the table embedding of pseudo-
query q′, the final query representation q̂, and the final table representation t̂j . The
Conv-KNRM bloc takes q̂ and t̂j as inputs to predict the final relevance score fw(q, tj).

are used to compute the query representation q̂ and table representation t̂j :

q̂ = q ⊕ Trans(q)⊕ q′; q̂ ∈ R(n+|Trans(q)|+J)×d

t̂j = tj ⊕ Trans(tj)⊕ tj ; t̂j ∈ R(m+|Trans(tj)|+1)×d

Then, we pass q̂ and t̂j through a Conv-KNRM model to predict the final relevance

score of (q, tj). The model is trained to minimize the listwise loss function ListNet

[21], and generate a ranked list of tables for each query that matches the ranking using

the ground truth relevance scores. We choose not to update phase I embeddings when

minimizing the listwise loss function to reduce model complexity, and focus the efforts

of training on learning the CNN filters and MLP weights of Conv-KNRM.
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6.4 Evaluation

6.4.1 Baselines

Unsupervised ranking approaches

A table is considered as a single field document by concatenating indexable fields.

For example, in the WikiTables collection, we concatenate table caption, attributes,

data rows, page title and section title. We compare our approach against a single-

field ranking method which is based on BM25 to calculate a retrieval score. On the

other hand, a data table can be considered as multi-field document, so we compare

against a multi-field ranking method that is based on the pretrained Glove word

embedding when calculating cosine similarity. MaxTable [241] similarity measure is

used to calculate the score between query tokens and a given field in a table.

Supervised ranking approaches

We compare our method against state-of-the-art approaches for table retrieval: LTR

and STR [293]. We also compare against various embeddings that are used as input

to Conv-KNRM. The first set of embeddings are pretrained on large text corpuses

and are Word2Vec [158], Glove [186] and fastText [12]. The second set of embeddings

are pretrained on WikiTables which are TabVec [76], and MCON [241].

6.4.2 Experimental Setup

In all reported results, we choose not to update the embeddings when minimizing

the loss function for table retrieval for two reasons: first we would like to directly

compare the quality of embeddings that we obtain from multiple methods. Second,

by freezing word embeddings, we reduce model complexity, and focus the efforts of

training on only updating the parameters of LTR model.

Table 6.1 summarizes the parameters that are used in MultiEm-RGCN. In each

training step of R-GCN, we randomly construct a connected subgraph of size Sz to

make computations feasible. Inverse relations enable constructing a subgraph with

multiple types of nodes. For example, without the inverse of TF-IDF relation, it is

not possible to add a table node to the subgraph when the current node is of type

word. Given that our graph contains more edges connecting words and WordNet
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Table 6.1: Parameters values used in our proposed model

Model phases Parameters Values

Phase I

number of layers L 2
Mcos threshold 0.5

ncos,ntfidf ,npmi and intervals 3
PMI sliding window size sw 20
Table selection probability p 0.0001

Size of subgraph Sz 50000
Dimension of embedding d 100

Negative samples w 10
optimizer Adam optimizer with lr = 0.001

Phase II

Number of kernels K 5
number of extracted tables J 100
number of layers in ARC-I 2 with 50 CNN each
n-grams in Conv-KNRM unigram, bigram, and trigram

number of CNN filters per n-gram in Conv-KNRM 128
length of query n 6

number of tokens m per table 80
optimizer Adam optimizer with lr = 0.001

nodes, we force including table nodes in the subgraph with probability p instead of

picking a random node.

We evaluate the performance of our proposed method and baselines on the table

retrieval task using Normalized Discounted Cumulative Gain (NDCG) [107], Mean

Reciprocal Rank (MRR), and Mean Average Precision (MAP).

6.4.3 Evaluation using the Wikitables corpus

Ranking results

Table 6.2 shows the performance of different approaches on the WikiTables collection.

We show that our proposed method MultiEm-RGCN outperforms the baselines for

all evaluation metrics.

Among R-GCN embeddings, the word-based embedding has better retrieval re-

sults than WordNet and table embeddings as shown in Table 6.2. This can be ex-

plained by the fact that the graph contains many edges that have word nodes as the

subject or object. So, updating word nodes is more frequent than updating WordNet

and table nodes. In addition to that, unlike table nodes that have only input edges

from word nodes using hasTFIDF−1 relation, and WordNet nodes that have only

inputs from other word and WordNet nodes, word nodes receive input messages from

all three types of nodes in the graph using multiple relations.

Table 6.2 shows that using only R-GCN word embedding leads to better retrieval
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Table 6.2: Table retrieval evaluation results using our proposed embedding and base-
lines for WikiTables dataset

Category Method NDCG@5 MAP MRR

Unsupervised ranking
Single-field ranking 0.4511±0.032 0.477±0.030 0.516±0.038
Multi-field ranking 0.499±0.026 0.492±0.029 0.523±0.027

MCON [241] 0.515±0.018 0.519±0.021 0.532±0.019

Supervised ranking

LTR [18, 10] 0.514±0.039 0.522±0.035 0.570±0.019
STR [293] 0.582±0.037 0.591±0.037 0.636±0.037

Conv-KNRM+Glove [186] 0.595±0.033 0.598±0.032 0.629±0.031
Conv-KNRM+fastText [12] 0.601±0.032 0.601±0.034 0.636±0.030

Conv-KNRM+Word2vec [158] 0.600±0.031 0.600±0.025 0.631±0.026
Conv-KNRM+TabVec [76] 0.595±0.036 0.602±0.034 0.635±0.036
Conv-KNRM+MCON [241] 0.582±0.034 0.583±0.033 0.624±0.036

MultiEm-RGCN

R-GCN Word embedding 0.613±0.033 0.607±0.032 0.641±0.035
R-GCN WordNet embedding 0.526±0.092 0.535±0.072 0.575±0.084

R-GCN Table embedding 0.474±0.044 0.486±0.041 0.535±0.045
MultiEm-RGCN without q′ 0.620±0.028 0.619±0.028 0.651±0.028

MultiEm-RGCN 0.624±0.027 0.624±0.026 0.656±0.024

results than the baselines, but it is not the same case for WordNet and table embed-

dings which are more useful when used in the joint model MultiEm-RGCN. Most of

the Conv-KNRM based baselines have better results than STR, the state-of-the-art

method for table retrieval. Conv-KNRM+MCON performs worse, likely because it

only computes word embeddings for attributes. Among the baselines, Conv-KNRM

combined with fastText achieves higher performance for all evaluation metrics. The

use of character-level n-grams in fastText allows word embeddings to be created even

for terms that have not been seen before, and reduces the negative effect of out of

vocabulary tokens on calculating the final relevance score of a query-table pair.

We explain the improvement in performance of our model compared to baselines

by two facts. First, our proposed graph combines rich semantic and lexical general

knowledge from Glove and WordNet with data specific knowledge. This leads R-GCN

to learn node embeddings with a balance between general knowledge and table collec-

tion characteristics. Second, our heterogeneous graph provides multiple embeddings

that can be incorporated into a single LTR architecture in order to aggregate match-

ing signals between query and table in multiple spaces. This leads to more accurate

calculation of the relevance score of a query-table pair.

Adding more features

We examine the effect of adding data values and STR features to the MultiEm-RGCN

model. Table 6.3 shows table retrieval results using MultiEm-RGCN with different

combinations of features. Since it can be computationally expensive to process all

71



values from a table, we randomly select 50 string values from each table, and append

the value tokens to description and attribute tokens in phase II of MultiEm-RGCN.

As shown in Table 6.3, we obtain slight improvements in retrieval results when adding

random values to description and attributes.

Table 6.3: Table retrieval performance using MultiEm-RGCN with different features
for WikiTables dataset

Method NDCG@5 MAP MRR

Description+
attributes 0.6246±0.0277 0.6242±0.0267 0.6565±0.0241
Description+
attributes+values 0.6263±0.0252 0.6256±0.0287 0.6574±0.0339
Description+STR+
attributes+values 0.6272±0.0225 0.6285±0.0235 0.6595±0.0258

STR represents the set of features for query, table, and query-table pairs and

semantic features from various spaces. We use precalculated STR features from [293].

We append STR features to word, WordNet, and tables feature vectors, and then

train end-to-end the full system. Table 6.3 shows that adding the large number of

STR features only leads to a slight improvement over using only table content and

metadata. Thus, not only does MultiEm-RGCN unified knowledge graph exceed the

performance of specialized LTR [18, 10] and STR [293] features, but it also almost

entirely captures any useful signal present in those features. R-GCN word, WordNet,

and table embeddings are directly used in a joint LTR architecture, and this leads to

a significant improvement over the state-of-the-art STR table retrieval method.

6.4.4 Evaluation using the WebQueryTable corpus

We also conduct experiments on WebQueryTable [268]. We compare the performance

of our method against unsupervised and supervised baselines, except for LTR/STR

because these methods require a wide range of features that are not provided in the

dataset. Similar to WikiTables, we obtain three spaces of embeddings, which sup-

ports the hypothesis that MultiEm-RGCN simultaneously learns multiple types of

embeddings from our heterogeneous graph. For the WebQueryTable dataset, there

is only one relevant table per query, so MRR is always equivalent to MAP (and thus

MRR and MAP are shown in the same column in Table 6.4). Consistent with Wik-

iTables, our results on WebQueryTable show that incorporating multiple embeddings
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Table 6.4: Table retrieval results for WebQueryTable.

Method NDCG@5 MRR/MAP

Single-field ranking 0.5560 0.5362
Multi-field ranking 0.5849 0.5631

Conv-KNRM+Glove [186] 0.6004 0.5825
Conv-KNRM+fastText [12] 0.6097 0.5878

Conv-KNRM+Word2vec [158] 0.6072 0.5859
Conv-KNRM+TabVec [76] 0.6059 0.5856
Conv-KNRM+MCON [241] 0.5996 0.5798

MultiEm-RGCN 0.6438 0.6200

from MultiEm-RGCN into Conv-KNRM improves the evaluation metrics of table re-

trieval. This supports the hypothesis that MultiEm-RGCN captures rich semantic

and lexical general knowledge from Glove and WordNet with data-specific knowledge

when learning the embeddings of nodes. Then, as in WikiTables, our LTR model in

MultiEm-RGCN combines matching signals from word, WordNet, and table nodes,

which gives the possibility for query and table to be matched in multiple spaces.

6.4.5 Embeddings visualization

We visualize the embeddings learned by MultiEm-RGCN. Figure 6.3 shows the t-SNE

visualization of node embeddings from the second layer in R-GCN using the WikiTa-

bles collection. Figure 6.3 shows three different spaces from embeddings which are:

word (red dots), WordNet (green dots), and table (blue dots). For each embedding

space, we randomly zoom a region to show the embeddings of nodes of our proposed

graph. For word embeddings, we can see that the words mobile, telephone, phone,

online, internet, web, website, etc., are close to each other. The same interpretation is

valid for WordNet embeddings where synsets bridge.v.03, bridge.v.04, crossing.n.05,

lake.n.03, bridge.v.01, metro.v.01, train.v.10, etc., are mapped to the same region

in the WordNet embedding space. Finally, for table embedding space, a selected

region has the tables table-1064-451, table-1064-381, table-1064-384, table-1064-402,

table-1047-153, table-1047-143, table-0938-612, etc., in the zoomed region after t-SNE

visualization. All these tables are related to the 2012 Summer Olympics, and they

show the list of world records in the Olympics for multiple sport events.
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Figure 6.3: The t-SNE visualization of MultiEm-RGCN embeddings. There are three
spaces of embeddings: word (red dots), WordNet (green dots), and table (blue dots).
For each type of embedding, we zoom into a region to show the embeddings of nodes
of our proposed graph.

6.5 Summary

In this chapter, we propose a novel table retrieval method denoted by MultiEm-

RGCN. We have shown that a relational graph convolution network that incorporates

both dataset-dependent knowledge and dataset-agnostic knowledge outperforms other

pretrained embeddings on textual (Glove [185], fasText [12], Word2vec [158]) and

table corpus (TabVec [76], MCON [241]). MultiEm-RGCN has two phases. The first

phase consists of building a knowledge graph for a table corpus that contains multiple

types of nodes and edges. This heterogeneous graph aims to capture data-agnostic

knowledge that is semantic and lexical, and dataset-dependent knowledge that is

derived from contextual information and term frequencies. A simple graph encoder

with two R-GCN layers, and the DistMult decoder function are used to learn node

embeddings by minimizing a link prediction loss function. The second phase consists

of using R-GCN embeddings for the table retrieval task. This is achieved by building

a new LTR model that combines word, WordNet, and table embeddings.
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As a future research direction, it is possible to enrich the heterogeneous graph by

data values signals. Data values represent the main content of datasets, and in many

cases where the metadata is missing or inconsistent, data values are considered as

the primary field that is used to rank datasets against the input queries. Therefore,

gaining more understanding about data values is important. Our proposed heteroge-

neous graph captures semantic and lexical signals from external resources. To better

understand data values, it is possible to exploit the semantics of an existing knowl-

edge base (KB). For example, the information from KB can be incorporated into our

graph by linking the dataset content (headers and data values) to KB components

such as entities, classes, and properties. It is possible to use an RDF-based KB which

is composed of terminologies (TBox) and assertions (ABox). The TBox is composed

of the RDF Schema (RDFS) definitions of classes, class relations (rdfs:subClassOf ),

properties (rdfs:domain, rdfs:range, rdfs:subPropertyOf ). The ABox is composed of

entities in the form of RDF triples <subject, predicate, object>, where subject repre-

sents an entity, predicate represents a property, and object can be an entity or data

value. The class of a given entity is defined using rdf:type. Semantic reasoning over

KB can capture implicit knowledge from RDF triples. For example, given an entity

a, two classes c1 and c2, and the triples <a, rdf:type, c1> and <c1, rdfs:subClassOf,

c2>, it is possible to infer that <a, rdf:type, c2>. These semantics from existing KB

provide additional ways to better understand data values in table collections from a

dataset-agnostic knowledge perspective.

The row and column dependencies between tokens in a table can be lost by either

computing PMI on the flattened table when learning the graph embedding in phase I,

or concatenating tokens of a table when using the graph embedding for table retrieval

in phase II. In the next chapter, we propose a new learning-to-rank method for table

retrieval that takes into account the row and column dependencies between tokens

so that the structural information of a data table is incorporated into the neural

architecture.
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Chapter 7

Deep Semantic and Relevance

Matching Model for Learning to

Rank Data Tables

7.1 Introduction

Supervised learning, based on features from tables, queries, and query-table pairs

[18, 10], has resulted in the best performing table retrieval systems. Building on this,

Zhang and Balog [293] proposed extending these features with semantic matching be-

tween queries and tables using various semantic spaces which are: Word embeddings,

Graph embeddings, Bag-of-entities and Bag-of-categories. Semantic and traditional

features are then used to train a supervised model called STR [293]. However, there

are major drawbacks of STR for ad hoc table retrieval. First, they are based on

hand-crafted features, and that limits the ability to capture multiple levels of similar-

ity between query and table. Second, they ignore query relevance matching which is

an important matching signal in document retrieval in general. Third, they assume

equal contribution of each query token to the final relevance score when ranking web

tables against a given query.

Multiple matching signals, such as semantic and lexical signals, are captured by

representing data tables as an heterogeneous graph in MultiEm-RGCN [238]. How-

ever, the graph representation in MultiEm-RGCN [238] ignores the structural infor-

mation of data tables because the row and column dependencies between tokens in a
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table is neglected by either computing PMI on the flattened table when learning the

graph embedding in phase I, or concatenating tokens of a table when using the graph

embedding for table retrieval in phase II.

In order to overcome the limitations of prior methods in table retrieval, we propose

a new model that combines deep contextual features with features based on term

similarity distributions. Our model learns convolutional filters that extract contextual

features from query/table interactions (semantic matching). This is combined with

a feature vector based on the distributions of term similarity between queries and

tables (relevance matching). Additionally, we incorporate table values into our model

using row and column summaries that form the structural information. Finally, we

learn the contribution of each query token to the final relevance score. These models

are trained using a learning-to-rank approach with a listwise loss function. We show

that our new method can improve table retrieval performance using a collection of

tables from Wikipedia [293] and Web tables from a Microsoft dataset [268].

In summary, we make the following contributions:

• We propose a new semantic similarity model that is able to capture multiple

levels of semantic signals between query and table. In order to capture contex-

tual information, we apply various-sized convolutional filters to an interaction

matrix built from the embeddings of query and table tokens, and then apply a

second layer of convolutional filters to extract higher level features. Our repre-

sentation of the table includes summary vectors about the contents of the table,

both in terms of values in each column and values in selected rows.

• We demonstrate the usefulness of query relevance-specific components for the

table retrieval task. Using kernel pooling, we learn a feature vector based on the

probability distribution of the similarity of each document token to each query

token, and we learn the contribution of each token to the final relevance score

using a Term Gating Network. Each of these components lead to improvement

on retrieval tasks without leading to a large increase in the number of parameters

of the model.

• We compare our proposed method not only against methods from table re-

trieval and document retrieval, but we also adapt architectures from multiple

domains to the table retrieval task. We show that ad hoc table retrieval benefits
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from table-specific architectures; that is, straightforward application of leading

document retrieval approaches results in reduced performance.

7.2 Learning to Rank Data Tables

In this section, we introduce our proposed deep relevance model to enhance ranking

of tables given a user’s query. In training, a set of queries Q = {q1, q2, . . . , qm} is

given. Each query qi is associated with a list of tables ti = (ti1, t
i
2, . . . , t

i
ni), where tij

denotes the jth table and ni is the size of ti. Each list of tables ti is associated with

a list of relevance scores yi = (yi1, y
i
2, . . . , y

i
ni) where yij denotes the relevance score of

table tij with respect to query qi. We propose fw, a new deep relevance model with

parameters w, that is used to predict the relevance score of a given query-table pair

(qi, tij). Our proposed model fw = M ◦F contains a feature extractor function F and

a ranking model M . A feature vector xij = F (qi, tij) is created from each query-table

pair (qi, tij). Then a ranking function M is used to predict a relevance score M(xij).

So for a given query qi and a list of tables ti associated with the query, the objective

is to obtain a list of scores zi = (M(xi1),M(xi2), . . . ,M(xini)). The predicted relevance

scores are used to rank query-table pairs so that higher ranked tables should be more

relevant to the query.

7.2.1 Listwise loss function for table retrieval

We propose using a listwise based loss function for table retrieval rather than relying

on pointwise and pairwise approaches for two reasons. First, we are interested in

training our model to generate a ranked list of tables for a given query without

requiring the predictions of our model to match the ground truth relevance scores.

Second, although negative sampling can be used in the pairwise approach to avoid

the quadratic increase of query-table pairs, the pairwise strategy can increase data

imbalance when there is a dominating class [144]. So the loss function L is given by:

L(w) =
m∑
i=1

l(yi, zi) (7.1)

where l is a listwise loss function. We adapt the loss function proposed by Cao et

al. [21] to the table retrieval task. Given a query qi associated with a list of tables
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ti and relevance scores yi, the feature extractor F extracts features from a given

query-table pair, then a ranking model M generates a score list zi. As in Cao et al.

[21], the ground truth relevance scores and the predicted scores are converted into

probabilities Pyi(q
i, tij) and Pfw(qi, tij), respectively, using the softmax function. With

cross entropy loss, for a query qi, l(yi, zi) equals to:

l(yi, zi(w)) = −
ni∑
j=1

Pyi(q
i, tij)× log(Pfw(qi, tij)) (7.2)

The gradient of l(yi, zi(w)) with respect to model parameters w is detailed in Cao et

al. [21].

7.2.2 Deep relevance model architecture

We propose a new interaction-based deep semantic and relevance matching model

(DSRMM) for table retrieval. There are two classes of neural architectures for ad hoc

retrieval. Semantic similarity architectures treat the query and target as equals, and

try to match them. Query relevance architectures exploit characteristics of the ad

hoc retrieval task. Our hybrid model combines both concepts into one architecture.

We extract semantic and relevance feature vectors from the deep semantic similarity

model and query relevance matching network, respectively. The two features are then

concatenated and passed through a fully connected layer to predict a retrieval score

under the semantic and relevance settings. For a given query qi and table tij, the final

relevance score is given by

fw(qi, tij) = NNc([SS(qi, tij);QR(qi, tij)]) (7.3)

where SS is the semantic similarity neural network, QR is the query relevance neural

network, and NNc is a neural network used to predict the relevance score from a

vector concatenating the outputs of the semantic and relevance networks.

Inputs to Networks

The input to our architecture is a query-table pair. A given table tij contains descrip-

tion, cell values, and attributes or headers as shown in Figure 7.1. The description

denotes the metadata of the table such as page title, section title, table caption, etc.
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Figure 7.1: Architecture of Deep Semantic and Relevance Matching Model (DSRMM)
for table retrieval. ⊕ denotes the concatenation operator, and ⊗ is the pointwise mul-
tiplication operator. The semantic and relevance networks extract semantic and rele-
vance feature vectors respectively. The concatenated vector of semantic and relevance
features is passed through a fully connected network to predict the final relevance
score between the query and table.

The input representation of a table, denoted by T ij , contains the pretrained Glove

word embeddings of description and attributes. Cell values contain rich information

that can be used to match query and tables. Some queries depend on the presence of

specific columns, others depend on the presence of specific rows. In order to incorpo-

rate row and column representations into T ij , we present a row/column summarizer

component that compresses each row and each column into a fixed length feature

vector. In particular, given the k-th row rk and l-th column cl from tij, the outputs

of the summarizer component S(rk) and S(cl) are given by:

S(rk) =
1

|rk|
∑
w∈rk

vw and S(cl) =
1

|cl|
∑
w∈cl

vw

where vw is the word embedding of token w, and |rk| and |cl| are the number of

tokens in the k-th row and l-th column of tij, respectively. A table tij with nr rows

and nc columns results in nr + nc additional feature vectors that are concatenated
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to T ij to form the |tij| × k table representation, where k is the dimensionality of word

embeddings. The query representation, denoted by Qi, of qi is calculated using the

word embedding of each token in the query. So the dimensionality of Qi is |qi| × k,

where |qi| is the length of the query. For the rest of the chapter, we assume that |tij|
is equal to m for all tables, and |qi| is equal to n for all queries.

