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Abstract

NCS (Network and Cache Simulator) is an HTTP trace-driven discrete event simulator of
network and caching activity. It is highly parameterized for maximal compatibility with previous
caching and network simulations. In granularity, it resides between the high-level caching-only
simulators prominant in much Web caching research, and the detailed simulators of networking
protocols and traffic. In an effort to capture estimates of user-perceived latency, it simulates
simplistic caching and prefetching functionality at various locations in a network comprising of
client browsers, an optional intermediate proxy, and Web servers. Caching at the proxy and
clients is optional. Additionally, it simulates many aspects of TCP traffic among these entities
on a somewhat idealized network. In this report we motivate the development of NCS and
describe its features and capabilities. We additionally provide a number of sample experiments
showing the simulator’s utility in a variety of contexts.

1 Introduction

Simulation is a common approach for algorithmic research, and is widespread in Web caching
research (e.g., see [Dav99a]). In general, simulation provides many benefits, including the ability
to:

test scenarios that are dangerous or have not yet occurred in the real world

predict performance to aid technology design

predict expected behavior of new protocols and designs without implementation costs or
disruption of existing systems

slow or speed time for effective analysis

quickly survey a range of potential variations

NCS (Network and Cache Simulator) is an HTTP trace-driven discrete event simulator of
network and caching activity. It is highly parameterized for maximal compatibility with previous
caching and network simulations. In granularity, it resides between the high-level caching-only
simulators prominant in much Web caching research, and the detailed simulators of networking



protocols and traffic. In an effort to capture estimates of user-perceived latency, it simulates
simplistic caching and prefetching functionality at various locations in a network comprising of
client browsers, an optional intermediate proxy, and Web servers. Caching at the proxy and clients
is optional. Additionally, it simulates many aspects of TCP traffic among these entities on a
somewhat idealized network.

The development goals for NCS included:

e Estimate client-side latencies and bandwidth usages by

— Capturing intrinsic network effects (e.g., new connection costs, TCP slow start).

— Modeling real topologies (including browsers, proxies, and servers, with potentially mul-
tiple connections and/or persistent connections).

— Capturing some real-world network effects (including distributions of latencies and band-
widths).

e Provide credibility — be able to compare simulation results to real-world numbers.

e Incorporate optional prefetching techniques for testing and evaluation.

While most Web caching simulators measure hit rates and bandwidth used, few consider the
detail needed to believably estimate retrieval latency. In contrast, NCS is specifically designed to
estimate the latency experienced by the user, and so includes network simulation in addition to a
caching implementation.

This document motivates the design, lists the features, provides an overview of the implemen-
tation, and presents some sample experiments to demonstrate the utility of the simulator.

1.1 Motivation

In an effort to improve Web performance from the perspective of both a network administrator and
the end user, Web caching has been the focus of much research. (For an introduction and recent
surveys see [Dav0lb, Wan99, Mog00, BO00]). The evaluation of such research has varied widely
among dimensions of measurement metrics, implementation forms (from logic arguments, to event
simulations, to full implementation), and workloads used [Dav99a]. Even when restricting one’s
view to caching oriented simulators (e.g. those used in [WAS196, CDF*98, FCD'99, FJCL99,
ZIR099, BH00, DL00]), it is apparent that there is a wide range of simulation detail. However, it
has also been noted that some details are of particular importance [CDF198], such as certain TCP
slow-start network effects and HTTP connection caching when trying to capture latency estimates.

Caching in the Web is known to reduce network bandwidth, server loads, and user-perceived
latency. As overall bandwidth in the net improves and becomes less expensive and more experience
is gained in managing loads of popular servers, the final characteristic of latency improvement gains
interest among caching researchers. This, in fact, was the initial motivation for the development of
NCS. Prefetching is a well-known approach to reduce latency in the memory hierarchy of modern
computer architectures, and has been proposed by many as a mechanism for the same in the
World Wide Web. However, a significant difficulty in Web prefetching research is the lack of good
methods for evaluation. Elsewhere [Dav99b] we have proposed a mechanism for evaluation of fully
implemented systems that may employ prefetching, but a simulator is more appropriate for the
earlier feedback needed in any research effort.

