Predicting Web Actions from HTML Content

Brian D. Davison
davison@cse.lehigh.edu
Outline

- Web Prefetching
- Prediction Using History
- Prediction Using Content
- Evaluation of Prediction
- Full-Content Data Set
- Experimental Results
- Summary
Web Prefetching

- Perception of the 'World-Wide Wait' persists.
- Web caching in proxies and browsers helps.
 - But only useful for objects retrieved in the past.
- Prefetching has potential to help much more.
 - Need to predict user's request in advance.
Prediction Using History

- Primarily based on Markov models.
 - Calculates $p(\text{next}|\text{past})$
 - Suggested by many researchers over years.
 - e.g., Using Markov Models for Web Site Link Prediction.

- But not always applicable:
 - Too little data, e.g., on first visit to a site.
 - Site-specific model can't predict off-site clicks.
Web content can be examined.

- We can see the links within a page.
- Most page requests (perhaps 80%) are from clicking on a link in the current page.
- Knowing the links of the current page is a significant boost to finding the next page.
Prediction Ranking

- A naïve approach:
 - Use all links as predictions.
 - Prefetching all links typically requires too much time and/or bandwidth.

- We need to rank predictions by likelihood
 - Baseline ranking: Randomly order URLs.
 - (If we can't do better than random, we aren't doing anything)
 - Another simple approach: Rank the URLs in original page order.

- A more intelligent approach should be possible.
How does a user choose links?

- We suggest:
 - The user chooses the most interesting link.
 - If we knew the user's interest, we could rank the links appropriately.

- One possibility:
 - Ask the user for their interests or learn and get feedback.
 - We would prefer something unintrusive.
 - We would also have to worry about multiple or changing interests.
Our hypothesis:

- The user is looking at his/her current interest.
- (The set of pages recently seen corresponds to the current interest for the user.)

Given a user interest, how to rank a set of links?

- The text within and around a link provide a good description of the target document.
- Therefore, look for link text that is similar to the interest.
Approach taken

- Combine text of previous four pages as a single document.
- Calculate the similarity (that is, essentially just the stemmed terms in common) to each of the potential links.
- Links with more terms in common get a larger score.
Many Web sites have repeated structure on every page (menu, disclaimer, etc.)

- If you were to just concatenate the previous pages, you would emphasize the repeated text.
- Effectively suggests that a "Terms of Use" link is highly desirable!
- Instead, we only add the differences between pages so that such repeated text is no longer unduly emphasized.

- We use up to twenty additional terms both before and after each link in addition to all of the anchor text.

The ACM Conference will take you beyond cyberspace.
Evaluation of Prediction

- Multiple URL ranking mechanisms:
 - Random order, Original order, and Similarity order
- Need to evaluate predictive accuracy over a real data set.
- Prefetching systems can use more than the top prediction.
 - It may have time/resources to prefetch more than one.
 - It may already have the top prediction in a local cache.
 - We test accuracy using the top one, three, and five predictions.
- We will also evaluate the case in which the prefetching system places objects into an infinite cache.
 - Current prediction failures may be useful later.
Developed a custom Web proxy that recorded:

- Web traffic for eight months in 1998-1999
- Data from a relatively small set of volunteers
 - (mostly CS faculty and grad students at Rutgers Univ.)
- Approximately 135,000 HTTP requests.

This proxy captured full-content:

- HTTP headers of all Web requests and responses.
- Content of text and HTML objects.
Non-prefetchable Content

- Many objects are not really prefetchable!
 - Uncacheable content.
 - Content whose retrieval causes side-effects.
- Ideally these are handled by a revision to HTTP.
- Most researchers identify URLs that look dynamic.
 - i.e., URLs with ? or cgi within the URL, or POST reqs.
 - Such URLs represent 28% of the pages in our dataset.
- In addition, when next URL is not in list of URLs, prediction scheme cannot succeed (another 47%).
- Remaining 25% may be predicted correctly.
Experimental Results

The diagram shows the fraction of possible pages for different ranking methods:

- **Similarity**
- **Original Ord.**
- **Random**
- **Free**

Each method is represented by a bar chart with different colors:
- **Top1** (light blue)
- **Top3** (purple)
- **Top5** (yellow)

The x-axis represents the ranking methods, and the y-axis represents the fraction of possible pages.
When do approaches succeed?

Top-1 Prediction

Fraction of possible pages

Number of links per page

1 2-3 4-7 8-15 16-31 32-63 64-127 128-255 256-511

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275

- Similarity
- Original Order
- Random
- Max Possible
When do approaches succeed?

Top-5 Predictions

Fraction of possible pages

Number of links per page

- Similarity
- Original Order
- Random
- Max Possible
When using an infinite cache

Predictive and/or cached performance over all pages.
Discussion

- This talk discussed the prediction of Web page requests. Since we examine the content, it is trivial to prefetch the embedded resources as well.

- Caveat:
 - Small trace (few, mostly academic users)

- We believe:
 - Methods with stronger models of user interest are likely to perform better.
 - History-based methods are likely to perform better, when they have a sufficient model of past history.
Combining History and Content

Number of predictions allowed

Fraction of all pages predicted

<table>
<thead>
<tr>
<th>Number of predictions allowed</th>
<th>Content-alone</th>
<th>History-alone</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-1</td>
<td>0.025</td>
<td>0.05</td>
<td>0.075</td>
</tr>
<tr>
<td>Top-5</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Summary

- **Primary results:**
 - In the case of top-five predictions, similarity provided almost 30% improvement over random (without caching)
 - With an infinite cache, we are able to provide hits for 64% of all requests
 - (40% improvement over a non-prefetching system)
 - When users view new pages, content-based methods are quite useful.
 - Users view new pages perhaps 40% of the time.
 - Certainly better than doing nothing!
For more information

- Brian D. Davison
davison@cse.lehigh.edu
http://www.cse.lehigh.edu/~brian/

- Web Usage, Modeling, and Evaluation Lab
http://wume.cse.lehigh.edu/

- Web Caching and Content Delivery Resources
 Tutorials, news, bibliography, tools, links
http://www.web-caching.com/