Semantic similarity component

Semantic similarity extracts contextual features from query-table interactions to infer

the semantic meaning and relation between query and table. The top portion of

Figure 7.1 illustrates the semantic similarity component, SM , in detail. To capture

semantic similarity, we build the interaction matrix X between query and table using

the pointwise multiplication between pairwise rows from query representation Qi and

table representation T ij . In tables, token order only matters locally; the rows and

columns could be arbitrarily ordered without changing the meaning of the table.

Thus, there is less utility in encoding sequences with the bi-LSTM models as is done

in Match-Tensor [104].

To capture multiple levels of similarity between the query and table, we propose

using multiple convolutional filters with different width and height. The width indi-

cates the number of query tokens that are used in the convolution. The set of width

values is given by {wt1, wt2, wt3}. The height value indicates the number of tokens

from the table that are used in the convolution. The set of height values is given by

{ht1, ht2, ht3}. Each table is represented as a matrix T ij ∈ IRm×k, and each query is

represented as a matrix Qi ∈ IRn×k. After pointwise multiplication of each query-

table pair of tokens, we obtain the interaction tensor X with dimension n ×m × k.

We pass X through k1 filters of size (wt1 × ht1), k2 filters of size (wt2 × ht2), and

k3 filters of size (wt3 × ht3) to obtain Xwt1×ht1 , Xwt2×ht2 , and Xwt3×ht3 feature maps

respectively. We apply a max pooling operation to each feature map, and we con-

catenate the resulting tensors into one tensor with size (n/2×m/2× (k1 + k2 + k3)).

In order to extract high level semantic interactions between the table and query, we

apply k4 convolutional filters of size (3 × 3); then we reduce the number of depth

channels using s filters with size (1× 1). We summarize the information obtained in

each channel using Global Average Pooling (GAP) to obtain our semantic similarity

feature vector SS(qi, tij).
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Query relevance component

Guo et al. [80] demonstrated that many neural models for document retrieval de-

pended on semantic similarity, but this is an inappropriate measure for the task.

They argued that ad hoc retrieval depends on exact matching and query term impor-

tance, and that sometimes queries only need to match part of the document, not the

document as a whole. Semantic similarity on the other hand assumes that the items

being matched are roughly equivalent in scope, that their meanings are composed

from their parts, and that items must be matched in their entirety. We believe that

this argument for a specialized architecture applies equally to table retrieval. How-

ever, because semantic similarity still provides a useful signal based on context, we

design a model that includes the best features of both approaches.

Our query relevance component adapts Guo et al.’s matching histogram mapping

[80] to the table retrieval task. The matching histogram mapping is based on a hard

assignment of matching similarities between a given query token and the table tokens.

This histogram-based feature counts the number of table tokens whose similarity

to the query token is within the bin’s range. However, this representation is not

differentiable and not computationally efficient. Therefore, we adapt kernel-pooling

[263] for soft-match signals to the table retrieval task. The objective of using kernel

pooling is to extract a soft matching histogram between a given query token and table

tokens. Given a query token qil and table tij, we use r1 1-D convolutions to translate

each token. Then we calculate cosine similarity between the translated tokens. There

are two advantages of the convolution. First, it allows us to learn similarities that are

present in our query/table collection but that were not captured by the Glove [186]

corpus. Second, instead of updating the word embedding (|V | × k parameters, where

V is the vocabulary), we update the convolutional filters (r1×k parameters), so that

we decrease the complexity of the model (as r1 << |V |).
qil is embedded to qi

l, then translated to vi
l. The cosine similarity between vi

l and

the sth token of tij is given by Cls. Suppose that we have K kernels for soft matching,

with mean µ = {µ1, µ2, . . . , µK}, and standard deviation σ = {σ1, σ2, . . . , σK}; the

soft matching assignment of query token qil to kth kernel is given by

Kk(q
i
l , t

i
j) =

m∑
s=1

exp(−(Cls − µk)2

2σ2
k

) (7.4)
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Kk calculates the soft matching similarities around µk with a variance σ2
k. The closer

Clm is to µk, the higher is Kk. The kernel pooling feature vector of query token qil

and table tij is given by:

KP (qil , t
i
j) = [K1(qil , t

i
j);K2(qil , t

i
j), . . . , KK(qil , t

i
j)] (7.5)

Since exact matching is an important signal in any retrieval task, we reserve the first

kernel K1 for soft exact matching. So, we set µ1 to 1, and σ1 to 0.001.

Query tokens are not equally important for relevance matching. In order to model

each query token’s importance, we use a Term Gating Network (TGN) [80] to control

the contribution of each query token to the final relevance score. For a given query

qi, the gating function is given by:

gj =
exp(wgq

i
j)∑n

l=1 exp(wgqi
l)

(7.6)

where wg is the weight vector of the term gating network, and qi
l is the embedding

of query token qil , The final feature vector using relevance matching is given by:

QR(qi, tij) = [hij1 ;hij2 , . . . , h
ij
|qi|] (7.7)

with

hijl = gl ×KP (qil , t
i
j) (7.8)

Our final model captures both semantic similarity and query relevance matching

which both play an important role in ad hoc table retrieval.

7.3 Evaluation

We evaluate our approach using two different data collections and compare it against

a number of baselines.

7.3.1 Baselines

We compare the performance of our proposed model against several baselines from

multiple fields.
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Unsupervised table retrieval

We compare the performance of our proposed method against MCON [241] which is

based on new word embeddings for attribute tokens of tables. When calculating the

retrieval score of MCON, we use the MaxTable ranking method which was shown to

be the best ranking method for unsupervised table retrieval [241]. MaxTable is a late

fusion similarity model that finds the closest table token to each query token using

cosine similarity, and then sums over these similarities.

Ad-hoc table retrieval methods

We compare our method against state-of-the-art approaches for table retrieval: LTR

[293], STR [293], and MultiEm-RGCN [238]. Table2Vec [290] is another system that

solves the same task, but the reported performance is lower than that of STR. There-

fore, we do not include Table2Vec in our evaluation.

Unsupervised document ranking approaches

Unsupervised document ranking approaches can be applied to table retrieval if a

linearization is applied to the table to create a sequence of terms. Depending on the

structure of the table, we obtain two categories of baselines:

Single-field document ranking: A table is considered as a single field document

by concatenating indexable fields. For example, in the WikiTables collection, we

concatenate: table caption, attributes, data rows, page title and section title. We

compare our approach against three baselines in the category of single-field document

ranking. The first single-field ranking method, SingleField-BM25, is based on BM25

to calculate a retrieval score. In the second ranking method, called SingleField-LM,

we estimate a language model [45, 283] for the formed document in order to rank

a given table against the query. Finally, for the third approach, called SingleField-

P, we calculate the score of a query-table pair using word embedding-based ranking

method MaxTable [241]. This is different from MCON in that it uses pre-trained

Glove embeddings and does not generate predicted contexts.

Multi-field document ranking: In a multi-field ranking scenario, a table is

defined using multiple fields. For example, in WikiTables data, the fields are: page

title, section title, table caption, attributes and table body or values. We compare

our method against two baselines in the category of multi-field document ranking.
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The first multi-field ranking method, MultiField-LM, is based on combining language

models for multi-field documents. The second multi-field ranking method, MultiField-

P, is based on the pretrained Glove word embedding when calculating cosine similarity.

MaxTable [241] similarity measure is used to calculate the score between query tokens

and a given field in a table.

Learning to rank for document retrieval methods

We compare our proposed method against C-DSSM [214], ARC-I [95], ARC-II [95],

DUET [161], Match-Tensor [104], DRMM [80], and Conv-KNRM [51]. A given doc-

ument is the concatenation of the description and attributes of a table.

Sentence classification

Kim [117] proposed a CNN for sentence classification. A 1-D convolutional layer with

multiple filter widths is applied to the concatenation of word embeddings of sequence

tokens. Each filter produces a feature map of a different size. A max-pooling operation

is then applied over each feature map to take the maximum value, and this is finally

fed into a fully-connected layer. In our table retrieval task, a given sentence is the

concatenation of tokens in description, query, and attributes. The final output is a

relevance score instead of a classification score.

Document classification

HAN [274] is a hierarchical attention network for document classification. It is com-

posed of four parts: a word sequence encoder, a word-level attention layer, a sentence

encoder and a sentence-level attention layer. A GRU-based [39] sequence encoder is

used to encode each token in a given sentence into a hidden state. Then an attention

mechanism is applied on the word level to extract the most important words to the

meaning of the sentence, and aggregate the representation of those informative words

to produce a single feature vector related to the sentence. A second GRU-based

sequence encoder is used to encode sequences; then a sentence-level attention mech-

anism is applied to obtain a document vector that summarizes all the information of

sentences in a document. In a table retrieval scenario, a document contains sentences

from the query, table description, and attributes. We predict a relevance score for

each document formed from a query-table pair using HAN architecture.
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Table type classification

Nishida et al. [171] proposed a hybrid deep neural network architecture, called Tab-

Net, for table classification. The architecture is composed of a recurrent neural net-

work (RNN) to encode a sequence of tokens of each cell. The next component in the

architecture is the attention mechanism from Yang et al. [274] which extracts impor-

tant tokens from each cell, and forms an input volume. The constructed volume is

passed through a Convolutional Neural Network (CNN), and then a fully connected

layer is added to compute the output layer. To use TabNet for table retrieval, we add

a cell to the table that contains the query. So, in addition to encoding the original

cells of a given table using RNN, we also encode query tokens. Then we apply CNN

to the constructed volume.

7.3.2 Experimental Setup

In our proposed model, we use an existing pretrained neural word embedding from

Glove with k = 300. We choose not to update the word embedding when minimizing

the listwise loss function for two reasons: first we have far fewer labeled query-table

pairs than examples from the unlabeled text corpus used to train the Glove model.

Second, by freezing word embeddings, we reduce model complexity, and focus the

efforts of training on extracting semantic and relevance matching.

We train our model for 30 epochs, and each batch contains only tables that are

candidates of a given query in order to calculate the listwise loss. We use Adam

optimizer [120] for gradient descent to minimize the loss function, and update the

weights of our model. We set the learning rate to 0.0001. The model is implemented

using PyTorch, with Nvidia GeForce GTX 1080. We set the number of query tokens

n to 6, and the number of table tokens m to 100. The m table tokens contain the

first 50 tokens from description, first 30 tokens from attributes, and 20 rows and

columns. We start by including column summaries, and then row summaries because

in many cases, tables contain more rows than columns. We set the number of CNN

filters of the first layer k1, k2, and k3 to 20. The set of width values {wt1, wt2, wt3}
is equal to {3, 5, 7}, and the set of height values is equal to {3, 3, 3}. So we use 3

query tokens in each convolution. k4, which is the number of CNN filters in the

second layer, is equal to 200. The dimensionality of the feature vector s of semantic

matching component is 100. We set the number of kernels in the relevance matching
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component to 5. So, given that the cosine similarity is between [−1, 1], the means

of the kernels are µ = [1, 0.75, 0.25,−0.25,−0.75]. The standard deviations of the

kernels are σ = [0.001, 0.1, 0.1, 0.1, 0.1]. We reserve the first kernel (µ1 = 1 and

σ1 = 0.001) for exact match because it is an important signal in retrieval tasks.

In order to calculate the retrieval score for query-table pairs by combining lan-

guage models, we use the implementation in Hasibi et al. [88] which is based on

Elasticsearch.

7.3.3 Experimental results

We evaluate the performance of our proposed method and baselines on the table

retrieval task using Normalized Discounted Cumulative Gain (NDCG), Mean Re-

ciprocal Rank (MRR), and Mean Average Precision (MAP). All evaluation metrics

results are reported using the TREC evaluation software, trec eval1.

WikiTables results

Table 7.1 shows the performance of different approaches on the WikiTables collection.

We show that our proposed method DSRMM outperforms the baselines for all eval-

uation metrics. Consistent with what has been shown in ad hoc document retrieval,

supervised approaches perform better on ad hoc table retrieval than unsupervised

approaches.

Table 7.1: Table retrieval evaluation results for WikiTables dataset

Category Method NDCG@5 MRR MAP
Unsupervised table retrieval MCON [241] 0.515±0.018 0.532±0.019 0.519±0.021

Ad-hoc table retrieval
LTR [293] 0.514±0.039 0.570±0.038 0.522±0.035
STR [293] 0.582±0.037 0.636±0.037 0.591±0.035

MultiEm-RGCN [238] 0.625±0.027 0.657±0.024 0.625±0.026

Unsupervised document ranking

SingleField-BM25 0.451±0.032 0.516±0.038 0.477±0.030
SingleField-LM 0.435±0.031 0.482±0.035 0.454±0.027
SingleField-P 0.471±0.023 0.501±0.027 0.482±0.031

MultiField-LM 0.464±0.037 0.492±0.035 0.475±0.038
MultiField-P 0.499±0.026 0.523±0.027 0.492±0.029

LTR for document retrieval

C-DSSM [214] 0.510±0.027 0.548±0.026 0.521±0.026
ARC-I [95] 0.553±0.033 0.607±0.032 0.553±0.029
ARC-II [95] 0.567±0.029 0.613±0.029 0.562±0.029
DUET [161] 0.524±0.037 0.579±0.041 0.528±0.035

Match-Tensor [104] 0.569±0.030 0.613±0.034 0.565±0.031
DRMM [80] 0.482±0.023 0.522±0.028 0.491±0.025

Conv-KNRM [51] 0.595±0.033 0.638±0.031 0.608±0.032
Sentence classification Kim [117] 0.566±0.034 0.617±0.035 0.564±0.037

Document classification HAN [274] 0.567±0.034 0.614±0.037 0.565±0.033
Table type classification TabNet [171] 0.570±0.030 0.616±0.029 0.568±0.029
Ad-hoc table retrieval Our proposed model (DSRMM) 0.640±0.029 0.680±0.028 0.642±0.029

ARC-II outperforms ARC-I by directly learning from the interaction matrix, and

1https://trec.nist.gov/trec eval/trec eval.8.1.tar.gz
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that enables early learning from query and table interactions rather than training a

separate representation for each field. Compared to ARC-I, ARC-II combines the

hierarchical modeling of individual tokens of query and table, and the patterns of

their matchings using interaction matrix.

Among unsupervised table retrieval and document ranking approaches, MCON

achieves higher performance for all evaluation metrics. This can be explained by

the use of a mixed ranking model that incorporates the metadata of a table and the

additional contexts in order to calculate the retrieval score.

Although Kim [117], HAN, and TabNet are not designed for table retrieval, we

show that these architectures have competitive results compared to many of the other

methods. Among these methods, TabNet has the best performance, and this can be

explained by the fact that TabNet is designed for table type classification, so the

input of TabNet is similar to table retrieval based methods. On the other hand, the

primary input of HAN and Kim [117] are documents and sentences, respectively.

The deep semantic matching component of DSRMM extracts interactions between

query tokens and table tokens using convolutional filters. We explain the improve-

ment in performance of our model compared to baselines by three facts. First, the

different low level filters capture multiple levels of similarity which are important in

a retrieval task. Second, some patterns are hard to capture using only one layer of

convolutional filters, so in DSRMM, the second set of convolutional filters identify

high level interactions. Third, the semantic component is a position dependent com-

ponent, and treats all query tokens equally. To solve that, our proposed relevance

matching component provides position free and strength preserving histograms that

are weighted by the importance of each query using a Term Gating Network.

To test significance, we use a two-tailed paired t-test between DSRMM and the

best baseline reported in Table 7.1 which is Conv-KNRM. We found a t-test signifi-

cance at level 0.05 for all metrics.

WebQueryTable results

For the WebQueryTable dataset, we compare the performance of our method against

the most competitive methods found when using the WikiTables dataset: Kim [117],

HAN, and TabNet. We also compare against the top two document retrieval ap-

proaches from Table 7.1: Conv-KNRM and Match-Tensor. We note that we do not

88



compare to LTR/STR because these methods require a wide range of features that

are not provided in the dataset. As shown in Table 7.2, our method outperforms

Match-Tensor, Kim [117], HAN, and TabNet by a large margin. As with WikiTables,

Conv-KNRM is the closest competitor. Conv-KNRM captures semantic matching

of unigrams, bigrams, and trigrams between query and table tokens, but the query

tokens are treated uniformly. For this dataset, there is only one relevant table per

query, so MRR is always equivalent to MAP (and thus is not repeated in the table).

Table 7.2: Table retrieval evaluation results for WebQueryTable dataset. Here there
is only one relevant table per query, so MRR is always equivalent to MAP.

Method NDCG@5 MRR/MAP

Match-Tensor [104] 0.3232 0.3256
MultiEm-RGCN [238] 0.6232 0.6088

Conv-KNRM [51] 0.6052 0.5978
Kim [117] 0.3078 0.3097
HAN [274] 0.4620 0.4384

TabNet [171] 0.4876 0.4597
DSRMM 0.6516 0.6345

Analysis of alternative design choices

In order to justify the importance of each component in our proposed method, we

present an ablation study of our hybrid model using the WikiTables dataset in Ta-

ble 7.3. We train two versions of our model: the first version is only the semantic

similarity component, and the second version is only the query relevance component.

Our study shows that the semantic similarity network has better performance than

the query relevance network. The full architecture outperforms both isolated com-

ponents, and adding query relevance to semantic similarity increases NDCG@5 from

0.601 to 0.640. Furthermore, removing the term gating network drops the perfor-

mance of the query relevance component from 0.542 to 0.532, and this supports the

idea of having different contributions to the relevance score for each query term.

We study the effect of removing the Row/Column summarizer from DSRMM as

shown in the last row of the ablation analysis. So we define a baseline in which we

randomly select 50 string values from each table, and append the values tokens to

description and attributes tokens. Adding all values is computationally expensive and
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Table 7.3: Analysis of alternative design choices using WikiTables dataset

Analysis Method NDCG@5 MRR MAP

Ablation

Semantic similarity component only 0.601±0.031 0.640±0.033 0.596±0.031
Query relevance component only 0.542±0.036 0.594±0.030 0.549±0.027

Query relevance component only without TGN 0.532±0.034 0.583±0.030 0.537±0.032
Query relevance only with 2 kernels 0.502±0.034 0.555±0.036 0.511±0.034

DSRMM without Row/Column Summarizer 0.627±0.026 0.668±0.028 0.629±0.028

System variations
DSRMM+Pointwise loss 0.617±0.026 0.655±0.028 0.612±0.028

DSRMM+STR 0.642±0.021 0.679±0.023 0.641±0.021
Proposed method DSRMM 0.640±0.029 0.680±0.028 0.642±0.029

consumes a significant amount of memory. Removing the Row/Column summarizer

results in a decrease for all evaluation metrics. Thus, each component of our system

has a positive effect on the final results.

Table 7.3 shows a decrease in retrieval metrics for the query relevance component

when using 2 kernels in kernel pooling as opposed to 5 kernels in original DSRMM. So,

two kernels are not enough to extract fine-grained relevance matching for query-table

pairs.

For system variations analysis, Table 7.3 shows that the listwise based approach

leads to better retrieval results than the pointwise loss function which is consistent

with what has been shown in document retrieval results. With listwise loss, DSRMM

focuses on ranking the tables, rather than predicting the exact relevance score.

We study a second system variation that consists of adding STR features to the

DSRMM model. STR represents the set of features for query, table, and query-

table pairs and semantic features from various spaces. We use precalculated STR

features from [293]. We append STR features to our proposed semantic and relevance

features, and train our model. Table 7.3 shows that adding STR features leads to a

slight improvement over vanilla DSRMM for NDCG@5. However, the DSRMM model

trained with description, attributes, and row and column summaries has the best

performance for MRR and MAP, by using only word embedding space for semantic

and relevance matching. So extracting STR features is no longer required to achieve

the best performance in table retrieval. This is especially important since features

like bag-of-entities and bag-of-categories [293] are not always available.

7.4 Summary

We have shown that a hybrid deep model that combines a semantic similarity compo-

nent and a query relevance component outperforms the best previously published re-

sults in table retrieval (STR) [293], achieving up to 9.96% improvement in NDCG@5
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score. Consistent with what has been shown in document retrieval, we show that

DRSMM, which is a supervised-based method, leads to better ranking results than

unsupervised-based methods. Furthermore, we have demonstrated how our approach

can be used on tables for which fewer metadata features are available than those

required by STR. We have shown that adding the LTR features to our system helps

less than adding information about the data values in the table using row and column

summaries. This suggests that the specialized LTR [18, 10] and STR [293] features

are not useful once one has developed a high quality model for table retrieval.

The structural information in DSRMM is captured using summary vectors both in

terms of rows and columns. There are two major drawbacks for DSRMM. First, the

row and column vectors are computed independently of the context of the data table

and query using traditional pretrained word embeddings. A context-independent

representation for rows and columns in DSRMM is unable to capture the relationship

between the structured form of a data table, and the textual form of both metadata

and queries. Second, the row and column vectors are computed using mean pooling,

so that the data values are treated equally in summary vectors. Depending on the

context of the data table defined by both the metadata and the user’s query, each

data value should have different contributions in both rows and columns. In the next

chapter, we propose a new model that captures the structural information better

than DSRMM by learning context-aware representations for rows and columns where

we capture different contributions of data values to the final row- and column-level

embeddings.
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Chapter 8

Structure-aware BERT for Table

Search and Matching

8.1 Introduction

Users can search for datasets using a keyword-based query as in document retrieval.