Therefore, NCS has been designed to estimate the client-perceived latency by simulating the
network latencies and the effects of caches present in the network. In addition, it contains optional
prediction code to provide various levels of prefetching wherever caching is available.



1.2 Inspiration

Although inspired by the caching simulators described and used in [FCD99, FJCL99, DL00],
the development of NCS has proceeded independently. While this has necessitated significant
redevelopment, it has had the side-benefit of being an educational process for the author. An
alternative might have been to use the network simulator ns [UCBO01] and extend it appropriately
for prefetching. However, ns is also known to have a steep learning curve [BEFT00], and would
likely require significantly more computational resources because of the more detailed modeling
it performs. By using a less-detailed network model, NCS is able to estimate performance for
traces using tens of thousands of hosts much faster than real-time. Additionally, NCS uses trace-
based workloads with the associated characteristics of actual data, instead of artificially generated
data. In summary, we wanted more detail (and response-time accuracy) than typical caching-only
simulators, but faster simulation times for large experiments than the fine-grained network-oriented
simulator ns, and to be able to incorporate code to optionally estimate the effects of prefetching.

2 Implementation

In general, NCS is designed to be as parametric as possible, so that a large variety of simulated
environments can be created. We had particular goals of replicating many of the first order char-
acteristics of existing browsers and proxies (such as caching of data, dns, and connections). The
suggested values were often derived empirically (as in [WC98]) or by direct examination of publicly
available source code (for Netscape Communicator [Net99] and Squid [Wes01]).

One perceived drawback of a large parameter set is that all parameters must have a value, even
when trying to simulate a fairly simple environment. Conversely, this is better viewed as a feature
that makes design choices explicit, rather than implicit as in most simulators.

2.1 Features

A quick summary of the features of NCS include its use of a simple form of server and proxy logs as
input; its optional support of persistent and/or pipelined connections and more than one connection
to the same host. Idle connections can be dropped after timeouts, or when a new connection is
needed but the max number of connections have been established. In general it allows an arbitrary
number of clients, an optional intermediate proxy, and an optional number of servers. It supports
caches at clients and intermediate proxies. It uses parameterized link bandwidths and latencies
as input to an emulation of TCP slow-start (with some limitations such as assuming an infinite
slowstart threshold). Three versions of TCP slowstart are available: naive slow-start, BSD-style
starting with payload of size 2, and a version that uses delayed acks. It can optionally include a
simple model for parameterized DNS lookup cost with DNS caching at clients and proxies. Proxies
can optionally buffer received files before sending, or can send them as they are being received; in
addition, proxies with multiple requests for the same item can either open multiple connections, or
wait until the first is received and then serve the second request from cache.

With regard to prefetching, it supports prefetching at clients and/or at proxies. It can model
the transmission of hints from server to client at various points in the process. Hints can then be
integrated into prediction models. It does not prefetch items that are already being retrieved.

Alternately, NCS does make a number of simplifying assumptions. At the networking level, it
always sends (and receives) packets in order, and there is no packet loss. It also ignores TCP byte
overheads as well as ACK bandwidth (although ACK timing is used). For some calculations, it
also ignores response header bytes and request bandwidth. Finally, it assumes a simple model of



a server — in particular that the server (and its subsystems) are not the bottleneck (e.g. through
the use of appropriate file and disk management as in [MKPF99]).

2.2 NCS Parameters

The simulator takes just two parameters at the command line. The first is the name of the primary
parameter file (described next), and an optional debugging level (increasing values present more
detail).

All parameter files have the following form: each parameter is specified, one per line, in the
correct order, and is concluded by a special parameter on the last line — the version number of the
file format. Since there is just one value used on each line, anything after a whitespace on the same
line is ignored.