This scenario can be seen as ad-hoc table retrieval where multiple methods have been

proposed in the literature. Additionally, users can look for similar data tables on the

web to an existing table corpus. This can be seen as a query by example scenario or

content-based table retrieval, which is similar to content-based image retrieval (CBIR)

[59, 250, 300], where the query and the object queried are both data tables. Another

table-related task, that requires a table matching phase, is table similarity [85] in

which the objective is to predict a binary semantic similarity between two tables. A

table similarity algorithm can be used as a core component in multiple tasks such

as table classification and clustering [138, 280], table fusion [78] and finding related

tables [53]. We consider content-based table retrieval and table similarity as two

instances of table matching. The research question (RQ1) consists of investigating

a single representation for a data table that can be used in both table search and

table matching. Figure 8.1 depicts both row/column-based matching between tables

and row/column-based queries. In the former case, Figure 8.1 shows how columns

and rows are matched to capture the semantic similarity between tables. In the

latter case, Figure 8.1 shows two examples of keyword-based table retrieval where

the query is a simple and unstructured natural language sequence. The row-based
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Player Nation Team
Lionel Messi Argentina Paris

Cristiano Ronaldo Portugal Manchester United

… … …

Sergio Ramos Spain Real Madrid

Name Team Country …
Sergio Ramos Madrid Spain …

Cristiano Ronaldo Manchester United Portugal …

Lionel Messi Paris Argentina …

… … … …

Position
Defense

Forward

Forward

…

Luis Suarez Uruguay Atletico Mo Salah Liverpool Egypt … Forward

Row-based query:   information about Ronaldo and Messi Column-based query:   List of countries of players

Figure 8.1: Multiple scenarios for table matching and keyword-based table retrieval.
Row- and/or column-based matching captures the semantic similarity between tables.
Keyword-based queries can match table rows as in the row-based query example,
and/or columns as in the column-based query example.

query is relevant to multiple rows of a table, and the column-based query contains

keywords related to a subset of attributes from a table. A data table is composed

of textual and structural information. First, previous methods decouple the textual

information from the structural information of a data table by training a separate

model for each field, as in TabSim [85]. Second, the table content is summarized

using context-independent row and column summary vectors that are computed using

the mean pooling operation, as in DSRMM [237]. Therefore, to answer (RQ1), we

should study how to fuse the textual and structural information of a data table to

produce context-aware representations for both textual and tabular content of a data

table (RQ1.1). We should also study how to capture the contribution of each data

value to the representations of a given row and column (RQ1.2). After extracting

the structural and textual features of a data table, the research question (RQ2)

consists of how to incorporate these features into deep learning-based models to solve

table-related downstream tasks.

In this chapter, we propose a new model, called Structure-aware BERT (Stru-

BERT), that fuses the textual and structural information of a data table to produce

a context-aware representation for both textual and tabular content of a table. In

general, a table can be viewed as a row- and column-based structure and rows and

columns should contribute to both (1) the relevance score in table matching where

rows and columns of a table pair are matched, and (2) to the retrieval score in

keyword-based table retrieval where table content is considered as a relevant field to

the keywords of a query. Based on the observations from matching cases in Figure
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8.1, we propose a unified model that produces both row- and column-based features

to predict the semantic matching between structured/unstructured query and struc-

tured table. Inspired by TaBERT [277], our proposed model produces four feature

vectors that correspond to the joint representations of the structural and textual

information of a table. Two fine-grained features represent the context-aware embed-

dings of rows and columns, where both horizontal and vertical attentions are applied

over the column- and row-based sequences, respectively. Two coarse-grained features

capture the textual information from both row- and column-based views of a data

table. These features are incorporated into a new end-to-end ranking model, called

miniBERT, that is formed of one layer of Transformer [246] blocks, and operates di-

rectly on the embedding-level sequences formed from StruBERT features to capture

the cross-matching signals of rows and columns.

In summary, we make the following contributions: (1) We propose a new structure-

aware BERT model, called StruBERT, that fuses the structural and textual informa-

tion of a data table to produce four context-aware features: two fine-grained structure-

and context-aware representations for rows and columns, and two coarse-grained rep-

resentations for row- and column-guided [CLS] embedding. (2) We propose a new

ranking model, called miniBERT, that operates directly on the embedding-level se-

quences formed from StruBERT features to solve three table-related downstream

tasks: keyword- and content-based table retrieval, and table similarity. (3) We eval-

uate over three datasets, and demonstrate that our new method outperforms the

state-of-the-art baselines, and generalizes to multiple table-related downstream tasks.

8.2 Table views

The primary input to our model is a table Tj that has s rows and l columns. Each

table has two forms of information. The first form is the structural information which

is composed of headers and data values. A table can be seen as a 2D matrix of cells,

and for the purpose of explanation, we assume that the first row corresponds to the

headers c1, c2, . . . , cl, and the remaining s− 1 rows are data values. The i-th column

of Tj has the values v1i, v2i, . . . , v(s−1)i. The second form of information is the textual

information which corresponds to the context fields of a table. Several text fields can

be used to describe the table such as the caption, the title of the page and section

that contain the table, etc. We denote these context fields by the metadata which
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C1 C2 C3

BERT + Cell-wise Pooling

R1 [CLS] query [SEP] metadata [SEP] player text Ronald [SEP] …number real 7 [SEP]…

C1 [CLS] query [SEP] metadata [SEP] player text Ronald [SEP] …player text Ramos [SEP]…

Row-based Sequences

Column-based Sequences

Player Team

Ronald Manchester United

Messi Paris

Ramos Real Madrid

Number

7

30

4

R1

R2

R3

[CLS] [CLS]

Query Query

… …

[CLS]

Query

…

Horizontal Self-attention

[SEP] [SEP] [SEP]

[CLS] Query

[CLS] Query

[CLS] Query

…

…

…

Vertical Self-attention

Manchester United

Paris

Real Madrid

[SEP]

[SEP]

[SEP]

7

30

4

Row-guided CLS
Ramos Real Madrid 4

Messi Paris 30

Row Embeddings

Column-guided CLS

Column Embeddings

Structured Information: Data Table

Textual Information: Metadata and Query

Figure 8.2: Column- and row-based sequences are formed from the structural and
textual information of the table. The sequences are encoded using BERT+cell-wise
pooling. Horizontal and vertical self-attentions are applied to the encoded column and
row sequences, respectively to obtain four feature vectors: two fine-grained features
(row and column embeddings), and two coarse-grained features (row- and column-
guided [CLS] embeddings).

forms the textual information of a table. In the case of keyword-based table retrieval,

the query is considered as an additional form of textual information because the fi-

nal representations of StruBERT should capture early interactions between the table

and query as in interaction-based retrieval models [95, 80, 179] that have achieved

better results than the representation-based models [170]. By learning early inter-

actions between the table and keyword-based query, StruBERT produces structure-

and context-aware features, where the query is part of the context.

As shown in Figure 8.2, we propose forming two sets of sequences, denoted by

column- and row-based sequences, that are formed on the basis of column- and row-

based views, respectively, of a given data table. Yin et al. [277] proposed a row

linearization to form sequences from a data table in order to solve the semantic

parsing over tables task. Inspired by that, we incorporate row linearization to form

row-based sequences, and we propose a column linearization to form column-based

sequences.

95



Given that Tj has l columns, we form l column-based sequences. The i-th column-

based sequence is given by:

c̃i = citiv1i[SEP ]citiv2i[SEP ] . . . [SEP ]citiv(s−1)i[SEP ] (8.1)

where ti ∈ [real, text] is the type of ci. For example, the first column in the data table

shown in Figure 8.2 has a type text, and the third column has a type real. We use

the first column of the table in Figure 8.2 to illustrate an example of a column-based

sequence:

player text Ronaldo [SEP ] player text Messi [SEP ] . . .

We denote the set of column-based sequences by C̃ = {c̃1, c̃2, . . . , c̃l}. Similarly, we

form s− 1 row-based sequences. The i-th row-based sequence is given by:

r̃i = c1t1vi1[SEP ]c2t2vi2[SEP ] . . . [SEP ]cltlvil[SEP ] (8.2)

We use the first row of the data table in Figure 8.2 to illustrate an example of a

row-based sequence:

player text Ronaldo [SEP ] team text Juventus [SEP ] . . .

We denote the set of row-based sequences by R̃ = {r̃1, r̃2, . . . , ˜r(s−1)}. C̃ and R̃ capture

only the structural information of Tj. To incorporate the textual information into the

structure-based sequences, we concatenate the textual information with each sequence

from the structure-based sequences C̃ ∪R̃ using the [CLS] and [SEP] tokens of BERT.

Given that the textual information Tej of Tj is formed of p fields f1, f2, . . . , fp, the

new structure- and context-aware sequences are given by:

ci = [CLS]T̃ ej[SEP ]c̃i[SEP ] (8.3)

ri = [CLS]T̃ ej[SEP ]r̃i[SEP ] (8.4)

where:

T̃ ej = f1[SEP ]f2[SEP ] . . . [SEP ]fp (8.5)
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We denote the column- and row-based structure- and context-aware sequences by

C = {c1, c2, . . . , cl}, and R = {r1, r2, . . . , r(s−1)}, respectively.

8.3 StruBERT model

Figure 8.2 presents the architecture of StruBERT which is composed of two phases:

sequence encoding and self-attention over encoded sequences.

8.3.1 Sequence encoding

To capture the dependencies between the textual information and data values in

each sequence from C ∪ R, BERT is used as a sequence encoder which produces

contextualized embeddings for each token in the tokenized sequence using BERT

tokenizer. BERT is preferred over a recurrent architecture because BERT is composed

of Transformer blocks that capture long-range dependencies with self-attention better

than recurrent architectures [246], and is pretrained on large textual data.

After row and column linearization and BERT tokenization, each cell has multiple

tokens. To compute a single embedding for each cell, we incorporate cell-wise average

pooling [277] after the BERT encoding step to pool over the contextualised tokens for

each cell defined by [header name type cell content]. BERT is composed of L layers

of Transformer blocks. The cell-wise average pooling is applied on the contextualized

embedding that is obtained from the last layer. The contextualized embedding of the

column-based sequence ci is given by:

ci = [CLS]T̃ ej [SEP ]vi[SEP ] . . . [SEP ]v(s−)i[SEP ] (8.6)

where:

vki =

∑
w∈BertTok(citivki)

hLw

|BertTok(citivki)|
; k = 1, 2, . . . , s− 1 (8.7)

BertTok(citivki) represents the tokens that are obtained after tokenizing the sequence

citivki using BERT tokenizer, and hLw ∈ Rd is the contextualized embedding of dimen-

sion d from the L-th layer of BERT for the token w ∈ BertTok(citivki). Similarly,

the cell-wise average pooling is used to compute the contextualized embedding for the

row-based sequence ri, denoted by ri. We denote the column- and row-based contex-

tualized embeddings that are obtained after BERT and cell-wise average pooling by

C = {c, c, . . . , cl} and R = {r, r, . . . , r(s−)}, respectively.
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8.3.2 Horizontal and Vertical self-attention

Self-attention is incorporated into StruBERT for two reasons. First, the contex-

tualized embeddings in C capture independent column-level structural and textual

information, and ignore the row-level dependency as a result of tabular structure.

The same conclusion applies for R where column-level dependency is not captured

in the row-level embeddings. Second, cell values are not equally important for the

representations of rows and columns. We incorporate vertical self-attention [277] to

operate over row-based embeddings to produce column embeddings, and we propose

a horizontal self-attention that operates over column-based embeddings to form row

embeddings. Both attentions are similar to the Transformer [246], and the naming

of horizontal and vertical attention comes from the orientation of input sequences to

attention blocks.

Horizontal self-attention

To capture the row-level dependency between the column-based contextualized em-

beddings of C, we propose a multi-head horizontal self-attention that operates on

horizontally aligned tokens from the column-based embeddings as shown in Figure

8.2. The horizontal self-attention is formed of H layers of Transformers, and we

use the output of the last layer as the row-level self-attention representation. We

produce two types of features from the horizontal self-attention step after applying

row-level average pooling. First, we obtain s − 1 row embeddings which can be

seen as fine-grained structure- and context-aware features. Second, by averaging the

[CLS] embedding from each column, we produce a row-guided [CLS] which represents

a coarse-grained structure and context-aware feature. In conclusion, the horizontal

self-attention features are based on interpreting the data table as a column-based

structure, followed by row-level dependency.

Vertical self-attention

Similarly, a data table can be interpreted as a row-based structure, followed by

column-level dependency. In this case, V layers of vertical self-attention [277] op-

erate on the row-based contextualized embeddings of R. We also obtain two types of

features from the vertical self-attention. First, we obtain l fine-grained column em-

beddings by averaging the last output of the vertical self-attention over the vertically
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aligned tokens from the row-based embeddings. Second, we obtain a coarse-grained

column-guided [CLS] embedding that interprets the data table as a row-based struc-

ture, followed by column-level dependency.

In conclusion, StruBERT generates four structure- and context-aware features:

two fine-grained features which are the contextualized row and column embeddings,

denoted by Er ∈ R(s−1)×d and Ec ∈ Rl×d, respectively, and two coarse-grained fea-

tures which are the row- and column-guided [CLS] embedding, denoted by [CLS]r ∈
Rd and [CLS]c ∈ Rd, respectively.

8.4 StruBERT features in downstream tasks

We integrate StruBERT as a feature extractor F into end-to-end architectures to solve

table-related downstream tasks. In this section, we address the tasks of table search

and table matching, and we show how to map StruBERT features to classification or

retrieval score depending on the task.

8.4.1 Table matching

In table matching tasks, both the query and the queried object are data tables. The

neural ranking model should capture the semantic similarity between the structural

and textual information of table pairs in order to predict the relevance score. To

this end, we propose a Siamese [15]-based model that predicts the relevance score

of a table pair (Ti, Tj). In table matching, the textual information of each table

contains only the metadata because the keyword-based query is absent. Structure-

and context-aware features are extracted from each table using StruBERT:

F (Ti, Tj) = (StruBERT (Ti), StruBERT (Tj))

F (Ti, Tj) = ((Ei
r,E

i
c, [CLS]ir, [CLS]ic), (E

j
r ,E

j
c , [CLS]jr, [CLS]jc))

After extracting features from each table using StruBERT, we obtain coarse- and

fine-grained features for each table. We propose a ranking model that captures the

semantic similarities within the fine-grained features ((Ei
r,E

i
c) and (Ej

r ,E
j
c)), and

coarse-grained features (([CLS]ir, [CLS]ic) and ([CLS]jr, [CLS]jc)).
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Cross-matching of fine-grained features:

To capture cross-matching signals of row and column embeddings for table pairs, we

propose a model, called miniBERT, that operates directly on the embedding-level

sequences of fine-grained features of StruBERT. miniBERT is composed of three

trainable vectors [REP ]c ∈ Rd, [REP ]r ∈ Rd, and [SEP ] ∈ Rd, and 1 layer of

Transformer blocks with 4 attention heads.1 The input to miniBERT for column-

based cross-matching of a table pair (Ti, Tj) is shown in Figure 8.3. [REP ]c is

introduced to aggregate the matching signals between Ei
c and Ej

c . We form the

embedding-level sequence for the column embeddings of a table pair (Ti, Tj):

Mcicj = [REP ]c ⊕Ei
c ⊕ [SEP ]⊕Ej

c (8.8)

where [SEP ] is used to separate Ei
c and Ej

c . As in BERT, we sum three different

embeddings to obtain the input embeddings to miniBERT. As shown in Figure 8.3,

in addition to the column embeddings, the segment embeddings are used to indi-

cate the column embeddings that belong to Ti and Tj, and the position embeddings

are used to encode the position of each vector in Mcicj . The position embedding

of [REP ]c is in particular useful to indicate that the final hidden state from the

first position aggregates the embedding-level sequence Mcicj . So, miniBERT takes

the embedding-level sequence, that is formed by summing the column, segment and

position embeddings, as input, then miniBERT outputs the hidden state of [REP ]c

from the Transformer block, denoted by miniBERT ([REP ]c), that captures the

bidirectional cross-attention between Ei
c and Ej

c .

Similarly, we use miniBERT to compute the hidden state of [REP ]r, denoted by

miniBERT ([REP ]r), from the embedding-level sequence input for rows defined by:

Mrirj = [REP ]r ⊕Ei
r ⊕ [SEP ]⊕Ej

r (8.9)

There are mainly two advantages from using miniBERT as a ranking model on top of

the StruBERT features. First, a row- or column-based permutation for a table does

not change the meaning of the table. The self-attention of the Transformer blocks

in miniBERT is particularly useful where each embedding attends to all embeddings

1We tried to increase the number of layers and attention heads, but we did not notice an im-
provement in the reported evaluation metrics.
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Figure 8.3: Embedding-level sequence input of miniBERT for cross-matching of
columns. The input to miniBERT is the sum of three embeddings: column, seg-
ment, and position embeddings. In this example, Ei

c ∈ R3×d is composed of
cik ∈ Rd, k ∈ [1, 2, 3], and Ej

c ∈ R4×d is composed of cjk ∈ Rd, k ∈ [1, 2, 3, 4].

in the column- and row-based embedding-level sequences regardless of the position

information. Second, evaluating the semantic similarity between tables is not based

only on one-to-one mapping between columns or rows. For example, one column

from Ti can summarize the information that is present in three columns from Tj.

The attention weights in the attention heads of miniBERT are valuable to capture

many-to-many relationships between columns (rows) of a table pair by aggregating

information both within and across table columns (rows).

Cross-matching of coarse-grained features:

Similarly to the fine-grained features, we construct the cross-matching features be-

tween the coarse-grained features of Ti and Tj. We define the interaction vectors F =

{Frirj ,Fcicj}, where Frirj , and Fcicj denote the interactions of [CLS]ir-[CLS]jr,

and [CLS]ic-[CLS]jc, respectively, and the elements of each vector are computed us-

ing pointwise multiplication between the embeddings of the corresponding row- and

column-guided [CLS]:

Frirj = [CLS]ir � [CLS]jr ; Fcicj = [CLS]ic � [CLS]jc (8.10)

Ranking layer:

The fine- and coarse-grained features are used as input to a ranking layer to predict

the relevance score of a table pair. The final feature vector of a table pair (Ti, Tj) is
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given by:

Φ(Ti, Tj) = Frirj ⊕ Fcicj ⊕miniBERT ([REP ]r)⊕miniBERT ([REP ]c) (8.11)

A final linear layer is used to predict the relevance score of the table pair (Ti, Tj)

using Φ(Ti, Tj):

g(Ti, Tj) = ωTr Φ(Ti, Tj) + br (8.12)

where ωr and br are the parameters of the linear layer.

8.4.2 Keyword-based table retrieval

The query q is composed of several keywords, q1, q2, . . . , qm where m is the length

of the query and ql is the l-th token of q, and the queried object is a data table Ti

from a table corpus C. In addition to the table’s metadata, the textual information

Tei contains the query q so that the outputs of StruBERT capture early interactions

between the query and the structural and textual information of a data table. We

use the same notations of the table matching case, and we denote the outputs of

StruBERT for a given query-table pair (q, Ti) by: Ei
r,E

i
c, [CLS]ir, [CLS]ic. We

apply miniBERT to the single embedding-level sequences defined by:

Mriq = [REP ]r ⊕Ei
r(q)⊕ [SEP ]

Mciq = [REP ]c ⊕Ei
c(q)⊕ [SEP ]

(8.13)

where Ei
r and Ei

c are function of q because q ∈ Tei in the case of keyword-based

table retrieval. We use the final hidden states of [REP ]r and [REP ]c that are

obtained from miniBERT as the row- and column-based aggregate for the query-table

pair (q, Ti), respectively. A query-table pair (q, Ti) is represented using four feature

vectors: row and column outputs from miniBERT and row- and column-guided [CLS]

embeddings ([CLS]ir, [CLS]ic). We concatenate these features to obtain the final

representation for (q, Ti), which is used as input to a linear layer to predict the

relevance score of the query-table pair (q, Ti).
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8.5 Evaluation

8.5.1 Baselines

Keyword-based table retrieval

For evaluation on the keyword-based table retrieval, we compare against the following

baselines:

MultiField-BM25: In a multi-field ranking scenario, a table is defined using

multiple fields. MultiField-BM25 combines BM25 scores for multi-field tables.

MCON [241]: This baseline is based on new word embeddings for attribute

tokens of tables. When calculating the retrieval score of MCON, we use the MaxTable

ranking method which was shown to be the best ranking method for unsupervised

table retrieval [241]. MaxTable is a late fusion similarity model that finds the closest

table token to each query token using cosine similarity, and then sums over these

similarities.

STR [293]: Multiple embedding-based features are computed for a table and

query, then different matching strategies are used to generate the ranking features

from the embeddings. A random forest is used to predict the relevance score of a

query-table pair.

BERT-Row-Max [36]: The [CLS] embedding of the sequence formed from the

query and table is used to predict the relevance score of a query-table pair.

DSRMM [237]: It is a joint model that captures both semantic and relevance

matching signals from a query-table pair to predict a real-valued relevance score.

MutiEm-RGCN [238]: It is a two-phased graph-based model that is used for

table retrieval. Multiple embeddings are learned from a knowledge graph, then used

to represent the table and query for keyword-based table search.

TaBERT [277]: A model that is originally proposed for semantic parsing over

tables. We use the embedding of the [CLS] token from the last layer of the vertical

self-attention as input to a MLP layer.

Table matching

For evaluation in table matching, we compare against the following baselines:

embedding+MLP: A table is flattened and concatenated with the metadata

to form a single document for each table. Then, the mean of word embeddings
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using Glove is calculated for each table. The final ranking feature is computed using

pointwise multiplication between the embeddings of tables, then forwarded to a MLP

layer to predict the relevance score.

TF-IDF+MLP: TableRank [147] computes Term Frequency-Inverse Document

Frequency (TF-IDF) for tables. The TF-IDF score is computed using the metadata

and values of a given table, instead of the document that contains the table. A MLP

layer is used instead of the cosine similarity to predict the semantic matching score.

TabSim [85]: Two separate neural network models are introduced to form the

representations of a table: one model extracts the embedding from the caption, and

a second model extracts column embeddings from the data values.

TaBERT [277]: A TaBERT-based Siamese model is used to evaluate the semantic

similarity between tables.

StruBERT (KP): This baseline is a variation of our method that uses a kernel

pooling (KP) [263]-based ranking model on top of StruBERT features. Kernel pooling

is the main component of strong ranking models [263, 51], and we adapt kernel pooling

for cross-matching of fine-grained features. We construct the interaction matrices

I = {Irirj , Icicj}, where Irirj , and Icicj denote the interactions of Ei
r-E

j
r and Ei

c-E
j
c

respectively, and the elements of each matrix are computed using cosine similarity

between the embeddings of the corresponding rows and columns. To summarize each

interaction matrix into a fixed-length feature vector, we use kernel pooling to extract

soft-match signals between different fields of Ti and Tj. A linear layer is used to map

the KP-based feature vector to a relevance score.