The simulator reads an entirely numerical trace of requests, one per line, in a log to generate
events. The format of the trace file is as follows: the first 6 white-space delimited values are required
(client-id, time, request-id, response-code (e.g. 200, 304, etc.), size, and cacheable (binary value));
the server-id is the only item in the first optional group (if not present, all requests go to the same
server); the second optional group includes three more values (elapsed-request-time in ms, the last
modification time, and the server-request time in ms).

#client-id time request-id code size cacheable [server-id [elapsedms lm serverms]]

Here is an excerpt of a trace with all parameters:

46 846890365.49576 142 200 368 1 51 -1 -1 0.796008

21 846890365.508394 143 200 10980 1 23 -1 833504726 3.505611
47 846890365.519689 144 200 12573 1 52 -1 845000914 19.612891
47 846890365.520312 145 200 6844 1 52 -1 846823803 18.945683
48 846890365.555019 146 200 1340 1 53 -1 845410505 14.995183

Thus these requests were made on 1 November 1996, from four different clients to five different
servers. All requests were satisfied (response code 200). The first one does not include a last-
modified time. None provide an overall elapsed time, but the servers had response times ranging
from approximately .8ms to 19.6ms.

2.3 Code Base

While initially prototyped in Perl, NCS is currently implemented in C in approximately 10,000
lines of code (including prediction codes).

Implementation includes the coding of a number of abstract data types, including: 1) doubly-
linked circular lists for stack and queue functionality and may optionally be sorted; 2) hash tables;
3) heaps for fast priority queues; and, 4) distributions for random value selection according to
various distributions. While not strictly ADTs, separate modules providing caching functionality
and other utilities are provided. In the interests of modularity and separate maintenance tracks,
the prediction code is likewise separated from the simulation code.

The code for HT'TP over TCP, and especially for slow-start effects, is based significantly on the
models shown in [THO96, HOT97, KR00]. Heidemann et al [HOT97] claim their model provides
guidance for wide-area and low-bandwidth network conditions, but may be somewhat inaccurate
when applied to LANs. Therefore, we anticipate similar performance, which has been shown
elsewhere [Dav0la]. Fortunately, the area of interest for most caching simulations is not that of
LANS, and so we expect that the simulation of network effects over wide-area and low-bandwidth
conditions will dominate the occasional inaccuracy in the modelling of LAN conditions.
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Figure 1: NCS topology. NCS dynamically creates clients and servers from templates as they are
found in the trace. It can be configured to use caching at clients and at an optional proxy that can
be placed logically near clients or servers.

2.4 Network Topologies and Characteristics

As suggested by the parameters described in 2.2, the simulator is easily configured for a particular
set of network topologies. It currently allows for a single set of clients which are connected at a
fixed bandwidth and fixed latency. Those clients send their requests either to a single proxy, if
used, or to the origin servers. The servers are likewise connected identically with a fixed bandwidth
and latency, representing the typical characteristics of all servers. See Figure 1. This particular
representation allows for easy management of nodes and parameter files. However, it may be
of interest in the future to allow for more complex network topologies and characteristics. For
example, it may be useful to have multiple proxies so that different sized sets of clients can be
evaluated, or to have some clients use a proxy and others fetch directly. Alternately, it could be
desirable to have multiple hierarchically connected proxies to test performance with proxy chains.
Each of these scenarios (as well as many others) are supported by the generic simulation code, but
have not yet been implemented. Such topological variation would require (among other things) a
slightly more complex parameter file format.

3 Sample Experiments

3.1 Demonstration of Proxy Utility

In some situations, proxies can provide performance benefits even without caching any content.
Here we will simulate such a situation to demonstrate a sample of what benefits are possible and
as an example use of the simulator.

Consider the following scenario: a client is attached to the internet with a bandwidth of
10000B/s, and a network latency of 1s; a server is likewise attached with the same bandwidth
and latency. Thus the overall (uncontested) bandwidth between them is still 10000B/s, but the
one-way latency is 2s (thus RTT is 4s). We will assume a segment size of 1000, that request and
response headers are negligible in size, and that the server takes Os to calculate a response. If the
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Figure 2: Comparison of client caching on the CDF of response times from the UCB Home-IP
request trace.

client makes a new connection to the server, and requests a file that is 10000B long, it will take
(according to the simulator) 16.9s to get the entire file.

However, if a proxy is introduced exactly half-way between the two, with infinite bandwidth,
no internal latencies and zero-latency connections to the Internet, the response time will improve.
In this situation, the bandwidth is still 10000B/s between client and proxy, and between proxy
and server, but the delay between client and proxy, and between proxy and server, is now just 1s
(RTT of 2s). Even though the RTT from client to server is still conceptually 4s, TCP’s slow start
is driven by the RTT in the local connection, and effectively forms a pipeline such that activity
(or delays) are occuring simultaneously on both sides of the proxy, resulting in a response time of
just 13s. For naive slow-start (instead of the more sophisticated one used here) the response times
would be 20.6s vs. 14.7s. In either case, the improvement is a significant fraction of the cost of the
retrieval.

If we use a more realistic environment in which both client and server are connected via a DSL
line (1Mb/s, 10ms latency), we get 229ms response time instead of 196ms with a proxy in the
middle. In reality, the introduction of a proxy does introduce some latency for the computation
time in the proxy (plus disk, if it is a proxy cache). In certain environments, however, if this latency
is small enough, the overall effect can be positive, even without caching. In any case, the simulator
provides an environment in which different scenarios can be tested.

3.2 Additional client caching

NCS provides the ability to model Web caching at clients and/or proxies. Here we examine the
effect of adding a 1MB cache (in addition to any cache already present) at the client. This new
space is called an extension cache [FJCL99]. We further assume that the content of this cache will
expire in at most one day from the last request for that object. This simulation uses no persistent
connections, nor pipelining, as in the original trace.!

To examine the UCB Home-IP trace, we ran variations of the (static) simulator, on the first

! Actually, [GB97] says persistent connections were present, but very uncommon.
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Figure 3: Comparison of proxy caching on the CDF of response times from the UCB Home-1P
request trace.

12 days of requests. We used the versions of the traces in which sizes did not include headers,
and added a fixed header according to the average response header size from the overall trace
(158 bytes). The servers are assumed to be connected with T1 (1.544Mbit) bandwidth, 50ms one-
way latencies, and 30ms per-request overhead. Clients are connected at an effective bandwidth of
27.4kbps with 100ms one-way latencies.

From this test, it can be seen that a small amount of additional client caching can improve
performance. Just over 11% of requests are served from the client extension caches. The mean
response time drops from close to 5.5s to 5.1s, and efficiency improves 17%. Adding persistent
connections improves performance even further, dropping the mean to 4.6s (and improving efficiency
over uncached by 26%). The median results are visible in Figure 2, in which the uncached median
stands at 2.4s, caching improves that to 2.2s, and persistent connections brings the median down
to 1.6s.

3.3 The addition of a caching proxy

In addition, or in lieu of client caching, we can examine the effect of caching at the proxy level. In
these experiments we assume the use of a single proxy cache that provides all content to the clients
in the trace. While the proxy will cache objects for all clients (assuming a relatively small, fixed
512MB cache size), the clients will not use an extension cache.

In this test, the clients and servers are configured identically to those in section 3.2, with the
exception of not caching at the client. Here we add instead a proxy, with 45Mbit connectivity
upstream and downstream. The modeled proxy also adds 2ms latency in both directions, and a
per-request cpu overhead of 10ms.

In this system, a scenario with a non-caching proxy without persistent connections achieves a
mean client response time of 5.10s. A caching proxy saves little more than 1.4% in response time,
but does provide a reasonable hit rate (19.7%) and reduced network bandwidth usage (a savings
of 9%). Likewise, mean per-request throughput improves by 5.3%. These minor improvements
are expected in such a scenario, as the predominant bottleneck (the poor client connectivity) has
not been addressed in this scenario (either by caching at the client, or by persistent connections
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Figure 4: Comparison of DNS caching at the client on the CDF of response times from the UCB
Home-IP request trace.

between client and proxy).