StruBERT (CNN): This baseline is a variation of our method that uses Con-

volutional Neural Networks (CNN) on top of StruBERT features. This baseline is

based on the interaction tensor, denoted by S, which is computed using pointwise

multiplication between pairwise column (row) embeddings of a table pair. Inspired

by DeepRank [179], we use one layer CNN filters with all possible combinations of

widths and heights that are applied to S:

h
(κ)
i,j =

γ∑
s=1

γ∑
t=1

(
d∑
l=1

w
l(κ)
s,t · S

(l)
i:i+s,j:j+t

)
+ b

(κ)
s,t , κ = 1, · · · , K (8.14)

where γ is the maximum size of a CNN filter, S(l)
i:i+s,j:j+t is a s × t matrix from the

l-th channel of S starting from i-th row and j-th column, K is the total number of
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CNN filters, and w
l(κ)
s,t and b

(κ)
s,t are parameters of CNN. Then, we keep only the most

significant matching signal from each feature map to form a single vector.

h(κ) = max
i,j

h
(κ)
i,j , κ = 1, · · · , K (8.15)

8.5.2 Experimental Setup

Our model is implemented using PyTorch, with two NVIDIA GeForce GTX 1080.

For keyword- and content-based table retrieval, the parameters of our model are

updated using a mean square error pointwise loss between predicted and groundtruth

relevance scores, and for table similarity, we use the cross-entropy loss function. We

use the Adam [120] optimizer for gradient descent to minimize the loss functions.

The dimension d is equal to 768. The number of Transformer layers H and V in

the horizontal and vertical self-attention, respectively, are equal to 3. We set the

maximum length of each sequence to 256. In StruBERT, the BERT-base-uncased

and the vertical self-attention are initialized using TaBERTBase(K = 3)2 which is

pretrained using content snapshots with 3 rows. Such pretraining requires high-

memory GPUs that are not currently possessed by our team; therefore, we randomly

initialize the horizontal self-attention 3 so that the row-based dependencies are only

captured during fine-tuning on the target dataset. We expect an increase in the results

with pretraining the horizontal self-attention on a similar task to the Masked Column

Prediction (MCP) from TaBERT [277] (in our case, the pretraining task should be

a Masked Row Prediction). We leave pretraining the horizontal self-attention as a

future direction.

8.5.3 Experimental results

We report results using five-fold cross validation. For keyword-based table retrieval,

we use the same splits as Chen et al. [36] to report results on the five-fold cross val-

idation for our method and baselines. We evaluate the performance of our proposed

method and baselines on the keyword- and content-based table retrieval tasks us-

ing Normalized Discounted Cumulative Gain (NDCG) [107], Mean Reciprocal Rank

2https://github.com/facebookresearch/TaBERT
3We tried to initialize the horizontal self-attention using the vertical self-attention from TaBERT

[277], but we did not notice an improvement in the reported metrics.
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(MRR), and Mean Average Precision (MAP). All evaluation metrics results are re-

ported using the TREC evaluation software, trec eval4. We evaluate the performance

of our method and baselines on the table similarity task using macro-averaged preci-

sion (P), recall (R) and F-score, and accuracy of predictions on the testing set. To

test significance, we use the paired Student’s t-test and write † to denote significance

at the 0.05 level over all other methods.

Table similarity results

Table 8.1(a) shows the performance of different approaches on the PMC collection.

We show that our proposed method StruBERT outperforms the baselines for all

evaluation metrics. By incorporating the structural and textual features into a cross-

matching based ranking model, we were able to capture the semantic similarity be-

tween tables both in term of tabular content and metadata, and this leads to an

increase in evaluation metrics compared to baselines that either ignore the structural

information or treat the textual and structural information separately. Considering

the table as a single document in TF-IDF and embedding baselines lead to the lowest

results which indicates that the structural similarity between tables is an important

factor in table similarity. The results on this dataset show a clear advantage from

using embedding-based features (traditional or contextualized) compared to term fre-

quency features that are based on exact matching. StruBERT (fine) and StruBERT

(coarse) show ablation study results for predicting semantic similarity using only fine-

and coarse-grained features, respectively. By combining both categories of features,

we achieve higher evaluation metric results.

Table 8.1(b) shows the performance of the different approaches on the WikiTa-

bles. Consistent with PMC, our results on the WikiTables show the importance of

the structure- and context-aware features in improving the table similarity predic-

tion. Table similarity results on WikiTables and PMC show that StruBERT achieves

significant improvements in the evaluation metrics of two data table collections from

different domains, which supports the generalization characteristic of our proposed

method.

4https://trec.nist.gov/trec eval/trec eval.8.1.tar.gz

106



Method Name Macro-P Macro-R Macro-F Accur.

tfidf+MLP 0.7834 0.6735 0.6529 0.6951
embedding+MLP 0.8496 0.7710 0.7736 0.7931
tfidf+embedding+MLP 0.8736 0.8381 0.8447 0.8506
TabSim [85] 0.8865 0.8545 0.8613 0.8705
TaBERT [277] 0.9109 0.9024 0.9055 0.9067

StruBERT (fine) 0.9208 0.9058 0.9104 0.9124
StruBERT (coarse) 0.9276 0.9154 0.9194 0.9210
StruBERT (KP) 0.9148 0.9060 0.9091 0.9109
StruBERT (CNN) 0.9293 0.9164 0.9205 0.9224
StruBERT 0.9321† 0.9284† 0.9300† 0.9310†

(a) PMC

Method Name Macro-P Macro-R Macro-F Accur.

tfidf+MLP 0.6256 0.5022 0.3559 0.5378
embedding+MLP 0.8429 0.8419 0.8423 0.8433
tfidf+embedding+MLP 0.8632 0.8554 0.8574 0.8594
TabSim [85] 0.8480 0.8458 0.8466 0.8478
TaBERT [277] 0.9696 0.9626 0.9649 0.9653

StruBERT (fine) 0.9850 0.9852 0.9851 0.9852
StruBERT (coarse) 0.9838 0.9816 0.9825 0.9826
StruBERT (KP) 0.9733 0.9713 0.9722 0.9724
StruBERT (CNN) 0.9782 0.9737 0.9753 0.9756
StruBERT 0.9945† 0.9938† 0.9941† 0.9942†

(b) WikiTables

Table 8.1: Table similarity results using a classification threshold equal to 0.5.

Content-based table retrieval results

Table 8.2 shows the content-based table retrieval results. The StruBERT model that

combines fine- and coarse-grained features achieves a 7.96% improvement in terms

of NDCG@5 upon TaBERT that only uses the [CLS] embedding obtained from the

vertical self-attention. We also report ablation study results where we predict the

semantic similarity between tables using only fine- or coarse-grained features. Both

categories of features lead to better retrieval results than the baselines, and by combin-

ing both the fine- and coarse-grained features, we capture the textual and structural

similarities between tables. An important step in table similarity assessment is the

order-invariant cross-matching between columns (rows) of tables which is satisfied
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Table 8.2: Content-based table retrieval results on the query by example dataset
[291].

Model NDCG@5 MRR MAP

BM25 0.5369 0.5832 0.5417
DSRMM [237] 0.5768 0.6193 0.5914
TabSim [85] 0.5739 0.6056 0.5932

TaBERT [277] 0.5877 0.6120 0.5942

StruBERT (fine) 0.6015 0.6419 0.6091
StruBERT (coarse) 0.6140 0.6478 0.6142

StruBERT (KP) 0.5990 0.6200 0.5959
StruBERT (CNN) 0.6177 0.6378 0.6179

StruBERT 0.6345† 0.6601† 0.6297

using miniBERT as a ranking model on top of StruBERT features.

Our approach uses a novel miniBERT model to map StruBERT features to a rele-

vance score. We investigate the performance of alternative ranking models when given

StruBERT features. Table 8.2 shows the results of comparing miniBERT against

StruBERT (KP) and StruBERT (CNN) in the case of content-based table retrieval.

miniBERT outperforms both baselines in all evaluation metrics. Kernel pooling sum-

marizes the one-to-one matching signals computed in the interaction matrix to a

single feature vector. So, StruBERT (KP) does not solve the case of many-to-many

matching of rows or columns. On the other hand, by applying CNN to the interaction

tensor, we capture the semantic similarity between multiple columns (rows) from a ta-

ble pair, so StruBERT (CNN) captures the many-to-many matching signals. However,

the convolution operation captures local interactions, and is not permutation invari-

ant in the sense that rows and columns could be arbitrarily ordered without changing

the meaning of the table. miniBERT deals with both many-to-many matching and

the permutation invariant property by taking advantage of self-attention heads.

Keyword-based table retrieval results

Table 8.3 shows the performance of different approaches on the WikiTables collection.

We show that our proposed method StruBERT outperforms the baselines for all eval-

uation metrics. Consistent with what has been shown in ad hoc document retrieval,

supervised approaches perform better on ad hoc table retrieval than unsupervised
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Table 8.3: Keyword-based table retrieval results on the WikiTables dataset [9].

Model NDCG@5 MRR MAP

MultiField-BM25 0.4365 0.4882 0.4596
MCON [241] 0.5152 0.5321 0.5193

STR [293] 0.5762 0.6062 0.5711
DSRMM [237] 0.5978 0.6390 0.5992

MultiEm-RGCN [238] 0.5855 0.6253 0.5920
TaBERT [277] 0.6055 0.6462 0.6123

BERT-Row-Max [36] 0.6167 0.6436 0.6146

StruBERT (fine) 0.6000 0.6406 0.6020
StruBERT (coarse) 0.6217 0.6562 0.6225

StruBERT 0.6393† 0.6688† 0.6378

approaches (MultiField-BM25 and MCON). By adding the query to the textual in-

formation of a given table, we obtain fine- and coarse-grained features that capture

early interactions between the query, and the structural and textual information of a

table.

For the ablation study of the keyword-based table retrieval, we notice that sum-

marizing the table and query using the [CLS] token in BERT-Row-Max, TaBERT,

and StruBERT (coarse) leads to better results than fine-grained features of StruBERT

(fine). This means that there are more natural language queries in the keyword-based

table retrieval for WikiTables collection that are relevant to a high level summary of

the textual and structural information than the specific details captured by rows and

columns. After combining the fine- and coarse-grained features for all query-table

pairs, StruBERT captures the semantic similarity between the query and the tex-

tual information, and the query and the structural information defined by rows and

columns, and this leads to the best retrieval metrics.

miniBERT attention heads

miniBERT is composed of one layer of Transformer blocks with four attention heads.

To better understand how miniBERT works, we show the attention heads that cor-

respond to a table similarity case. The first table is composed of the headers Club

and City/Town, and the second table is composed of the headers Team, Location,

Stadium, and Coach. Figure 8.4 illustrates the four attention heads of miniBERT.

Figure 8.4(a) indicates that the 1st attention head focuses on the header Location
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 8.4: Comparison of attention heads between columns of a table pair.

from the second table which attends mainly to the header City/Town from the first

table and contributes significantly to the embedding [REP ]c. The second attention

head, illustrated in Figure 8.4(b), is more general as it indicates multiple cross match-

ing signals between columns of both tables. The third attention head in Figure 8.4(c)

is similar to the 1st attention head with more focus on the header Stadium from the

second table. This can be explained by the co-occurrence of the header Stadium with

headers Club and City/Town. We also observe similar patterns in the 4th attention

head that focuses mainly on the header Coach. The analysis of the attention heads

shows the advantage of using the Transformers blocks to capture the many-to-many

relationships between columns of tables.
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8.6 Summary

We have shown that a structure-aware BERT-based model, called StruBERT, that

fuses the structural and textual information of data tables outperforms the state-of-

the-art results in three table-related tasks: keyword- and content-based table retrieval,

and table similarity. StruBERT embeddings are integrated into our miniBERT rank-

ing model to predict the relevance score between keyword-based query and table, or

between table pairs. Despite being a general model, StruBERT outperforms all base-

lines on three different tasks, achieving a near perfect accuracy of 0.9942 on table

similarity for WikiTables, and improvement in table search for both keyword- and

table-based queries with up to 7.96% increase in NDCG@5 score for content-based

table retrieval. An ablation study shows that using both fine- and coarse-grained

features achieves better results than either set alone. We also demonstrate that using

miniBERT as a ranking model for StruBERT features outperforms other common

ranking model approaches.
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Chapter 9

Conclusions of Dataset Search

9.1 Overview of proposed methods

We proposed multiple unsupervised and supervised methods for dataset search. First,

we proposed an unsupervised method, called MCON [241], where we incorporate the

contextual information of data tables to learn a new embedding for attribute to-

kens using an adapted Skip-gram model. Recently, in document retrieval, external

knowledge bases and graphs are incorporated into neural ranking models to pro-

vide additional embeddings for the query and document. Knowledge graphs contain

human knowledge and can be used in neural ranking models to better understand

queries and documents. In general, the entity-based representation, that is computed

from knowledge bases, is combined with the word-based representation. In addition,

the knowledge graph semantics, such as the description and type of entity, provide

additional signals that can be incorporated into the neural ranking model to improve

retrieval results and generalize to multiple scenarios. Consistent with document re-

trieval, in dataset search, we learn better embedding for all tokens in data tables by

incorporating external semantic and lexical knowledge in MultiEm-RGCN [238].

The unsupervised methods are usually used as an initial ranker to obtain an ini-

tial set of relevant datasets where the recall is more important than the precision.

A supervised method is then needed to refine the initial set of datasets by improv-

ing the precision, and returning only the most relevant dataset to the user. As a

first supervised method, we proposed DSRMM [237] which is a deep semantic and

relevance matching model. Generally, Semantic and relevance signals are important
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matching signals in document retrieval. Semantic matching is introduced in multiple

text matching tasks, such as natural language inference, and paraphrase identifica-

tion. Semantic matching, which aims to model the semantic similarity between the

query and the document, assumes that the input texts are homogeneous. Semantic

matching captures composition and grammar information to match two input texts

which are compared in their entirety. In information retrieval, the QA task is a good

scenario for semantic matching, where semantic and syntactic features are important

to compute the relevance score. On the other hand, semantic matching is not enough

for document retrieval, because a typical scenario is to have a query that contains

keywords. In such cases, the relevance matching is needed to achieve better retrieval

results. Relevance matching is introduced by Guo et al. [80] to solve the case of

heterogeneous query and document in ad hoc document retrieval. The query can be

expressed by keywords, so a semantic signal is less informative in this case because

the composition and grammar of a keyword-based query are not well defined. In ad-

dition, the position of a given token in a query has less importance than the strength

of the similarity signal. DSRMM combines both the semantic and relevance signals

for dataset search. In addition, DSRMM incorporates the structural information of

datasets by incorporating summary vectors both in terms of rows and columns.

In DSRMM, the row and column vectors are computed independently of the con-

text of the data table and query using traditional pretrained word embeddings. A

context-independent representation for rows and columns in DSRMM is unable to

capture the relationship between the structured form of a data table, and the tex-

tual form of both metadata and queries. In addition, the row and column vectors

are computed using mean pooling, so that the data values are treated equally in

summary vectors. Depending on the context of a data table defined by both the

metadata and the user’s query, each data value should have different contributions in

both rows and columns. To overcome these limitations, we proposed a new BERT-

based model, called StruBERT [240], that captures the structural information better

than DSRMM by learning context-aware representations for rows and columns where

we capture different contributions of data values to the final row- and column-level

embeddings.
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9.2 Effectiveness and efficiency trade-off

9.2.1 Time and memory complexity

When we deploy a dataset search engine, millions of users will input queries to search

for relevant datasets from an initial corpus with millions of datasets. Therefore, in

the deployment phase, the dataset search engine must be both effective and efficient.

StruBERT is effective for dataset search in terms of retrieval metrics. However,

StruBERT is based on BERT which has expensive time and memory complexity in

document retrieval in general. For example, ranking documents of length m using

Transformers, which are the main components of BERT, requires O(m2) memory

and time complexity [122]. In particular, for very long documents, applying self-

attention of Transformers is not feasible. So, BERT-based ranking models have a large

increase in computational cost and memory complexity over the existing traditional

and neural ranking models. A current research direction in document retrieval is

the design of efficient and effective deep language model-based ranking architectures.

For example, Khattab and Zaharia [116] presented a ranking model that is based on

contextualized late interaction over BERT (ColBERT). The proposed model reduces

computation time by extracting BERT-based document representations offline, and

delays the interaction between query and document representations. RepBERT [287]

and RocketQA [195] are other models proposed to solve the passage retrieval task

following the same direction of designing a representation-based model with BERT

being the main component to map the query and document. As in ColBERT, the

objective is to overcome the computation time and memory limitations of the cross-

encoding attentions related to the sentence pair setting of BERT. To reduce the

processing time of StruBERT, it is possible to delay the interactions between the query

and tables by considering the late interaction design. However, there is a risk of losing

important early interactions between datasets and queries as in representation-based

models. In the same direction of reducing the complexity of BERT-based models,

Hofstätter et al. [94] reduced the time and memory complexity of Transformers by

considering the local self-attention where a given token can only attend to tokens in

the same sliding window. In the particular case of non-overlapping sliding windows of

size w << m, the time and memory complexity is reduced from O(m2) to O(m×w).

Recently, Kitaev et al. [122] improved the efficiency of Transformers and proposed
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the Reformer which is efficient in terms of memory and runs faster for long sequences

by reducing the complexity from O(m2) to O(m × log(m)). The Reformer can be

used in StruBERT to achieve the trade-off between high retrieval results and low

computation time.

Generally, reducing the memory complexity is still an open research question in

document retrieval. First, the document embeddings need to be loaded into the sys-

tem or GPU memory [110] with a limited size to compute the relevance scores of

query-document pairs. Second, the dimension of the embedding is very large com-

pared to the bag-of-word index [286, 264]. Therefore, vector compression methods

[108, 73] have been integrated into neural ranking models to compress the embedding

index and save computational resources with compressed embeddings of documents.

The compression methods include Product Quantization (PQ) [108, 73] and Locality

Sensitive Hashing (LSH) [102]. Improving the memory efficiency using index compres-

sion can lead to a drop in the performance of the neural ranking model. Zhan et al.

[285] proposed a joint optimization of query encoding and PQ in order to maintain

effectiveness of neural ranking models while compressing index sizes. The authors

showed that an end-to-end training strategy of the encoding and compression steps

overcomes the training based on the reconstruction error for many compression meth-

ods [108, 73, 82]. PQ can be incorporated in the late interaction design of StruBERT

to reduce both the time and memory complexity.

9.2.2 Multi-stage dataset search

A multi-stage ranking architecture for dataset search is suitable for the trade-off be-

tween retrieval results and computation time in the deployment phase. The proposed

multi-stage architecture is shown in Figure 9.1. The first stage consists of extract-

ing the candidate datasets using a simple combined ranking scores from MCON and

MultiEm-RGCN, as shown in the step M1 from Figure 9.1. In this stage, recall is

more important than precision to cover all possible relevant datasets. The irrelevant

datasets can be discarded in the next stages. Then, for the second stage, the k1 top

ranked datasets from the first stage, denoted by C1, are re-ranked using DSRMM to

obtain a better set of relevant datasets. DSRMM is a supervised ranking method

composed of convolutional filters and kernel pooling, and these operations are com-

putationally efficient both in terms of time and memory. So, this second re-ranking
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Figure 9.1: The multi-stage dataset search architecture. There are three stages M1,
M2, and M3. The inputs to the model are a user’s query q and a dataset corpus.
The models M1, M2, and M3 return the set of datasets C1, C2, and C3, respectively,
where the set C3 is returned to the user.

phase can boost the precision while preserving a high recall. Finally, in the third

stage, StruBERT is used to rank the k2 top datasets from the second phase, denoted

by C2, and return the final k3 top ranked dataset to the user, denoted by C3. So,

StruBERT is trained to maximize the precision over the recall. This multi-stage

model has the potential to reduce the number of datasets that should be ranked with

StruBERT which is computationally expensive in terms of time and memory.

9.3 Introduction to dataset curation

Datasets are used by individuals or enterprises in multiple tasks. Retrieving relevant

datasets to a user’s query represents the first step in the process of generating useful

knowledge from datasets. We proposed multiple methods to enhance dataset search so

that users can find relevant datasets that satisfy their information needs. In order to

extract useful knowledge from the retrieved datasets for downstream analytic tasks,

a data cleaning step is necessary to improve data quality. This is related to data

curation in general which consists of data integration such as schema matching and

entity resolution, and data cleaning to identify and repair errors in the dataset. Data

curation plays an important role in the automation of the data science process to

extract valuable knowledge from datasets. Data curation is a time consuming task as

data scientists often need to manually check for datasets for cleaning purposes. With
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the rapid increase of data volumes, automating data curation becomes a necessity to

reduce time and cost of data analysis. Deep learning has been very effective in many

tasks achieving human level performance in multiple fields such as natural language

processing, speech recognition and computer vision. Therefore, deep learning has

been leveraged in data curation, and has led to substantial improvement in multiple

tasks such as data integration and entity resolution. In this dissertation, we focus

on three specific problems. The first problem is related to the quality of schema

labels in tabular datasets. This is a significant problem, because schema labels play

an important role in dataset discovery [22, 23], schema matching [197, 282], data

preparation and analysis [198], and integration of datasets [8, 221, 220]. The second

problem is table similarity. This is also an important problem because predicting the

semantic similarity between tables can be used in table classification and clustering

[138, 280], and table fusion [78]. In addition, finding similar tables can be used

to fuse cell values from matching tables for augmenting attributes [267] and auto-

completion of data cells [294]. We previously showed that StruBERT [240] can be

used to identify similar datasets. The third problem is entity matching [4] which

consists of determining whether two records in two datasets refer to the same real-

world entity. Entity matching is used for integrating different data sources. In the

next two chapters, we propose new methods to solve both semantic labeling and entity

matching.
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Chapter 10

Context-aware Semantic Labeling

using BERT

10.1 Introduction

Low quality schema labels lead to poor results in downstream tasks. We use the term

schema label to refer to the information in the header row of a data table. Such

tables typically have multiple rows and columns, and the first row is distinguished

in that it names each of the columns. Sometimes these names are quite meaningful,

and can be easily interpreted by a human reader; other times the names are quite

opaque and the reader must hope external sources will provide clarity. In other cases,

the schema labels were generated by an imperfect extraction process that leads to

incorrect headers. In the worst situations, the header row is completely missing, and

the only clues to the meaning of each column are the data values themselves, and if

present, any additional metadata associated with the table. Even in the best case,

where schema labels are present and clear, they can be extremely heterogeneous,

leading to difficulties in automated processing [112, 105, 33, 166]. Existing methods

generate schema labels solely on the basis of their content or data values, and thus

ignore the contextual information of each column when predicting schema labels. The

main research question to address in this chapter is how to formulate the semantic

labeling to incorporate the contextual information of a given column when predicting

schema labels.
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To answer the research question, we present our formulation of the semantic la-

beling task that is based on the structured prediction, where the objective is to learn

a mapping from a structured input (data table) to a structured label which consists

of a sequence of predicted schema labels. In our formulation of semantic labeling,

the structural dependencies between the data table and the predicted sequence of

schema labels are leveraged using a sequential prediction of labels where each predic-

tion is conditioned over the previous predictions. This is achieved by incorporating

the already-predicted labels as contextual information for the current prediction of a

given header. Our formulation reduces the ambiguity in predictions by incorporat-

ing contextual information that constraints the predicted sequence of schema labels

similar to CRF constraints in POS tagging.

We propose a new context-aware semantic labeling method that incorporates both

data values and column’s context in order to infer the label. Our method presents a

new setting for generating schema labels in which the input is a table with missing

schema labels or headers, instead of the traditional setting that treats each column

separately. An overview of the framework used in our method is described in Fig-

ure 10.1. Given a previously unseen table with missing headers, we sequentially

predict schema labels, and incorporate the already-predicted labels as context for

next header prediction within the same table. With our new setting, we formulate

the semantic labeling as a structured prediction [56] problem where the objective

is to learn a mapping from a structured input (data table) to a structured output

(sequence of predicted semantic labels for data table’s headers). Formulating the

semantic labeling task as a structured prediction is motivated by the analogy with

the image labeling task where the structured input consists of an image, and the

structured outputs are the labels that are assigned to pixels or regions.

In summary, we make the following contributions:

• We propose a new context-aware semantic labeling approach. Our new formula-

tion of semantic labeling is based on the structured prediction setting in which

the input to our model is a data table with missing headers, and we sequentially

generate schema labels for each data table.

• We demonstrate that by incorporating the predicted context of an attribute

into the model, we can infer its context-aware schema label more accurately

compared to methods that predict semantic labels using only data values.
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• We are the first to adapt BERT into the semantic labeling task. In particular,

we incorporate data values and the predicted context using a single BERT

model that accepts two forms of inputs to make initial context-free and final

context-aware predictions. Our proposed model is trained end-to-end for feature

extraction and label prediction. This reduces human effort needed for semantic

labeling.

• We experiment on three datasets (public and internal data table corpus), and

demonstrate that our new method outperforms the state-of-the-art baselines,

and generalizes to table collections from multiple domains.

10.2 Problem statement

Our objective is to generate schema labels for table columns using data values and

the predicted context in order to resolve the ambiguity problem in the prediction

phase. For the rest of the dissertation, we use semantic labels and schema labels

interchangeably.

As we mentioned before, we use the multiclass classification setting to solve

schema labeling. The training data consists of a table corpus of n data tables,

T = {T1, T2, . . . , Tn}. Each table Tk has a set of mk columns A1, A2, . . . , Amk
, where

each column Ai has a schema label li (column’s header), and a set of data values

Vi = {v1, v2, . . . , vr}, where r is the number of rows in Tk. For the rest of the disser-

tation, we use m instead of mk to denote the number of columns in Tk ∈ T . The set

of all possible schema labels is denoted by L.

Resolving ambiguity when predicting schema labels requires the whole table as

input to the model, instead of only using independent column’s values. Therefore,

our setting consists of table inputs that have missing headers, and our objective is

to predict schema labels for all columns of the input table. We denote our proposed

model by M = N ◦ F , where F is the feature extractor function (Contextual input

block in Figure 10.1), and N is the classification layer (Model block in Figure 10.1).

The input to M is a table Tk with missing schema labels, and the output of our

model is a sequence of predicted schema labels Â1, Â2, . . . , Âm. Our method learns

both features and model simultaneously leading to significant reduction in human’s

effort spent in feature engineering.
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A1 A2 A3 A4 A5 A6 A7

Cristiano Ronaldo 02/05/1985 Portugal Juventus 29 forward 7

Lionel Messi 06/24/1987 Argentina Barcelona 34 forward 10

Sergio Ramos 03/30/1986 Spain Real Madrid 21 defense 4

Model
Contextual 

input

A2= birth date
A4= team
A1= player

A3= nationality
A6= position

A7= shirt number
A5= Nb trophies

(a) Predicting headers for a soccer table with
true labels player, birth date, nationality,
team, Nb trophies, position, shirt number

A1 A2 A3 A4 A5 A6

Lewis Hamilton Mercedes Australian GP Australia 03/17/2019 2

Sebastian Vettel Ferrari Chinese GP China 04/14/2019 3

Lando Norris McLaren Monaco GP France 05/26/2019 11

Contextual 
input

Model

A2= car
A5= start date

A3= tournament
A1= driver

A4= location
A6= ranking

(b) Predicting headers for a Formula 1 table
with true labels driver, car, tournament, lo-
cation, start date, ranking

Figure 10.1: The contextual input block extracts an embedding for each column using
data values from all columns in a table. The model block maps the contextual input
of each column into a probability distribution to predict the label of each column. The
predicted labels for both data tables are shown in descending order of the prediction
confidence. The contextual input solves the ambiguity of predictions. For example,
A3 from Table (a), and A4 from Table (b) have data values related to class country.
The context of A3 using other headers, such as player, team, position, etc, and the
context of A4 that has driver, car, tournament, etc, can guide the model to predict
nationality and location for A3 (Table (a)) and A4 (Table (b)), respectively.

10.3 Context Prediction for Semantic Labeling

In this section, we introduce our context-aware method for semantic labeling which

is based on the structured prediction formulation. We formally define the contextual

information of each column, which is combined with the column’s data values to

improve the performance of semantic labeling.

10.3.1 Column’s context

The set of data values Vi for a given column Ai in a table Tk are not sufficient to

have accurate schema label prediction. For example, in Figure 10.1, both columns

nationality (A3 in the left table) and location (A4 in the right table) contain values

from class country, but they refer to different labels. In this case, if we know that

A3 (in the left table) occurs in a table that contains player, team, position, and birth

date attributes, hence it is more probable that A3 is related to nationality rather

than location. Therefore, we argue that the attributes A1, A2, . . . , Ai−1, Ai+1, . . . , Am

provides a rich contextual information for Ai, which we refer to as the ground truth

context of Ai. However, as we explained in our setting, the input to our model is a
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table that has missing headers, which means that we cannot directly incorporate the

context into our model.

To solve that, we propose incorporating the predicted context instead of the

ground truth context. In other words, our model has two passes for predicting

schema labels. During the first pass, given a table Tk with missing headers, only data

values are used to make initial predictions for labels, denoted by A′1, A
′
2, . . . , A

′
m. The

initial predictions are context-free, as they only capture data values.

For the second pass, we incorporate both data values Vi, and the predicted con-

text A′1, A
′
2, . . . , A

′
i−1, A

′
i+1, . . . , A

′
m of Ai to make the final context-aware prediction,

denoted by Âi.

10.3.2 Semantic Labeling with BERT (SeLaB)

We incorporate data values and the predicted context of a given attribute using the

contextualized language model BERT. So, for our proposed model M = N ◦ F ,

denoted by SeLaB, F is equivalent to BERT with parameters θ, as we use the hidden

state of [CLS] token from the last Transformer block to compute the embedding of

the input sentence. N denotes the softmax layer with parameters W that produces

the probability distribution of a given sequence over all schema labels from L.

As BERT is a model designed for use with linear text, one challenge is deter-

mining how best to provide table inputs to a BERT model. Our solution is to treat

each column as a separate sentence that will be used in a different classification

task. The two different forms of information we have for the column (its values

and its predicted context) will be distinguished by [SEP] tokens. The general form

of input to M for an attribute Ai, denoted by contextual input, is the sequence

[CLS]+Vi+[SEP]+context(Ai)+[SEP], where context(Ai) is the predicted context of

Ai. For the first pass prediction, where context(Ai) is missing, the input sequence

form, denoted by only values, becomes [CLS]+Vi+[SEP]+[SEP]. As in information

retrieval tasks [50, 156, 173, 271], applying BERT comes with the challenge of hav-

ing longer sequences than the 512 tokens BERT allows. To satisfy the length limit

requirement of BERT, we randomly select a subset of data values from Vi when the

number of tokens in the contextual input or only values sequences exceeds the length

limit. Next, we describe the training and testing phases.
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Training phase

The steps of the training phase are shown in Algorithm 1. The inputs to the training

phase are: table corpus T = {T1, T2, . . . , Tn} where semantic labels l1, l2, . . . , lm are

available for all attributes A1, A2, . . . , Am of a table Tk ∈ T , set of possible semantic

labels L, and pre-trained BERT model as a feature extractor F . The compact notation

of a table Tk, that is used in Algorithm 1, is Tk = [[A1, V1], [A2, V2], . . . , [Am, Vm]].

The training phase has three stages. The first stage consists of predicting an

initial label for each column using the only values input form as shown in Lines 3–7

of Algorithm 1. The output of the first stage is a sequence A′1, A
′
2, . . . , A

′
m of initial

predicted labels. During the second stage (Lines 8–12), we construct the predicted

context context(Ai) for each attribute Ai, which is the set of predicted labels {A′j; j ∈
[1,m] \ {i}}. In order to avoid the true label leakage in context(Ai), we remove li

from context(Ai) if li ∈ context(Ai). We also remove duplicates from context(Ai)

as most data tables contain unique headers. The final stage (Lines 13–17) computes

the context-aware predictions by using contextual input form. The output of M

is the probability distribution p̂i over all labels in L, for every Ai ∈ Tk. These

probability distributions are used to calculate the cross-entropy loss, and to update

the parameters of M as indicated in Lines 18–19. In addition to incorporating the

context of column for schema labeling, our model accepts two forms of sequence

inputs (only values and contextual input), which significantly reduces the number of

parameters compared to the case where a separate model is needed to handle each

type of input sequence.

In contrast to [199, 189] which have a pre-processing step to distinguish between

string and numerical attributes, our BERT-based feature extractor F can process

string and numerical texts by taking advantage of BERT tokenizers. In contrast to

[33, 101] where the feature extraction and model building steps are decoupled, our

model M = N ◦ F is trained end-to-end to jointly optimize the feature extractor F ,

and the classification layer N . SeLaB needs only BERT embeddings that is fine-tuned

on a target table corpus to extract the feature vector of each column, and therefore

generalizes to data tables from multiple domains. Unlike [28, 29] that integrate an

external KB in semantic labeling with a strong assumption that the column’s values

match the KB entities, SeLaB needs only the standard BERT embedding that is

fine-tuned to the target table corpus via end-to-end training. This model extracts
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Algorithm 1 Training phase

1: Input: tables collection T ={T1, T2, . . . , Tn}, set of labels L.
2: for Tk in T do . Schema labels of Tk, l1, l2, . . . , lm, are available
3: for [Ai, Vi] in Tk do . First stage: Values based prediction
4: input to BERT for Ai: I1(Ai) = [CLS] + Vi + [SEP ] + [SEP ]
5: compute values based probability, p′i = M(I1(Ai))
6: A′i = argmaxl∈L p

′
i[l]

7: end for
8: for [Ai, ] in Tk do . Second stage: Compute contexts of each attribute
9: Context of Ai: context(Ai) = A′1 +A′2 + . . .+A′i−1 +A′i+1 + . . .+A′m

10: remove li from context(Ai) if li ∈ context(Ai) . avoid true label leakage in context
11: remove duplicates from context(Ai)
12: end for
13: for [Ai, Vi] in Tk do . Third stage: compute final predictions
14: input to BERT for Ai: I2(Ai) = [CLS] + Vi + [SEP ] + context(Ai) + [SEP ]
15: compute context-aware probability, p̂i = M(I2(Ai))
16: Âi = argmaxl∈L p̂i[l]
17: end for
18: loss(Tk)=CrossEntropy([p̂1, p̂2, . . . , p̂m], [l1, l2, . . . , lm])
19: update M parameters (θ,W ) by minimizing loss(Tk)
20: end for
21: Output: A Trained context-aware model M

the feature of each column, and therefore generalizes to data tables from multiple

domains.

Testing phase

The steps of the testing phase are shown in Algorithm 2. The inputs to the test-

ing phase are: a testing table Tk that has missing headers (l1, l2, . . . , lm, are not

available), set of possible semantic labels L, trained model M , and two parameters

unique headers and topk that we will describe later.

The testing phase has three stages. The first and second stages are similar to the

training phase, where initial predictions are computed using only values input form,

and then used to produce the context of each attribute. During the third stage, the

final predicted labels for the testing data table are generated sequentially. For a given

table Tk, initially all schema labels are missing.

Given that the prediction is done sequentially, m passes are needed to obtain a

predicted label for each column in Tk. For the j-th pass, the set of decided columns has

j−1 labeled headers, and m− j+ 1 columns in Tk, denoted by Sj, are still undecided

(missing the predicted labels). We predict the probability distribution p̂i, and a

schema label Âi for each column Ai ∈ Sj using our model M with contextual input
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sequence similar to lines 15 and 16 of training phase, respectively. The confidence

of prediction for Ai ∈ Sj is given by pimax = maxl∈L p̂i[l]. The unique headers is a

Boolean variable that is set to True to force the unique headers constraint for a given

table. When predicting duplicate headers is allowed, the column Ah, that we choose

to predict from Sj in the j-th pass, is given by Ah = argmaxAi∈Sj
pimax, and we set

the label of Ah to Âh as shown in Lines 15–16.

Algorithm 2 Testing phase

1: Input: testing table Tk, set of headers labels L, trained M model, Boolean: unique headers
and topk.

2: %First stage: Values based prediction
3: %Second stage: Compute contexts of each attribute
4: S1 = Tk . initial set of undecided columns
5: predicted attributes = ∅ . initial set of predicted schema labels
6: for j ∈ 1, 2, . . . ,m do . Third stage: compute final predictions
7: for Ai ∈ Sj do
8: input to BERT for Ai: I2(Ai) = [CLS] + Vi + [SEP ] + context(Ai) + [SEP ]
9: compute context-aware probability, p̂i = M(I2(Ai))

10: Âi = argmaxl∈L p̂i[l], pimax = maxl∈L p̂i[l]
11: end for
12: if unique headers then
13: Ah, chosen label = UniqueHeaders({p̂i, Ai ∈ Sj}, topk, predicted attributes)
14: Âh = chosen label
15: else
16: Ah = argmaxAi∈Sj

pimax

17: end if
18: predicted attributes.append(Âh)
19: Sj+1 = Sj \ {Ah}
20: replace A′h by Âh in context(Ai), Ai ∈ Sj+1 . update contexts with new predicted attribute

Âh

21: end for
22: Output: A label for each header in the testing table.

On the other hand, when unique headers constraint is required for a given data

table, we propose a routine, called UniqueHeaders, that resolves the duplicate head-

ers problem. The inputs to this routine are: the probability distributions p̂i for

Ai ∈ Sj, topk which denotes the number of top confidences per attribute that are

used to find the label, and the set predicted attributes that contains the j − 1 se-

mantic labels that are already assigned to j − 1 columns of Tk. The objective of the

function UniqueHeaders is to find the label chosen label with the highest confidence

value, with respect to the unique headers constraint that requires chosen label /∈
predicted attributes. For time complexity efficiency, we limit the depth of search by

choosing topk << |L|. By limiting the depth of search, UniqueHeaders can produce
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a duplicate header. In this case, we use a heuristic that returns the label that corre-

sponds to the maximum confidence score. UniqueHeaders is called in Lines 12–14

of Algorithm 2.

We remove the chosen column Ah from Sj to obtain Sj+1 (the columns of Tk that

are still missing labels after the j-th pass), and we add Âh to the set of predicted

schema labels predicted attributes (Lines 18–19). We finish the j-th pass by updating

context(Ai), where Ai ∈ Sj+1, using the predicted label Âh from the j-th pass as

shown in Line 20. The objective of the context update is to replace the only values

prediction A′h by the contextual input inferred label Âh in context(Ai) for Ai ∈ Sj+1,

as the latter is more accurate than the former. For the j-th pass, we select the best

schema label from m − j + 1 predicted labels. So, for m passes, the total number

of predictions, that are needed to infer the schema labels of Tk, is m × (m − 1)/2.

The increase in the number of predictions is justified by the sequential nature of the

testing phase where the context of each undecided attribute is updated in each pass,

and the most confident prediction is selected.

10.4 Evaluation

10.4.1 Baselines

We compare the performance of our proposed model with feature-based baselines [33,

101], and a variation of our model where only data values (without context) are used.

We describe the five categories of features that are extracted from the data values

of each column. There are five categories of features as shown in Table 10.1. Four

categories are previously used in feature-based methods: global statistics [33, 101],

character distributions [33, 101], word embeddings [101], and paragraph embeddings

[101]. To obtain more fine-grained embedding, we also propose a character-based

generative model to produce character embeddings for each value.

Global statistics

We combine the global statistics from [33] and [101] into one category that has 17

unique features with different dimensions as shown in Table 10.2. When concatenating

the global statistics features, the dimension of the resulting feature vector is 52.
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Table 10.1: Features categories used in feature based methods (total dimension equals
to 2213)

ID Category type Dimension

1 Global statistics 52
2 Character distributions 960
3 Character embeddings 400
4 Word embeddings 401
5 Paragraph embeddings 400

Table 10.2: Global statistics features [33, 101] with a total dimension equals to 52

ID Length Description

1 1 minimum value in column’s content
2 1 maximum value in column’s content
3 1 average value of column’s content
4 1 standard deviation value of column’s content
5 1 percentage of numeric cells in column’s content
6 20 content histogram
7 1 number of values in a column
8 1 column entropy
9 1 percentage of unique content
10 1 percentage of values with numeric characters
11 1 percentage of values with alphabetical characters

12 2 mean and standard deviation of the number of numerical characters in column’s content

13 2 mean and standard deviation of the number of alphabetical characters in column’s content

14 2 mean and standard deviation of the number of special characters in column’s content

15 2 mean and standard deviation of the number of words in column’s content

16 4 None values statistics: count, percentage, has some None values(Boolean), has Only None values (Boolean)

17 10
length of values statistics: any nonzero length (Boolean), all nonzero length (Boolean), sum, min, max,

variance, median, mode, kurtosis, skewness

Character distributions

The distribution of characters is computed for each column using 96 ASCII-printable

characters. For each character, 10 statistics (any, all, mean, variance, min, max, me-

dian, sum, kurtosis 1, skewness 2) are calculated based on the count of each character

in a value from the set of data values for the input column. Concatenating character

distribution for all characters results in a feature vector with dimension 960.

Character embeddings

We train a character-level language model [226] to generate values from the table

corpus T . Our generative model has two character-based LSTM layers, and it is

trained on the next character generation task. Given a value vk, which is a sequence

of characters, our generative model produces a hidden state for each character, and

we use the hidden state from the second LSTM layer of the last character as the

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html
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character embedding of vk. Then as in [101], we compute the mean, mode, median

and variance of character embeddings across all values vk ∈ Vi in a column Ai. Given

that the dimension of character embedding is 100, and we have 4 statistics, the

resulting feature vector has dimension 400.

Word embeddings

The pre-trained word embedding, Glove3 [185], is used to compute embedding for each

value vk ∈ Vi. Then, as in character embedding, 4 statistics are computed for Vi. The

dimension of embedding is 100, so that after computing statistics, the dimension of

the concatenated feature vector equals 400. As in [101], an additional binary feature

is appended to the final word embedding feature vector, and it indicates if there is at

least one value from Vi that belongs to Glove vocabulary.

The use of pre-trained embedding is suitable for table collections, such as Wik-

iTables, that have common values with the vocabulary of the pre-trained embedding.

This is not the case for log tables from network equipment, where the number of

out of vocabulary (OOV) tokens is large, and this leads to poor performance for pre-

trained word embedding. To solve this problem, we train a word embedding on the

table corpus T , where the sentences are rows and columns from Tk ∈ T . Instead of

using Glove, we train a fastText [12] model to produce word embeddings. The use

of character-level n-grams in fastText allows word embeddings to be created even for

terms that have not been seen before, and reduces the negative effect of OOV tokens.

Given that having long strings is common for log data, we use BERT tokenizer to

preprocess values before training fastText embeddings.

Paragraph embeddings

Each column Ai can be seen as a paragraph that contains the set of values Vi =

{v1, v2, . . . , vr}. The paragraph embedding, that is based on the distributed bag of

words [131], is trained to map each column into an embedding with a dimension

equals to 400.

3https://nlp.stanford.edu/projects/glove/
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Sherlock

Hulsebos et al. [101] uses global statistics, character distributions, word embeddings,

and paragraph embeddings with a multi-input neural networks architecture.

All features

This baseline extends Sherlock [101] features by adding our character embeddings to

cover three different levels of embeddings (character, word, and paragraph).

BERT with only values

This baseline can be seen as a variation of our proposed method SeLaB, where only

data values are used to predict schema labels. So, for training, the first stage pre-

dictions are used to update the parameters of the model. For testing, the first stage

predictions are used to evaluate the performance of the model. The input data values

sequence to the model has only values input form.

10.4.2 Experimental Setup

In our proposed model, we use the BERT-base-uncased for the feature extractor F .

For each column, we shuffle data values and randomly select a subset of values to

reduce the complexity of the model. Given that the majority of log tables have more

rows than WikiTables and the combined data, we randomly choose 200 values for

each column in a given log table, and 100 values for columns from WikiTables and

the combined data. In general, shuffling the predicted context can reduce overfitting.