Support for persistent connections provides a good boost in response time and throughput. A
non-caching proxy with persistent connections shaves 562ms from the average response time, and
.6s off of the median (a savings of 10.7% and 27.3%, respectively). Add caching, and the mean
response time dropes to 4.65s (11.5% response-time savings over the non-caching, non-persistent
scenario). See Figure 3 to compare all four configurations.

3.4 Modelling DNS Effects

NCS offers a simple mechanism to model DNS effects. Each node can provide a fixed cache of DNS
lookups for a parameterized amount of time. While the cost of DNS lookups is currently fixed
(or possibly selected randomly from some distribution), a more complex simulation (not currently
implemented) could be possible, utilizing organization-wide DNS caches to supplement the client
cache.

3.4.1 Client caching of DNS entries

Here we model characteristics of the Netscape 4 browser (10 entries in the DNS cache, expiration
after 900s), and assume a fixed cost of 600ms to retrieve a new entry for the UCB Home-IP trace.
We are not simulating any additional web caching so that only the caching of DNS responses
contributes to changes in performance. Otherwise, this simulation is identical to the caching client
scenario in section 3.2. We can show improvements in all measures: mean per-request latency
decreased by 11% (from 6.25s to 5.54s); median per-request latency decreased by 20% (from 3.0s
to 2.4s8); and mean per-request throughput also improved by 19%. See Figure 4.

3.4.2 Proxy caching of DNS entries

DNS caching can also be performed by shared proxies, and is in fact a benefit of using a (non-
transparent) proxy. When a client is configured to use a parent proxy, the only DNS lookup that is
necessary is the IP address of the proxy, since all requests will be sent to it. The proxy will have to
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Figure 5: Effect of DNS caching at a proxy on the CDF of response times from the UCB Home-IP
request trace.

do the DNS lookup, and can operate a larger and better-managed DNS cache than most browsers.
In the case in which requests are ‘transparently’ intercepted by a proxy, both the client and the
proxy have to ask for DNS resolution. In Figure 5, we again assume modem-based clients using the
UCB trace with a cost of 600ms for client DNS access, and a cost of 200ms for proxy DNS access,
and show a small but measurable improvement in typical access latency.

3.5 Incorporating Prefetching

NCS incorporates the ability to perform prefetching — that is, to speculatively issue retrieval
requests in advance of an actual request in the trace. Prefetching can be performed by clients or
by proxies. The model to decide what to prefetch can be built by the client, proxy, or server. In
the case of a server or proxy model, the predictions can be included as hints that are sent to the
downstream prefetcher that can use them or integrate them with its own predictions. However, the
model built is reflective of the requests seen by the system building the model — i.e., a server model
sending hints will be built from the requests (prefetching or demand) generated by its clients.

To demonstrate this feature, we will use a Web server trace containing months of requests to the
website of a small software development company and configure the simulated network topology
to consist of non-caching DSL clients (128kbps bandwidth, 80ms round trip delay), a prefetching
proxy with 5MB of cache placed at the ISP to which the Web server is connected via 33.6kbps
modem. The proxy cache is additionally configured such that it will only retain objects for an hour
at most. The prediction module makes only one prediction useing the largest Markov model with
sufficient support after each request. The maximum order used was three; the minimum order was
one. Ten requests of an object were needed before it could be predicted.

If the proxy is configured to passively cache only, the simulation estimates a mean end-user
latency of 3.437s and median of .790s. It had an object hit rate of 51%, and used only 72.2% of
the demand bandwidth when communicating with the origin server. Alternately, the prefetching
version described above reduced the median client delay to .70s and the mean to 3.280s, at the cost
of another 4.7% in demand bandwidth.