For the WikiTables collection, the majority of tables that have both attributes home

team and away team (these attributes have similar data values), report home team

column before away team column (same for birth date which occurs before death

date) for a left-to-right sequential order. In this case, we can resolve the ambiguity of

predicting home team and away team by keeping the sequential order of the predicted

context. We train our model for 10 epochs, and we set topk of the UniqueHeaders

routine to 5.

The model is implemented using PyTorch [184], with Nvidia GeForce GTX 1080

Ti. Our implementation is based on BERT codes from an open source repository4.

4https://github.com/huggingface/transformers
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Method Name Macro-P Macro-R Macro-F Micro-F MRR

Global statistics 7×10−3 10−2 6×10−3 0.17 0.28

Character distributions 0.14 0.10 0.10 0.38 0.48

Character embeddings 0.38 0.33 0.33 0.54 0.64

Word embeddings 0.18 0.16 0.15 0.47 0.58

Paragraph embeddings 0.23 0.19 0.19 0.43 0.54

Sherlock 0.45 0.45 0.42 0.66 0.75

All features 0.54 0.47 0.47 0.66 0.75

BERT (only values) 0.46 0.45 0.43 0.64 0.73

SeLaB w/o unique headers 0.55 0.52 0.50 0.72 0.80

SeLaB 0.55 0.53 0.51 0.72 0.80

(a) WikiTables

Method Name Macro-P Macro-R Macro-F Micro-F MRR

Global statistics 0.16 0.16 0.15 0.54 0.64

Character distributions 0.40 0.42 0.40 0.68 0.71

Character embeddings 0.44 0.44 0.43 0.69 0.71

Word embeddings 0.35 0.34 0.33 0.65 0.69

Paragraph embeddings 0.31 0.29 0.29 0.61 0.67

Sherlock 0.42 0.42 0.41 0.67 0.73

All features 0.50 0.49 0.49 0.71 0.72

BERT (only values) 0.48 0.49 0.47 0.73 0.76

SeLaB w/o unique headers 0.61 0.62 0.60 0.81 0.81

SeLaB 0.62 0.63 0.61 0.81 0.81

(b) Network log tables

Table 10.3: Semantic labeling results

We use the Adam [120] optimizer for gradient descent to minimize the cross-entropy

loss function and update the weights of our model. For the baselines, BERT with

only values is also trained for 10 epochs. For the feature-based baselines (except

for Sherlock), random forest from the scikit-learn implementation 5 is trained for

prediction.

5https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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10.4.3 Experimental results

We evaluate the performance of SeLaB and baselines on the schema labeling task

using macro-averaged and micro-averaged precision (P), recall (R) and F-score of

predictions on the testing set. In the multiclass classification problem, the micro-

average precision, recall and F-score are the same, so we only report the Micro-F

score. We also report the Mean Reciprocal Rank (MRR) [144], as the rank of the

true class is an important measure for evaluation. We calculate the top-k accuracy

that shows the fraction of testing samples where the true label is within the top k

predicted confidence scores. We report results for our method and baselines using

five-fold cross validation.

Semantic labeling results

Table 10.3(a) shows the performance of different approaches on the WikiTables col-

lection. We show that our proposed method SeLaB outperforms the baselines for all

evaluation metrics. By formulating the semantic labeling as a structured prediction

problem, we were able to incorporate the contextual information of each attribute

into our model to solve the ambiguity in predictions, and this leads to an increase

in evaluation metrics compared to baselines that generate schema labels solely on

the basis of data values. If we simply use BERT without structured prediction, it

is comparable to the state-of-the-art Sherlock (Macro-F of 0.43 vs. 0.42, Micro-F of

0.64 vs. 0.66), but when we add in the predicted context, both Macro-F and Micro-F

improve by 0.08. Among all the five categories of features (global statistics, character

distributions, character embeddings, word embeddings, paragraph embeddings) that

are used in the feature-based approaches, our character embeddings feature achieves

higher performance for all evaluation metrics. So, a generative model with a character

granularity is able to capture the distributions of data values drawn from different

attributes. For WikiTables, the standard deviation of SeLaB in all evaluation metrics

is less than 0.08.

Figure 10.2(a) shows the top-k accuracy results on WikiTables where our method

SeLaB outperforms the baselines. “Bert with only values”, Sherlock, and “All fea-

tures” baselines have close performances. So, the BERT-based embedding, which is

trained by using only data values, is as good as the hand-crafted features. While

extracting the hand-crafted features requires significant human effort to compute the
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(a) WikiTables collection (b) Network log tables collection

Figure 10.2: Top-k accuracy results

global statistics, character distributions and three types of embeddings (character,

word, and paragraph), BERT embeddings are trained jointly with the classification

layer with minimal preprocessing which reduces the human effort. Among all the

five categories of features (global statistics, character distributions, character embed-

dings, word embeddings, paragraph embeddings) that are used in the feature-based

approaches, our character embeddings feature achieves higher performance for top-

k accuracy results. So, a generative model with a character granularity is able to

capture the distributions of data values drawn from different variables or attributes.

Table 10.3(b) and Figure 10.2(b) show the performance of the different approaches

on the Log tables from network equipment. Interestingly, Sherlock has a worse Macro-

F and MRR on network log tables than on WikiTables, while SeLaB and BERT (only

values) both improve on all metrics with this alternative dataset. Consistent with

WikiTables, our results on the log tables corpus show the importance of a column’s

context in improving the semantic labels prediction, especially for top-1 accuracy as

shown in Figure 10.2(b), where SeLaB was the only system to achieve a value over

0.8. The top-5 accuracies for SeLaB, “Bert with only values”, and “All features” are

similar which indicates that the ambiguity in semantic labeling occurs mainly when

predicting exact schema labels. For Log tables, the standard deviation of SeLaB in all

evaluation metrics is less than 0.09. Semantic labeling results on WikiTables and Log

tables show that SeLaB achieves significant improvements in the evaluation metrics of

two data table collections from different domains, which supports the generalization

characteristic of our proposed method.

We summarize the evaluation metrics results from the third dataset in Table
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10.4. Consistent with WikiTables and Log tables, the ambiguity in the schema label

prediction is more dominant when predicting exact labels, which is related to the

top-1 accuracy. SeLaB outperforms baselines mainly in top-1 accuracy by taking

advantage of both data values and predicted context. For the combined data, the

standard deviation of SeLaB in all evaluation metrics is less than 0.06.

Method Name Macro-P Macro-R Macro-F Micro-F MRR Top-1 Top-2 Top-3 Top-4 Top-5

Global statistics 0.05 0.08 0.05 0.16 0.30 0.16 0.29 0.36 0.41 0.44

Character distributions 0.32 0.33 0.30 0.43 0.54 0.43 0.53 0.61 0.63 0.66

Character embeddings 0.32 0.33 0.30 0.43 0.55 0.43 0.56 0.62 0.67 0.70

Word embeddings 0.29 0.31 0.28 0.39 0.50 0.39 0.50 0.55 0.57 0.61

Paragraph embeddings 0.32 0.33 0.30 0.47 0.57 0.47 0.56 0.60 0.65 0.67

Sherlock 0.38 0.38 0.36 0.49 0.60 0.49 0.61 0.67 0.71 0.74

All features 0.43 0.42 0.40 0.54 0.65 0.54 0.66 0.72 0.75 0.78

BERT (only values) 0.38 0.41 0.37 0.52 0.62 0.52 0.64 0.68 0.71 0.72

SeLaB 0.45 0.49 0.45 0.59 0.66 0.59 0.67 0.72 0.75 0.77

Table 10.4: Semantic labeling results for the combined data

Masked headers

So far, we have discussed the performance of SeLaB where all semantic labels are

missing for a given data table. This can be seen as an extreme case. A common

scenario for table extraction is to have a percentage of missing or false headers. To

better understand how SeLab deals with such tables, we randomly mask a percentage

of headers from tables in the testing set, and we report the top-1 accuracy function

of the percentage of masked headers as shown in Figure 10.3(a). For each table, we

run the masked headers experiment five times with randomly selected headers, and

we compute the mean and standard deviation (std) of the top-1 accuracy for each

percentage of masked headers. 100% masked headers means that all labels are missing

which is the most difficult task (and is equivalent to the previous experiment).

As reported in Figure 10.3(a), the maximum std (vertical bar) is 0.01 for Log

tables and 0.005 for WikiTables. Figure 10.3(a) shows that when the percentage of

masked headers decreases, there is an increase in the mean of top-1 accuracy for

predicted masked headers. This means that the attribute’s context is more accurate

given that the labels of the non-masked headers are groundtruth labels. However,

comparing the fully predicted context in 100% masked headers with the partially
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(a) top-1 accuracy for masked headers (b) top-k accuracy for string and numeric

Figure 10.3: Top-k accuracy for masked headers and string/numeric headers

predicted context in 20% masked headers, there is only a small increase in the top-1

accuracy (0.057 for Log tables and 0.020 for WikiTables) which indicates that the

predicted context in the extreme case is as good as the groundtruth context.

String vs Numeric columns analysis

We evaluate the performance of SeLaB on two categories of columns which are numeric

and string. As shown in Figure 10.3(b), we report the top-k accuracy of numerical and

string columns for Log tables and WikiTables. In both datasets, semantic labeling

of string columns outperforms numerical columns. So, generating an exact schema

label for numerical data values is more ambiguous than string values, as numerical

columns contain similar values. In particular, the increase of the top-2 accuracy

compared to the top-1 accuracy for numeric columns in network log tables is justified

by the presence of two semantic labels (line number and row index ) that are used

interchangeably. Thus, the set of the top-2 predictions contains both labels, and this

leads to a significant increase in the top-2 accuracy compared to top-1 accuracy.

Predicted label examples

To better understand how SeLaB works, we show examples of predicted schema la-

bels from WikiTables testing set in Table 10.5. Each row corresponds to a testing

table where we show the ground truth attributes, first stage predictions, and the fi-

nal predicted schema labels. For example, for the first row, there are three wrong

predictions (year instead of season, division instead of section, and finish instead
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Table attributes First stage predictions Third stage predictions

season, level, division, section, position year, level, division, division, finish season, level, division, section, position
year, title, developer, publisher, setting, platform year, title, developer, developer, setting, system year, title, developer, publisher, setting, system
pos, rider, bike, pts rank, rider, bike, pts pos, rider, bike, pts
pos, class, no, team, drivers, car, laps, qual pos pos, group, rank, driver, driver, car, deaths, rank pos, class, no, entrant, drivers, car, laps, grid
senator, party, years, term, electoral history representative, party, years, wins, electoral history representative, party, years, term, electoral history
date, time, home team, away team date, time, home team, home team date, time, home team, away team
site, location, year, description site, province, year, description name, location, year, description
land area, latitude, longitude area, latitude, geographic coordinate system land area, latitude, longitude
title, director, cast, genre, notes film, role, cast, genre, notes role, director, cast, genre, notes
county, location, exit number, destinations, notes county, location, notes, notes, notes county, location, exit, destinations, notes

Table 10.5: Examples of predicted schema labels from Wikitables testing set

of position) from first stage predictions which are based only on data values. After

incorporating context for each attribute, SeLaB updates the predicted label for each

column, and the new context-aware semantic labels that match the ground truth

labels are shown in bold in Table 10.5. For the first example, we obtain the third

stage predictions which are identical to the ground truth labels after three corrections

from context-aware representation for each column. For the sixth row, the table’s at-

tributes contain home team and away team. Both attributes are predicted home team

after first stage predictions. SeLaB learns that away team occurs with home team so

that the predictions are corrected after the third stage.

Effect of the Number of Training Samples

To understand how the number of training samples for each semantic label affects

the accuracy of SeLaB predictions, we show in Figure 10.4 the indicator values of

correct testing predictions per label against the number of samples for each label in

the training set as black circles (i.e. 1 indicates the predicted column header is the

same as the ground truth).

Local smoothing [44] was applied to obtain the average accuracy curve for SeLaB

predictions (yellow line). As a reference, we also added a similar local smoothing

curve representing the accuracy curve from predictions obtained using “Bert with

only values” (pink line). Figure 10.4 demonstrates that in general, as the number of

samples for each label in the training set increases, both SeLaB and “Bert with only

values” perform better. However, SeLaB appears to perform much better when there

is a sufficient number of samples per label (e.g. more than 20 instances). There is a

slight dip for the SeLab curve for those columns when the corresponding number of

samples in the training set becomes the largest. Upon close inspection, we noticed

that the most frequent semantic labels in the training set are generic labels. For
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(a) Log tables (b) WikiTables

Figure 10.4: Accuracy vs. Number of training samples per label

example, in Wikitables, the column header with the largest number of instances is in

fact a generic label name (with 3064 instances in training data). In the testing set,

SeLaB sometimes predicts name as player, swimmer, representative, etc., depending

on the context of the table, thus potentially yielding more appropriate header names

than the ground truth.

Comparison of SeLaB embedding and attention weights from multiple lay-

ers

SeLaB takes the final hidden state of the [CLS] token as the representation of the

whole input sequence, and we are interested in discovering the tokens that have

similar embedding to [CLS] token, and the tokens that have the largest impact on the

[CLS]. To better understand the embedding of the [CLS] token in SeLaB, we compute

the cosine similarity between the embedding of the [CLS] token and the embedding

of multiple tokens in both only values and contextual input forms. Figure 10.5(a)

illustrates multiple cosine similarities that are computed in multiple layers. There

are 13 layers in Figure 10.5(a) where layer 0 is the embedding layer in BERT, and

the next 12 layers are the Transformer blocks. The [SEP] delimiter is an important

token in BERT that marks the end of a sequence. So, we start by showing the cosine
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(a) Average of cosine similarity between the
embedding of [CLS] token and different tokens

(b) Average of attention weights between the
embedding of [CLS] token and different tokens

Figure 10.5: Analysis of embeddings and attention heads using the combined dataset

similarity between the embedding of [CLS] and [SEP] tokens in both first and third

stage predictions. We have two [SEP] tokens in both only values and contextual input

forms, and we plot the average of cosine similarities between [SEP] tokens and the

[CLS] token in multiple layers. As shown in Figure 10.5(a), the cosine similarity

between the embedding of [SEP] and [CLS] is large, especially in deep layers starting

from layer 10, where these layers capture the interactions between the high-level

representations of multiple tokens. The high cosine similarity between the embedding

of [CLS] and [SEP] tokens in both first and third stage prediction can be explained by

the convergence of the embeddings of special tokens in BERT ([CLS] and [SEP]), and

suggest that at the end of the fine-tuning phase, these tokens have similar features.

To justify that SeLaB updates the predicted schema label in the third stage using

both data values and the attribute’s context, we show the cosine similarity between

the [CLS] token and both the data values and attribute’s context in the first and

third stage prediction. For both only values and contextual input forms, we extract

the embeddings that correspond to the values tokens and average them to obtain the

data values embedding for the first and third stage prediction, respectively. For the

contextual input form, we extract the embeddings of the context tokens, and average

them to obtain the context embedding of the third stage prediction. Comparing
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the cosine similarity in all layers between the data values and [CLS] in the first

stage prediction with the cosine similarity between the data values and [CLS] in the

third stage prediction, we observe a drop in the cosine similarity for the third stage

prediction. This phenomenon is expected because in the third stage prediction, SeLaB

attends to context tokens in addition to data values tokens as shown by the curve

from Figure 10.5(a) that illustrates the cosine similarity between the context tokens

and [CLS] in the third stage prediction. SeLaB accords comparable importance to

data values and context when inferring schema labels in the third stage prediction

which justifies the importance of both fields.

In addition, to better understand the information that is captured by the [CLS]

token in SeLaB, we compute the average of attention weights from the top 20 tokens

of each field (data values and predicted context) that attend or are attended by the

[CLS] token in all attention heads of a given layer. Figure 10.5(b) illustrates the

average of attention weights in multiple layers (12 Transformer blocks) from both

first and third stage predictions. We observe similar patterns in all three curves

where deeper layers tend to focus on specific tokens which leads to a lower average

of attention weights compared to first layers. We also observe that the average of

attention weights in the context field is lower than the average of attention weights

of data values in all layers. This can be explained by the presence of more variety

in data values (data tables can have different sets of values for the same attribute)

compared to the context field, where in some cases the presence of one specific token

in the context field can be sufficient to resolve the ambiguity in predicting the schema

label.

Comparison of SeLaB attentions from multiple layers (first example)

The Transformer blocks are the main components that have led to state-of-the-art

results in multiple tasks with their ability to capture long-range dependencies better

than the recurrent architectures. We show the attention heads of Transformer blocks

in SeLaB to better understand the prediction mechanism in the testing phase, and

to explain how SeLaB infers schema labels in both the first and third stages of the

testing phase. Figure 10.6 illustrates attention heads from multiple layers where the

first column represents first stage attention heads, and the second column represents

third stage attention heads. The data table, that is used in this example, contains
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[SEP]

(a) first stage: 1st attention head at layer 3
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[SEP]
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[SEP]

(b) third stage: 1st attention head at layer 3

[C
LS

] a \ u

##
00

##
80

\ u

##
00 ##
8

##
9

##
sw

##
ed

##
is

h k

##
ro

na a \ u

##
00

##
80

[S
EP

]

[S
EP

]

[CLS]

a

\

u

##00

##80

\

u

##00

##8

##9

##sw

##ed

##ish

k

##rona

a

\

u

##00

##80

[SEP]

[SEP]

(c) first stage: 6th attention head at layer 12
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[SEP]
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[SEP]

(d) third stage: 6th head at layer 12
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[SEP]

(e) first stage: 11th head at layer 12
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[SEP]
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[SEP]

(f) third stage: 11th head at layer 12

Figure 10.6: Comparison of attention heads between first and third stage prediction.
Attention weights with larger absolute values have darker colors.

the attributes: rank, currency, iso 4217 code (symbol), and % daily share (december

2015). After the first stage prediction, the schema label currency is mislabeled by
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SeLaB. To explain the reason for misclassifying the currency attribute in the first

stage and correctly classifying this attribute in the third stage, we show the attention

heads that are related to the prediction of the currency attribute.

Figures 10.6(a), (c), and (e) illustrate multiple forms of attention heads after the

first stage prediction. In general, there are multiple attention heads as categorized by

Kovaleva et al. [125]. In the first stage prediction, SeLaB focuses on a set of values

tokens ( ##sw, ##ed, ##ish, ##rona) which are not enough to infer the correct

schema label. After incorporating the context of the attribute currency to infer the

third stage prediction, we show similar attention heads to the first stage prediction.

Figures 10.6(b), (d), and (f) illustrate multiple attention heads after the third stage

prediction. SeLaB focuses on both the data values and the context fields, where the

value dollar, and the context tokens (iso, december, 2015 ) are given more attention

and therefore contribute the most to the correct updated schema label in the third

stage prediction.

Comparison of SeLaB attentions from multiple layers (second example)

We show the attention maps of a data table with the attributes: type, name, title,

royal house, from, and to. Both attributes from and to contain similar values such

as 185 BC, 170 BC, 160 BC, etc. These two attributes are predicted from after the

first stage prediction, then the wrong prediction is corrected after the third stage

prediction, and we obtain a correct sequence of predicted schema labels. To better

understand how SeLaB updates its prediction, we compare multiple attention heads

from multiple layers in both first and third stage prediction.

Figure 10.7(a) shows the 1st attention head at layer 3 from the first stage pre-

diction, which is mostly diagonal and each token attends to itself. This layer forms

low-level features. Figure 10.7(c) illustrates the 11th attention head at layer 12 from

the first stage prediction. This attention head has a grid form, with a focus on the

token bc.

After incorporating the context of the attribute to to infer the third stage pre-

diction, we show similar attention heads to the first stage prediction. Figure 10.7(b)

illustrates the 1st attention head at layer 3 from the third stage prediction. We ob-

serve that two tokens (from and title) from the context field are given more attention,

which indicates that SeLaB starts to update its prediction with the presence of the
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[SEP]
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[SEP]
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[SEP]
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(d) third stage: 11th head at layer 12

Figure 10.7: Comparison of attention heads between first and third stage prediction.
Attention weights with larger absolute values have darker colors.

attribute’s context.

Figure 10.7(d) illustrates the 11th attention head at layer 12 from the third stage

prediction. This attention head clearly focuses on the token from in the context field

to infer the schema label to. This attention head learns that the attribute to always

occurs in a data table that contains the attribute from.
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10.5 Summary

We have addressed the problem of semantic labeling using both data values and con-

textual information of an attribute. We have shown that a context-aware model that

combines data values and column’s context within the structured prediction frame-

work outperforms methods that predict semantic labels only on the basis of data

values. Our method SeLaB has been evaluated on three real-world datasets from

multiple domains: WikiTables extracted from Wikipedia, Log tables from network

equipment, and a combined dataset that contains general web tables. We have shown

that the attribute’s predicted context, which is incorporated into SeLaB after formu-

lating the semantic labeling as a structured prediction problem, reduces the ambiguity

in semantic labels prediction and outperforms the prior state of the art by 0.05 to 0.10

on most metrics, and by as much as 0.20 Macro-F on a dataset consisting primarily

of numeric tables. Our model is trained end-to-end for both feature extraction and

label prediction which reduces the human effort in semantic labeling.

In addition, we evaluated SeLaB on the masked headers task where we randomly

mask a percentage of headers from data tables, and we predict the schema labels of

the masked headers. SeLaB generates accurate predictions for the masked headers

using both data values and the masked header’s context. Automatic table extraction

often leads to a percentage of missing or false headers which lowers the quality of the

data table collections. SeLaB can be used as a data cleaning tool to predict missing

headers in the extracted data tables, and improve the quality of the table collections

for downstream tasks.

To explain the predictions of SeLaB, we conduct multiple experiments by com-

paring SeLaB embeddings and attention heads from multiple layers in both first and

third stage prediction of the testing phase. Our analysis using the cosine similarity

between the embedding of [CLS] token and the average of data values and context

tokens shows that SeLaB considers both fields when inferring the third stage schema

labels. Additionally, we compared multiple attention heads to show how SeLaB up-

dates its prediction in the third stage using the attribute’s context. Although BERT

contains millions of parameters, our analysis using the attention heads helps to ex-

plain multiple predictions obtained from SeLaB.

Future work includes looking at how to incorporate metadata of each data table,

such as table caption and description, into SeLaB, and how to select the best subset of
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data values for each column to improve semantic labeling results. Additionally, SeLaB

can be pretrained on large collections of data tables, and explored in other table-

related downstream tasks such as the table retrieval. SeLaB provides embeddings for

the attributes of data tables which can be used to compute the retrieval score in table

search.
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Chapter 11

Domain Adaptation for Matching

Entities

11.1 Introduction

Entity matching (EM) identifies data records that refer to the same real-world entity.

EM is an important step in data cleaning and integration [40, 207], knowledge base

enrichment [169], and entity linking [212]. Researchers have studied EM for many

years in the context of data mining and integration.

In the past few years, deep learning (DL) has led to a significant improvement in

multiple tasks, where DL-based methods achieved state-of-the-art (SOTA) results for

text, image, and speech data. In many cases, DL models are trained end-to-end to

automatically extract features and build predictive models. This significantly reduces

the human effort that is needed in traditional methods for feature engineering, and

gives the model the ability to capture specific features that are better than the hand-

crafted ones for multiple tasks. Following the success of DL models, researchers have

focused on exploring DL in data cleaning and integration. In particular, multiple DL

methods have been proposed to solve the EM task[62, 70, 114, 165, 297]. Deep contex-

tualized language models (DCLM), like BERT [58], RoBERTa [148], and DistilBERT

[206] have been recently proposed to solve multiple tasks [253, 205, 36, 235, 239].

Building on DCLM, Ditto [139] achieved SOTA results in EM.

Although DL methods have led to a significant improvement in the EM task,

these models need a huge amount of labeled data for each domain. DL-based models
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are trained in a supervised setting for each dataset in EM, where a different model

is obtained and is fully fine-tuned on a specific dataset. This means that existing

models capture the specific signals for each dataset in EM which leads to overfitting

on just one dataset. In addition, the knowledge that is learned from one dataset is not

explored to better understand the EM task so that the predictions in other datasets

can be made with fewer labeled samples.

In order to overcome the limitations of prior methods, we propose a new method,

called Domain Adaptation for Matching Entities (DAME), that transfers the task

knowledge from multiple source domains to a target domain. Our method presents

a new setting for EM where the objective is to capture task-specific knowledge from

pretraining our model in multiple source domains, then testing our model on a target

domain. In our study, we are interested in two aspects of our model. First, we

study the zero-shot learning (ZSL) case of DAME on the target domain. Second, we

study the effect of fine-tuning our proposed model on the target domain using different

percentages of training data, and we compare our fine-tuned model to SOTA methods.

We formulate EM as a mixture of experts with a global shared model [81, 119, 261]

where each expert is trained on an individual source domain, and the global model

is trained on all domains. Then, we aggregate the features from the experts using

a global model-guided attention mechanism. We train DAME with unsupervised

domain adaptation (DA) loss functions [81, 261] to reduce the domain shift between

the source and target domains.

In summary, we make the following contributions: (1) We propose a new DA-based

method for EM. Our new formulation of EM is based on the mixture of experts where

we transfer learning from multiple source domains to a target domain. (2) We study

the ZSL case on the target domain and demonstrate that our method learns the EM

task and transfers the task knowledge to the target domain. (3) We extensively study

fine-tuning our model on the target dataset from multiple domains, and demonstrate

that our model generalizes better than SOTA methods for most of the datasets.

11.2 Problem statement

Our formulation of DA in EM task is based on the unsupervised multi-source DA set-

ting which consists of K labeled source domains {Si}Ki=1, where Si =
{(
xSij , y

Si
j

)}|Si|
j=1

(xSij is the j-th instance of Si with a label ySij ), and unlabeled target domain T =
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{
xTj
}|T |
j=1

. The objective is to learn a classifier M using labeled data from source

domains and unlabeled data from the target domain so that (1) M produces accu-

rate predictions on the target domain without fine-tuning (ZSL case), and (2) M

generalizes better than SOTA methods on the target domain after partially or fully

fine-tuning.

11.3 Domain adaptation for matching entities

In this section, we introduce our proposed method DAME which is a DA-based

method for matching entities. We first describe the architecture of DAME, and then

present the DA-based training strategy to update the parameters of our proposed

model. Finally, we present our fine-tuning strategy in the case of using samples from

the target domain to update DAME.

11.3.1 DAME architecture

There are multiple datasets that are available for the EM task. Therefore, our model

is based on formulating the EM as a mixture of domain experts in the case of DA.

Each expert model is trained on one source domain. We denote by fSi
, the expert

model that is trained on Si. Training a mixture of experts and shared models improves

the performance when multiple source domains are available as shown in prior works

[81, 119, 261]. Therefore, we also add a global model g that is trained using all the

source domains {Si}Ki=1.

DCLM have been proposed in the DA setting to solve multiple tasks [261, 83, 86,

151, 200]. We propose to incorporate DCLM in our DA-based model to solve the

EM task. Each fSi
and g are initialized using DistillBERT [206]. We choose to use

DistilBERT as the main component for the expert and global models for two reasons.

First, by incorporating DCLM, we compare records in their entirety which has been

shown to be more effective than attribute-based comparisons. Second, DistilBERT

has a reduced size and comparable performance to BERT, and our objective is to

include many source domains while keeping the time and memory complexity reason-

able. The architecture of DAME is shown in Figure 11.1. In general, our proposed
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𝑅𝑒𝑝 𝑥 = 𝑅𝑒𝑝 𝑒1, 𝑒2 = 𝐶𝐿𝑆 𝑟𝑒1 𝑆𝐸𝑃 𝑟𝑒2 [𝑆𝐸𝑃]

𝑓𝑆1 𝑓𝑆2 𝑓𝑆𝐾 𝑔. . . . . 

𝐴𝑡𝑡

𝑁

𝐹
Expert models

Global model

Compute attention weights for 
each expert model

𝑅𝑒𝑝

Figure 11.1: Architecture of DAME for EM task. The Rep module takes a pair of
records as inputs, and produces a BERT-based representation. The expert models
{fSi
}Ki=1 are shown in the red box. The expert and global models within the feature

extractor block F produce multiple embeddings, shown in green color, using the
representation from Rep block as input. These embeddings are used in the attention
block Att to produce a single feature vector. A classification layer N maps the output
of Att to a matching score.

model M is composed of four modules:

M = N ◦ Att ◦ F ◦Rep (11.1)

Rep is a representation module that produces the sequence input from a pair of records

x, F is a feature extractor that produces multiple embeddings for the sequence input

of the record pair x using expert models {fSi
}Ki=1 and the global model g, Att is an

attention module that aggregates the embeddings of the expert models to produce

the final multi-source embedding, and N is a classification layer that maps the final

embedding to a confidence score to make a matching/non-matching decision on a

record pair.

Representation module Rep

Each record pair x = (e1, e2) is composed of two data entries e1 ∈ D1 and e2 ∈ D2

that correspond to candidate rows from two collections of data entries D1 and D2.

Both D1 and D2 are from the same source domain. Each data entry ei =

{(attrj, valj)}1≤j≤C is a set of attribute-value pairs denoted by (attj, valj), where C
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is the number of attributes in each record. We follow the encoding of Ditto [139] for

serializing data entries to produce a sequence for each record from the attribute-value

pairs:

rei = [COL] attr 1[VAL]val1 . . . [COL] attr k[VAL]valk (11.2)

where [COL] and [VAL] are special tokens that denote the start of attributes and

values, respectively. The input of EM is a pair of records x = (e1, e2). So, Rep takes

as input a pair of records, and produces a sequence pair of serialized entries that is

given by:

Rep(x) = Rep((e1, e2)) = [CLS]re1 [SEP]re2 [SEP], (11.3)

where [SEP] and [CLS] are BERT special tokens that are added into the sequence

similar to the sentence pair classification setting.

Feature extractor F

We have K + 1 DistilBERT models: K expert models {fSi
}Ki=1 and a global shared

model g. We use Rep(x) as input to the K + 1 models to extract K source domain-

based embeddings denoted by fSi
(Rep(x)), i = 1, . . . , K, and a global model-based

embedding denoted by g(Rep(x)). The embeddings from the source domain models

and the global model are extracted using the hidden state of the [CLS] token from

the last Transformer block in each DistilBERT model. In conclusion, the output of

F is given by:

F (Rep(x)) = {fSi
(Rep(x))}Ki=1 ∪ g(Rep(x)) (11.4)

Attention module Att

When aggregating the embeddings that are extracted using F , the embeddings from

the source domains and the global model should not be treated equally as there are

domains that are more relevant to a given record pair x than others. We use a

parameterized attention model that attends to all domains using a dot product-based

attention where three parametric matrices are introduced: a query matrix Q ∈ Rd×d,

a key matrix Ke ∈ Rd×d, and a value matrix V ∈ Rd×d, where d is the dimension of

the embedding. We first concatenate all the embeddings from F (Rep(x)) to form an

embedding matrix denoted by E ∈ R(K+1)×d. The attention operations are defined
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by:

α = g(Rep(x))TQ ∈ R1×d

K = EKe ∈ R(K+1)×d

V = EV ∈ R(K+1)×d

Att(Rep(x), Q,K, V ) = softmax
(
αKT
√
d

)
V ∈ R1×d

(11.5)

An important design choice in our attention module Att is the use of the global

representation g(Rep(x)) to compute the weights in the query matrix. Given that

the global model is trained on all the source domains, we expect the global model’s

embedding to transfer to the target domain, and by consequence we obtain more

accurate attention weights in the target domain to aggregate the source domains,

mainly in the ZSL case. The output of the attention module is used as input to the

classification layer N to predict the matching score of the input record pair x.

11.3.2 Training strategy

In the multi-source DA setting, we have K labeled source domains {Si}Ki=1, where

Si =
{(
xSij , y

Si
j

)}|Si|
j=1

, and an unlabeled target domain T =
{
xTj
}|T |
j=1

. Our training

phase is based on the multi-task learning setting. In each batch for the training phase,

we sample B pairs of records Xj = (x
Sj
1 , y

Sj
1 ), (x

Sj
2 , y

Sj
2 ), . . . , (x

Sj
B , y

Sj
B ) from a given

source Sj. Our loss function L is composed of four parts and is given by:

L(Xj) = λ1L1(Xj) + λ2L2(Xj) + λ3L3(Xj) + λ4L4(Xj) (11.6)

where λ1, λ2, λ3, and λ4 are hyperparameters that control the contribution of each

loss to the final loss function L; each of L1, L2, L3, and L4 represents a task-specific

loss.

Expert domain loss L1

fSi
represents the expert model for Si for all i ∈ 1, 2, . . . , K. To optimize each expert

model fSi
, we add a classification layer NSi

that predicts the probabilities of matches

and non-matches for each domain Si. So in total we add K classification layers. Given
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that Xj is sampled from the j-th domain, the domain expert loss L1 is given by:

L1(Xj) =
1

B

B∑
l=1

CrossEnt(NSj
(fSj

(Rep(x
Sj
l ))), y

Sj
l ) (11.7)

where CrossEnt denotes the cross entropy loss function.

Global model loss L2

The global model is trained on all the source domains in order to learn a univer-

sal embedding for the EM task that supports transfer to the target domain while

maintaining important matching signals for each source domain. In addition, the

embedding of the global model is multiplied with the query matrix Q in the attention

module Att to compute the contribution of each source domain to the final repre-

sentation. After learning how to aggregate features in the training phase on source

domains, the global model guides the attention module Att to pick the most impor-

tant source domains for the target domain during the testing phase. To optimize

the global model g, we add a classification layer Ng that predicts the probabilities of

matches and non-matches for all source domains. The global model loss L2 is given

by:

L2(Xj) =
1

B

B∑
l=1

CrossEnt(Ng(fg(Rep(x
Sj
l ))), y

Sj
l ) (11.8)

Meta-target loss L3

In DA, the objective is to incorporate multiple source domains to predict labels for

samples from the target domain during the testing phase. In order to simulate the

process of DA during the training phase, we use the meta-target and meta-sources

similar to Guo et al. [81]. Given that Xj is sampled from the j-th domain, the

meta-target is the j-th source domain and the meta-sources are {Si}Ki=1,i 6=j. The

meta-model MSj
differs only on the feature extractor part FSj

comparing to M which

is given by:

MSj
= N ◦ Att ◦ FSj

◦Rep (11.9)

where:

FSj
(Rep(x)) = {fSi

(Rep(x))}Ki=1,i 6=j ∪ g(Rep(x)) (11.10)
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The same attention module Att is applicable to the output of the meta-feature extrac-

tor FSj
where the query matrix based on the global model attends to all the expert

embeddings in the key matrix regardless of the number of expert models. Finally, the

meta-target loss L3 for the batch Xj is given by:

L3(Xj) =
1

B

B∑
l=1

CrossEnt(MSj
(x
Sj
l ), y

Sj
l ) (11.11)

Adversarial loss L4

The global model g plays an important role in the attention module Att. Learning

a domain invariant embedding from the global model makes the transfer to the tar-

get domain smoother as the attention weights should be more accurate. To obtain

a domain invariant representation from g, we adapt the domain adversarial training

for EM. Similar to the generative adversarial network (GAN), a min-max objective

function is introduced to optimize the parameters of the generator which is the global

model g and the discriminator denoted by D. The parameters of D are optimized

to predict the domain of a sample x using g(Rep(x)), and the parameters of g are

optimized to produce a confusing representation g(Rep(x)) for D. We alternate be-

tween updating D and g. Given that Xj is sampled from the j-th domain, in order

to update D, we minimize LD which is given by:

LD(Xj) =
1

B

B∑
l=1

CrossEnt(D(fg(Rep(x
Sj
l ))), j) (11.12)

LD is minimized with respect to only the parameters of D. Then, we set L4(Xj) =

−LD(Xj) to update the parameters of g when minimizing L (D parameters are fixed).

Unlabeled samples T =
{
xTj
}|T |
j=1

from the target domain can be also considered as an

additional domain when updating the parameters of D and g by alternating between

minimizing LD and −LD, respectively. In this case, the total number of labels that

are used in LD is equal to K + 1.

11.3.3 Fine-tuning DAME on the target domain

During fine-tuning DAME on the target domain, we only update the weights of the

global model g, attention weights Att, and the classification layer N , and we keep
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the weights of the expert models fS1 , fS2 , . . . , fSK
frozen. The objective of the fine-

tuning step is to slightly update the parameters of DAME to incorporate dataset-

specific signals related to the target domain without changing the parameters of expert

models. There are multiple fine-tuning scenarios on the target domain. First, we can

use all the samples from the target domain or only a limited budget of samples for

fine-tuning. Second, in the case of having access to only a limited budget of samples,

we can randomly choose samples, or adapt active learning (AL) selection strategies to

select the most promising samples. We experiment with all the scenarios and produce

AL results using methods from [255, 72, 210].

11.4 Evaluation

11.4.1 Baselines

We compare the performance of our proposed model against the best performing

method in the category of attribute-level comparators which is DeepMatcher [165]

(the previous SOTA), and the SOTA in EM which is Ditto [139]. We are interested

in two aspects of our proposed model DAME. First, we evaluate the ZSL case for

DAME by comparing the results to the baselines that are fine-tuned on different

percentages of training data. Second, we compare the results of fine-tuning DAME

on the target domain against fine-tuning the baselines on the target domain.

11.4.2 Experimental Setup

We evaluate the performance of DAME and baselines on the EM task using precision,

recall, F1-score, and accuracy of predictions on the testing set. We write †, and ‡ to

denote that the absolute difference between Ditto trained on 50% of data and DAME

(ZSL) is less than 0.15, and less than 0.1, respectively. We write § to denote that

either the absolute difference between Ditto trained on 50% of data and DAME (ZSL)

is less than 0.05 or DAME (ZSL) is better than Ditto trained on 50% of data. DAME

is trained for 3 epochs on the source domains. We compare fine-tuning results for

DAME and baselines after training for 10 epochs on the same percentage of training

data from the target domain. The hyperparameters λ1, λ2, λ3, and λ4 are fine-tuned

for one dataset and then kept the same for all the experiments. We distinguish 3

152



sets of experiments based on the structure of datasets. The first set of experiments

studies DA for shoes, cameras, computers, and watches. These datasets have a unique

attribute which is title. The second set of experiments also studies DA for datasets

that have similar structures which are DBLP-GoogleScholar and DBLP-ACM. The

set of attributes for these two datasets are title, authors, venue, and year. The third

set of experiments is related to DA in the wild where we study DA using all 12

datasets regardless of the structures and domains.

11.4.3 Experimental results

DA for shoes, computers, watches, cameras

Figure 11.2 shows the comparison of DAME results against Ditto for shoes, com-

puters, watches, and cameras. The caption of each subfigure represents the target

domain, and the remaining 3 domains represent the source domains. Each data point

represents the mean of 5 trials, and the vertical line in each data point represents

the standard deviation (std). The plots report two evaluation metrics: F1 score and

accuracy. In all figures, the light blue plot represents the F1 score of DAME, and

is compared against the green plot that represents the F1 score of Ditto; the red

plot represents the accuracy of DAME, and is compared against the blue plot that

represents the accuracy of Ditto. DAME and Ditto outperform DeepMatcher for all

evaluation metrics, so that we only include DAME and Ditto results to avoid clut-

ter in the figures. The magenta color represents the F1 score of the DAME (ZSL)

for the target domain, which is equivalent to 0% of supervised training data from

the target domain. We achieve high F1 scores for DAME (ZSL) for both shoes and

cameras datasets, where the F1 score for DAME (ZSL) is equivalent to fine-tuning

Ditto on 72% and 85% of training data for the shoes and cameras, respectively. The

results are lower for computers and watches where the F1 score of DAME (ZSL) is

equivalent to Ditto fine-tuned on around 25% of training data. Figure 11.2 shows the

results of fine-tuning DAME using different percentages of training data. Fine-tuning

DAME leads to a better and more stable (smaller std in most fractions of the training

data) performance than Ditto for all datasets which means that DAME generalizes

better than existing methods in EM for datasets with similar structure. This can be

explained by the important role of DA in learning the task so that the weights are

better warmed up for EM.
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Figure 11.2: Comparison of DAME results against Ditto for datasets with similar
structure (shoes, computers, watches, and cameras). The plots report two evaluation
metrics: F1 score and accuracy. In all figures, the light blue plot represents the F1
score of DAME, and is compared against the green plot that represents the F1 score
of Ditto; the red plot represents the accuracy of DAME, and is compared against the
blue plot that represents the accuracy of Ditto; the magenta color represents the F1
score of the ZSL for the target domain.

DA for DBLP-GoogleScholar, DBLP-ACM

Table 11.1 summarizes the performance of different approaches on the second set

of datasets with the same structure which is composed of DBLP-GoogleScholar and

DBLP-ACM. In this case, we have one target dataset and one source dataset. We

achieve high results for DAME (ZSL) for both datasets. In addition, fine-tuning

DAME slightly increases the F1 and accuracy for both datasets. So, consistent with

the first set of experiments, we conclude that DAME transfers the task knowledge
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Method Name Precision Recall F1 Accuracy

DeepMatcher [165] 0.9489 0.9373 0.9431 0.9789

Ditto [139] 0.9358 0.9542 0.9449 0.9793

DAME (ZSL) 0.9098 0.8579 0.8831 0.9576

DAME (full fine-tuning) 0.9354 0.9719 0.9533 0.9850

(a) DBLP-GoogleScholar

Method Name Precision Recall F1 Accuracy

DeepMatcher [165] 0.9855 0.9869 0.9861 0.9945

Ditto [139] 0.9865 0.9865 0.9865 0.9951

DAME (ZSL) 0.8769 0.9954 0.9324 0.9741

DAME (full fine-tuning) 0.9865 0.9954 0.9909 0.9971

(b) DBLP-ACM

Table 11.1: DA results for EM using datasets with similar structure. (a) the target
dataset is DBLP-GoogleScholar and the source dataset is DBLP-ACM; (b) the target
dataset is DBLP-ACM and the source dataset is DBLP-GoogleScholar.

from the source domains to a target domain in the case of datasets with similar

structures.

DA in the wild

We study the case of transferring knowledge between datasets with different domains

and structures. We call this setting DA in the wild which simulates real-world sce-

narios. Tables 11.3 and 11.4 (end of the chapter) show extensive experiments on 12

datasets reporting evaluation metrics for multiple methods. DAME (ZSL) achieves

a better F1 score than DeepMatcher fine-tuned with 50% of training data from the

target domain for 7 out of 12 datasets. The absolute difference between the F1 score

of Ditto trained on 50% of data and DAME (ZSL) is less than 0.1, and 0.05 for

83% and 41% of datasets, respectively. By comparing the F1 score of fine-tuning all

methods using 50% of training data from the target domain, we achieve SOTA re-

sults for 10 out of 12 datasets. By comparing the F1 score of fine-tuning all methods

using all training data from the target domain, we achieve SOTA results for 10 out

of 12 datasets. This means that DAME generalizes better than existing methods for
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Figure 11.3: Comparison of F1 score results with different numbers of expert domains
against using global model representation during testing phase on the target domain.

datasets in the wild.

Expert models vs Global model

Figure 11.3 shows the comparison of F1 score results with different numbers of expert

domains against using the global model representation during the testing phase on

the target domain in the case of ZSL. The x-axis represents the number of experts

that we use for predictions. For example, if the number of experts is equal to 6, it

means that we randomly choose 6 experts and we drop the remaining 5 experts. Each

data point in Figure 11.3 represents an average of 5 trials. The dashed line represents

the F1 score for the global model. For 10 out of 12 datasets, combining multiple

experts using the attention network Att leads to better results than the global model.

Figure 11.3 shows that the least and largest number of experts needed to outperform

the global model equals 5 (DBLP-ACM) and 11 (cameras), respectively. Overall, we

obtain better F1 scores for the mixture of experts when we increase the number of

experts. This means that the experts help to better understand the EM task, and

therefore transfer the learned task knowledge to the unseen target domain.