Given a suitably augmented trace file, we can simulate a single-step omniscient predictor. Thus,



for comparison, if we had an omniscient predictor that would give the next request made by a client,
the same prefetching proxy would have achieved a median client delay of .670s and mean of 3.106s.

4 Discussion

4.1 Related Work

Many researchers use simulation to estimate Web caching performance. Often they measure object
and byte hit rates and ignore response time latencies. Response time improvement, however, is
a common justification for the use of Web caching, and is arguably the initial raison d’étre for
content delivery networks such as Akamai [AkaO1]. As mentioned above, however, there are some
simulators that estimate response times. We describe a few of them here.

PROXIM [CDF*98, FCD"99] is a caching and network effects simulator developed by re-
searchers at AT&T Labs. Like NCS, PROXIM accounts for TCP slow start and does not consider
packet losses and their resulting effects. It does, however, consider cancelled requests and their
effect on bandwidth usage, unlike NCS or the other simulators mentioned here. PROXIM does
not include prefetching. The traces used by Feldmann et al were captured by a snooping proxy
and provide extraordinary timing details (including timestamps of TCP as well as HTTP events),
allowing PROXIM to use RTT estimates from measurements of SYN to SYN-ACK and HTTP
request and response timestamps on a per-connection basis.

Like NCS, the simulator described in Fan et al [FJCL99] uses the timing information in a portion
(12 days) of the UCB trace [Gri97] to estimate latency seen by each modem client. However, it
also uses a much simpler model of latency that

e estimates client-seen latency to be the sum of 1) time between seeing the request and the first
byte of the response, and 2) the time to transfer the response over the modem link.

e apparently ignores connection setup costs.
e apparently ignores TCP slow start effects.
e groups overlapping responses together.

However, Fan et al claim that by grouping overlapping responses together they are able to measure
the time spent by the user waiting for the whole document. This simulator does incorporate some
prefetching — it uses one kind of prediction by partial match (PPM) for proxy initiated prefetching
(in which the only objects prefetchable are those cached at the proxy, resulting in no new external
bw usage).

Kroeger et al. [KLM97] examine the limits of latency reduction from caching and prefetching.
They use proxy traces from a large company and find that 23% of the latency experienced by a
user is internal, 20% is external but cannot be fixed by caching or prefetching, and the remaining
57% correspond to external latencies that can be improved. Prediction is performed by an optimal
predictor, with some limitations on when prediction is permitted. The latencies used are not
calculated per se, but are extracted directly from the logs.

The ns simulator [UCBO01] is likely the best-known networking simulator, but is not typically
used for caching measurements, possibly because of slow simulation speeds. It uses detailed models
of networking protocols to calculate performance metrics (see Breslau et al. [BEFT00] for an
overview).
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4.2 Ongoing enhancement efforts

Much of NCS is simplistic, and could be improved (both in fidelity and in simulation efficiency)
with additional time and effort. A number of areas of improvement are underway, including:

e Range-based requests and caching. Modern traces include partial content responses, implying
that range-requests were used.

e Better models for packet loss. The simulator does include a simple uniform probabilistic
model of loss, but one based on congestion, along with recovery mechanisms would be more
appropriate.

e A better model for consistency. The current simulator does not sufficiently model changes at
the source, and as a result it does not generate simulated GET If-Modified-Since requests.

e Model terminated requests. Some traces provide information that specifies if a response was
terminated early (as a result of user cancellation via the stop button, or by clicking ahead
before the document fully loaded). Similarly, it may be important that prefetch requests
using GET be terminable when demand requests are present.

e Prefetching other than most-likely next request(s). Large objects need extra time to be
retrieved, and so prefetching further in advance (i.e. more than one step ahead) may be
needed.

Such improvements would increase simulation fidelity. Their impact on simulation results, however,
is unknown.
4.3 Conclusion

In this report we have motivated the development of NCS and described its features and capabilities.
We additionally provided a number of sample experiments showing the simulator’s utility in a
variety of contexts.
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