DAME with Active learning

So far, we have discussed the performance of fine-tuning DAME using randomly

selected samples from the target domain. To improve the results of fine-tuning our

model, we investigate multiple AL selection techniques given a limited budget of

labeled instances. Table 11.2 shows the results of multiple AL selection methods

applied to the DAME (ZSL) model. The starting point is our DA-based model which
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Table 11.2: F1 results for AL after DA.

Method Shoes Computers Watches Cameras

DAME (ZSL) 0.7527 0.7946 0.7936 0.8507
DAME (full fine-tuning) 0.8483 0.8947 0.9371 0.8941

Random Sampling (5%) 0.7527 0.8181 0.8004 0.8664
Least Confidence [255] (5%) 0.7818 0.8402 0.8209 0.8745
Entropy Sampling [255] (5%) 0.7859 0.8464 0.8166 0.8748

USDE [72] (5%) 0.7877 0.8437 0.8151 0.8775
BALD [72] (5%) 0.7852 0.8472 0.8313 0.8705

K-Centers Greedy [210] (5%) 0.7674 0.8271 0.8206 0.8687
K-Means [210] (5%) 0.7527 0.8042 0.8097 0.8596
Core-Set [210] (5%) 0.7621 0.8304 0.8168 0.8734

Random Sampling (25%) 0.8120 0.8418 0.8528 0.8741
Least Confidence [255] (25%) 0.8228 0.8804 0.8677 0.8888
Entropy Sampling [255] (25%) 0.8207 0.8770 0.8740 0.8925

USDE (25%) [72] 0.8286 0.8741 0.8688 0.8842
BALD (25%) [72] 0.8247 0.8835 0.8872 0.8941

K-Centers Greedy [210] (25%) 0.8155 0.8771 0.8869 0.8780
K-Means [210] (25%) 0.8057 0.8658 0.8694 0.8737
Core-Set [210] (25%) 0.8161 0.8696 0.8812 0.8776

is not fine-tuned on the target domain, and the best performance corresponds to

DAME fine-tuned on all training data from the target domain. We report results using

two budget levels: 5% and 25% of the training data from the target domain. The

simplest baseline is Random Sampling. The remaining baselines can be categorized

into two groups: the confidence-based baselines which are: Least Confidence [255],

Entropy Sampling [255], Uncertainty Sampling with Dropout Estimation (USDE)

[72], and Bayesian Active Learning Disagreement (BALD) [72]; and the embedding-

based baselines which are K-Centers Greedy [210], K-Means [210], and Core-Set [210].

The selection of samples in the first group is based on the confidence scores of the

training data from the target domain that are computed using the DAME (ZSL)

model. For example, for a budget of b samples, Least Confidence corresponds to

the top b samples with the lowest confidence level. Multiple predictions for a given

sample are needed for USDE and BALD to compute the uncertainty functions, and

we obtain these different predictions by activating the dropout layers during the

inference phase on the target domain. The second group is based on the embeddings

of samples from the target domain that are obtained from the DAME (ZSL) model.

Clustering of the input space is then applied to determine centers of clusters or core

sets. Table 11.2 shows that the confidence-based methods lead to better results
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than the embedding-based methods. In particular, when we select 25% of samples

using the BALD method for the cameras dataset, we achieve the same F1 score

of a fully fine-tuned DAME model using all training data from the target domain.

This indicates that the predictions from the classification layer N of our model M

accurately reflect the data points where DA was unsuccessful. Therefore, by fine-

tuning on these samples from the training data, our model generalizes better on the

testing set of the target domain.

Visualization

We finish our experiments by showing the embedding of DAME in the case of ZSL.

Figure 11.4 shows the t-SNE visualization of the final embeddings for the target and

source domains after DA in the wild (ZSL case). We only show the embeddings of

six domains, but we notice similar patterns for all the datasets. The gray and blue

colors represent randomly selected data points from the source domains with a label

0 and label 1, respectively; the green and red colors represent randomly selected

data points from the testing set of the target domain with a label 0 and label 1,

respectively. 12 domains are used in each experiment, where the caption of each

subfigure represents the target domain, and the 11 remaining datasets represent the

source domains. The best case is to have a mixture of blue and red dots which

represent the matching class for the source and target domains, respectively, and a

mixture of gray and green dots which represent the non-matching class for the source

and target domains, respectively. This means that we transfer the task knowledge

from sources to the target domain for both labels. For example, for computers and

DBLP-ACM, we obtain embeddings that respect the matching and non-matching

classes as shown in Figure 11.4 (a) and (b). On the other hand, for Amazon-Google

and Walmart-Amazon, there are green dots that are closer to the blue dots as shown

in Figure 11.4 (c) and (d), and this leads to incorrect predictions.

11.5 Summary

We have shown that our proposed model transfers learning from multiple source

domains to an unseen target domain in the EM task. We formulate the EM task as a

mixture of experts that capture task-specific knowledge from pretraining on multiple
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(a) Computers (b) DBLP-ACM

(c) Amazon-Google (d) Walmart-Amazon

(e) Watches (f) Cameras

Figure 11.4: The t-SNE visualization of the final embeddings for the target and source
domains after DA in the wild (ZSL case).

source domains and testing on a target domain. We evaluate DAME in two aspects.

First, we study the ZSL case on the target domain and demonstrate that DAME

learns the EM task and transfers knowledge to the target domain. Second, we study
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fine-tuning DAME on the target domain and demonstrate that DAME generalizes

better than SOTA methods for most of the datasets. We showed that our results

hold in two scenarios which are EM for datasets with similar structure and EM in the

wild. Our experimental section contains extensive experiments over 12 datasets with

different domains, sizes and structures. In addition, we showed the importance of

selecting a specific set of samples in the fine-tuning of the target domain by studying

AL methods with limited budget. Future work includes extending our model to pairs

of records with different sets of attributes, and enriching our DA-based model with

external knowledge, such as knowledge graphs, to better understand the EM task and

therefore transfer more knowledge to the target domain.

Table 11.3: DAME results for EM in the wild. 12 domains are used in each experi-
ment, where each row of the table represents the target domain, and the 11 remaining
datasets represent the source domains. We write †, and ‡ to denote that the absolute
difference between Ditto trained on 50% of data and DAME (ZSL) is less than 0.15,
and less than 0.1, respectively. We write § to denote that either the absolute differ-
ence between Ditto trained on 50% of data and DAME is less than 0.05 or DAME is
better.

Target dataset Method Precision Recall F1 Accuracy

Fodors-Zagats

DAME (ZSL) 0.9565§ 1.0000§ 0.9777§ 0.9947§

DeepMatcher[165] (50% training data) 0.9360 0.8333 0.8801 0.9735
Ditto [139] (50% training data) 1.0000 0.9545 0.9767 0.9947

DAME (50% training data) 0.9565 1.0000 0.9777 0.9947
DeepMatcher[165] (full training data) 0.9092 0.9848 0.9437 0.9858

Ditto [139] (full training data) 1.0000 0.9545 0.9767 0.9947
DAME (full fine-tuning) 1.0000 1.0000 1.0000 1.0000

Beer

DAME (ZSL) 0.7368§ 1.000§ 0.8484§ 0.9450§

DeepMatcher[165] (50% training data) 0.8095 0.4047 0.5396 0.8937
Ditto [139] (50% training data) 0.7211 0.6428 0.6794 0.9065

DAME (50% training data) 0.7801 1.000 0.8758 0.9560
DeepMatcher[165] (full training data) 0.8183 0.7142 0.7588 0.9304

Ditto [139] (full training data) 0.8174 0.9285 0.8660 0.9560
DAME (full fine-tuning) 0.7801 1.000 0.8758 0.9560

iTunes-Amazon

DAME (ZSL) 0.6750 1.000§ 0.8059‡ 0.8807‡

DeepMatcher[165] (50% training data) 0.9005 0.7901 0.8406 0.9266
Ditto [139] (50% training data) 0.8685 0.8518 0.8594 0.9311

DAME (50% training data) 0.9333 0.9629 0.9467 0.9724
DeepMatcher[165] (full training data) 0.9139 0.9135 0.9135 0.9571

Ditto [139] (full training data) 0.9282 0.9259 0.9258 0.9633
DAME (full fine-tuning) 0.9807 0.9259 0.9524 0.9770

Abt-Buy

DAME (ZSL) 0.4545 0.6796† 0.5447 0.8778‡

DeepMatcher[165] (50% training data) 0.6978 0.5355 0.6033 0.9244
Ditto [139] (50% training data) 0.7916 0.7839 0.7870 0.9543

DAME (50% training data) 0.7960 0.7864 0.7911 0.9553
DeepMatcher[165] (full training data) 0.7382 0.6181 0.6725 0.9352

Ditto [139] (full training data) 0.9206 0.7864 0.8481 0.9697
DAME (full fine-tuning) 0.8243 0.8592 0.8410 0.9650

Amazon-Google

DAME (ZSL) 0.5431 0.6453§ 0.5898‡ 0.9084§

DeepMatcher[165] (50% training data) 0.5623 0.5327 0.5416 0.9085
Ditto [139] (50% training data) 0.7055 0.6709 0.6877 0.9378

DAME (50% training data) 0.6339 0.7435 0.6809 0.9291
DeepMatcher[165] (full training data) 0.7002 0.6011 0.6454 0.9326

Ditto [139] (full training data) 0.6709 0.8098 0.7338 0.9400
DAME (full fine-tuning) 0.7046 0.7692 0.7353 0.9435

Shoes

DAME (ZSL) 0.6798§ 0.8135§ 0.7407§ 0.8450§

DeepMatcher[165] (50% training data) 0.6346 0.7163 0.6719 0.8096
Ditto [139] (50% training data) 0.7137 0.7559 0.7301 0.8496

DAME (50% training data) 0.8234 0.8423 0.8325 0.9077
DeepMatcher[165] (full training data) 0.6908 0.7988 0.7400 0.8468

Ditto [139] (full training data) 0.7569 0.8389 0.7950 0.8819
DAME (full fine-tuning) 0.8421 0.8796 0.8600 0.9220
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Table 11.4: DAME results for EM in the wild (cont).

Target dataset Method Precision Recall F1 Accuracy

Computers

DAME (ZSL) 0.7957§ 0.8729§ 0.8325§ 0.9043§

DeepMatcher[165] (50% training data) 0.5762 0.7547 0.6529 0.7820
Ditto [139] (50% training data) 0.8020 0.9080 0.8517 0.9139

DAME (50% training data) 0.8303 0.9063 0.8659 0.9234
DeepMatcher[165] (full training data) 0.7002 0.8350 0.7614 0.8576

Ditto [139] (full training data) 0.8682 0.9147 0.8908 0.9389
DAME (full fine-tuning) 0.8630 0.9264 0.8935 0.9398

Watches

DAME (ZSL) 0.7267† 0.9124§ 0.8090‡ 0.8834‡

DeepMatcher[165] (50% training data) 0.6997 0.7274 0.7126 0.8415
Ditto [139] (50% training data) 0.8664 0.8996 0.8827 0.9352

DAME (50% training data) 0.8691 0.9160 0.8917 0.9397
DeepMatcher[165] (full training data) 0.7771 0.8309 0.8030 0.8896

Ditto [139] (full training data) 0.9145 0.9178 0.9161 0.9545
DAME (full fine-tuning) 0.9010 0.9470 0.9234 0.9575

Cameras

DAME (ZSL) 0.8376§ 0.8958§ 0.8657§ 0.9243§

DeepMatcher[165] (50% training data) 0.5896 0.6863 0.6328 0.7842
Ditto [139] (50% training data) 0.7585 0.8628 0.8020 0.8831

DAME (50% training data) 0.8801 0.8871 0.8825 0.9356
DeepMatcher[165] (full training data) 0.6986 0.7847 0.7388 0.8486

Ditto [139] (full training data) 0.8573 0.9062 0.8809 0.9333
DAME (full fine-tuning) 0.8917 0.9070 0.8963 0.9432

Walmart-Amazon

DAME (ZSL) 0.3558 0.9015§ 0.5102 0.8369†

DeepMatcher[165] (50% training data) 0.6938 0.5474 0.6118 0.9346
Ditto [139] (50% training data) 0.8501 0.7098 0.7721 0.9607

DAME (50% training data) 0.8082 0.8083 0.8082 0.9638
DeepMatcher[165] (full training data) 0.6971 0.6010 0.6448 0.9376

Ditto [139] (full training data) 0.8883 0.7694 0.8227 0.9687
DAME (full fine-tuning) 0.8615 0.7875 0.8226 0.9680

DBLP-GoogleScholar

DAME (ZSL) 0.9077§ 0.8490‡ 0.8737‡ 0.9499§

DeepMatcher[165] (50% training data) 0.9347 0.9439 0.9385 0.9770
Ditto [139] (50% training data) 0.9356 0.9448 0.9385 0.9771

DAME (50% training data) 0.9367 0.9411 0.9389 0.9771
DeepMatcher[165] (full training data) 0.9489 0.9373 0.9431 0.9789

Ditto [139] (full training data) 0.9358 0.9542 0.9449 0.9793
DAME (full fine-tuning) 0.9392 0.9537 0.9464 0.9798

DBLP-ACM

DAME (ZSL) 0.8661† 0.9854§ 0.9219‡ 0.9651§

DeepMatcher[165] (50% training data) 0.9787 0.9763 0.9774 0.9919
Ditto [139] (50% training data) 0.9865 0.9865 0.9865 0.9951

DAME (50% training data) 0.9787 0.9831 0.9809 0.9931
DeepMatcher[165] (full training data) 0.9855 0.9869 0.9861 0.9945

Ditto [139] (full training data) 0.9865 0.9865 0.9865 0.9951
DAME (full fine-tuning) 0.9865 0.9868 0.9866 0.9951
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Chapter 12

Conclusions

12.1 Summary

In this dissertation, we first presented the literature work that is related to our pro-

posed methods. We discussed both the related deep learning techniques and the

problems that we have addressed in dataset search and curation. In terms of neural

components, we introduced the convolutional neural network, recurrent neural net-

work, long short-term memory, gated recurrent units, and attention mechanism. We

also summarized the embedding techniques including the traditional, contextualized,

and deep contextualized embeddings. In addition, we introduced a recent line of re-

search that focuses on embeddings obtained from graph representations. Our work is

related to search engines in general, so we introduced the neural ranking models that

are used in document retrieval. In terms of machine learning concepts, we introduced

the N-gram language models that are used to compute ranking scores. In addition,

we presented the structured prediction task that is adapted in our new setting for

semantic labeling. Finally, we presented the domain adaptation which is used to solve

the entity matching task.

Then, we discussed the literature of table search, table similarity, semantic la-

beling, and entity matching, and we introduced the datasets that are used in our

experiments to compare our proposed methods against baselines for table search,

table similarity, semantic labeling, and entity matching.

After introducing the datasets, we presented our contributions in dataset search

and curation. Extracting useful knowledge from datasets in the wild is a cumbersome
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process, and data scientists spend the majority of their time searching and cleaning

datasets for downstream analytic tasks. Retrieving datasets, that are relevant to the

user’s information need, is the first step in the pipeline of data management in gen-

eral. We discussed our proposed methods for dataset search, and addressed multiple

research questions that we have raised. We summarize the main contributions in

dataset search as follows:

• In Chapter 5, we propose an unsupervised method for table ranking, called

MCON [241], where we build a new model for word embeddings of the tokens

of table attributes using contextual information of every table. We demonstrate

the usefulness of an attribute’s collection of values (the data tokens) in creating

a meaningful semantic representation of the attribute. We predict the context

of tables using the trained contextual model, and we use a mixed ranking model

that incorporates the metadata of a table and the additional contexts in order

to calculate the retrieval score. We achieved 6% improvement in NDCG@5 over

the best unsupervised baseline.

• In Chapter 6, we propose a new knowledge graph, called MultiEM-RGCN [238],

that incorporates both dataset-dependent and dataset-agnostic knowledge from

table corpus to incorporate multiple matching signals and external resources

and learn embeddings for large collections of data tables. External semantic and

lexical resources are used for edges and nodes leading to an heterogeneous graph.

Multiple types of embeddings are learned simultaneously from our proposed

knowledge graph using graph neural networks (GNN) with the link prediction

pre-training task. Our proposed graph provides multiple embeddings for each

token in all the fields. The new graph embeddings are incorporated into a

learning to rank (LTR) architecture that combines multiple embeddings from

our heterogeneous graph to solve the table retrieval task. We achieved 4%

improvement in NDCG@5 over the best embedding baseline.

• In Chapter 7, we propose a deep semantic and relevance matching model, called

DSRMM [237], that is able to capture multiple levels of semantic signals between

query and table. We demonstrate the usefulness of query relevance-specific com-

ponents for the table retrieval task. Using kernel pooling, we learn a feature

vector based on the probability distribution of the similarity of each document
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token to each query token, and we learn the contribution of each token to the

final relevance score using a Term Gating Network. Each of these components

lead to improvement on retrieval tasks without leading to a large increase in

the number of parameters of the model. DSRMM outperforms the best previ-

ously published results in table retrieval using STR [293], achieving up to 10%

improvement in NDCG@5 score.

• In Chapter 8, we propose a new structure-aware BERT model, called Stru-

BERT [240], that fuses the structural and textual information of a data table

to produce four context-aware features: two fine-grained structure and con-

text aware representations for rows and columns, and two coarse-grained rep-

resentations for row and column guided [CLS] embedding. We propose a new

ranking model, called miniBERT, that operates directly on the embedding level

sequences formed from StruBERT features to solve three table-related down-

stream tasks which are: keyword- and content-based table retrieval, and table

similarity. In addition to achieving better retrieval and classification results

than existing baselines, the main benefit of StruBERT is solving both scenarios

for table search: keyword- and content-based table retrieval.

After extracting relevant datasets, the next step is to automate the data curation

in order to improve the quality of the data for downstream tasks. In particular,

we focused on the semantic labeling, table similarity, and entity matching, and we

presented multiple deep learning based approaches to solve these tasks. We summarize

the main contributions in data curation as follows:

• In Chapter 10, we propose a new context-aware semantic labeling approach,

called SeLaB [236], that takes into account data values and contextual informa-

tion of attributes to obtain a context-sensitive embedding for semantic labeling.

Our new formulation of semantic labeling is based on the structured prediction

setting in which the input to our model is a data table with missing headers,

and we sequentially generate schema labels for each data table. We incorporate

data values and predicted contexts using BERT, which is trained end-to-end for

feature extraction and label prediction. This reduces human effort in semantic

labeling. To explain the predictions of SeLaB in semantic labeling, we com-

pared SeLaB embeddings and attention heads from multiple layers in both first
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and third stage prediction of the testing phase. To show that SeLaB consid-

ers both data values and contextual information when inferring the third stage

schema labels, we included the analysis about the cosine similarity between

the embedding of the [CLS] token and the average of data values and context

tokens. SeLaB improves upon the state-of-the-art approach Sherlock [101] for

semantic labeling achieving 10% improvement in top-1 accuracy over Sherlock

for WikiTables, and 20% improvement in top-1 accuracy over Sherlock for Log

tables.

• In Chapter 8, we propose predicting the semantic matching between tables

based on StruBERT [240] features with miniBERT ranking model as in the

content-based table retrieval case.

• In Chapter 11, we propose a new domain adaptation-based method for entity

matching called DAME [242]. Our new formulation of entity matching is based

on the mixture of experts where we transfer learning from multiple source do-

mains to a target domain. We study the zero-shot learning case on the target

domain and demonstrate that our method learns the entity matching task and

transfers the task knowledge to the target domain. We extensively study fine-

tuning our model on the target dataset from multiple domains, and demonstrate

that our model generalizes better than state-of-the-art methods for most of the

datasets. To reduce the number of fine-tuning samples in the target domain,

DAME is fine-tuned on a limited budget of data by incorporating active learning

techniques to select the best subset of samples for fine-tuning. In addition to

achieving better classification results than existing baselines, the main benefit

of this work is showing that the domain adaptation in the wild is a promising

research direction.

12.2 Future Directions

The methods that are presented in this dissertation can be used to build a dataset

search and curation system. The workflow for this system starts from a given user’s

query, that can be either keywords- or content-based query. Then, the search engine

part of the system finds relevant datasets, and the curation part of the system returns

a curated set of relevant datasets to the user. As discussed in Chapter 9, a multi-stage
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ranking architecture for dataset search is suitable for the trade-off between retrieval

results and computation time in the deployment phase. The first stage consists of

extracting the candidate datasets using simple combined ranking scores from MCON

[241] and MultiEm-RGCN [238]. In this stage, recall is more important than precision

to cover all possible relevant datasets. The irrelevant datasets can be discarded in the

next stages. Then, for the second stage, the top ranked datasets from the first stage

are re-ranked using DSRMM [237] to obtain a better set of relevant datasets. DSRMM

is a supervised ranking method composed of convolutional filters and kernel pooling,

and these operations are computationally efficient both in terms of time and memory.

Finally, in the third stage, StruBERT [240] is used to rank the top datasets from the

second phase, and return the final top ranked dataset to the user. This multi-stage

model can reduce the number of datasets that should be ranked with StruBERT,

which is computationally expensive in terms of time and memory. The curation part

of the system applies data curation techniques to return a set of curated datasets.

For instance, our system can predict more consistent header names for datasets using

SeLaB [236], and find redundant records in datasets or similar records across datasets

using DAME [242], in order to facilitate the data integration.

We can improve the dataset search and curation system by incorporating three

components. First, including visualization tools helps the user to visualize multiple

statistics about the datasets. Second, the system can be improved to retrieve answers

for questions from users instead of the keyword-based queries, and this related to the

question-answering over datasets [92, 30, 91]. Third, the system can be used to help

researchers to find relevant scientific datasets to their work. This is a challenging task

because there are no conventions or standards about research datasets. As an initial

solution, we have proposed to build an ontology, called Machine Learning Progress

Ontology (MLPO) [35], to track tasks, datasets, and metrics in machine learning.

This ontology can be automatically populated by finding the relevant tasks, datasets,

and metrics in research papers. So, our final system combines techniques from both

information retrieval and semantic web in order to automate extracting useful knowl-

edge from datasets. Such a system can reduce human effort by automating searching

and cleaning datasets in order to improve the quality of data for data-driven down-

stream tasks.
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